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and the West, it brought people together in a divided world 61
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Let us express hope that the war in Ukraine will not result in
such a division again!
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N is the discrete space of natural numbers.

βN is its Čech-Stone compactification.

That is, βN is the unique compactification of N such that any
two disjoint subsets of N have disjoint closures in βN.
βN is the Stone space st(P(N)) of the Boolean algebra P(N)
(Hence βN is zero-dimensional.).

N∗ = βN \ N.
βN surfaces at many places in mathematics: topology, set
theory, logic, analysis, algebra, etc.

In the ‘old’ days there was a lot of interest in the individual
points of βN.
Walter Rudin proved that N∗ is not homogeneous under CH.
That is, there are two points in N∗ that have different
topological behavior in N∗. Froĺık proved this in ZFC. Shelah
proved that Rudin’s method does not work in ZFC alone.
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A definitive result was proved by Kunen in 1978: N∗ contains
a so-called weak P -point. That is a point p ∈ N∗ such that
p ̸∈ A, where A is any countable subset of N∗ \ {p}.

If A ⊆ N∗ is any countably infinite set, then there exists
q ∈ A \A, hence q is not a weak P -point.
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All points in N∗ are topologically homeomorphic (deep
theorem), but there are points p and q in N∗ with obvious
different topological behavior.

Kunen’s brilliant proof was generalized in several directions.
For example instead of weak P -points one can create certain
weak P -sets in N∗ (Dow, Simon, vM).

So we can sometimes replace ‘point’ by ‘interesting subspace’.
By doing that, we enter a new arena and in some cases open
a can of worms.

For the ’interesting subspaces’ A and B of N∗, we can ask:
1 Are A and B topologically homeomorphic?
2 If they are, are they placed in the same way in N∗?

Let us identify an ‘interesting subspace’ of N∗.

A subspace of N∗ that is homeomorphic to N∗ is certainly
‘interesting’.

Are there such subspaces, besides N∗ itself?
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Every proper nonempty clopen subspace of N∗ is
homeomorphic to N∗.

Are there copies of N∗ in N∗ that have empty interior in N∗?

van Douwen called such copies of N∗ in N∗ trivial.

Around 1980 (our best guess) he asked: is there a nowhere
dense copy of N∗ in N∗ that is not trivial?

Reformulating: is there a nowhere dense copy of N∗ in N∗

that is not placed in N∗ in a trivial way?
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Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of N∗ in N∗.

Dow used an Aronszajn tree in 2<ω1 to prove the existence of
a so-called nontrivial, maximal, nice closed filter F on
N× 2ω1 .

1 (An Aronszajn tree is a tree of uncountable height with no
uncountable branches and no uncountable levels.)

2 Here ‘nice’ means that for every F ∈ F , the set
{n ∈ N : F ∩ ({n} × 2ω1) = ∅} is finite.
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There is a nontrivial nowhere dense copy of N∗ in N∗.

Dow used an Aronszajn tree in 2<ω1 to prove the existence of
a so-called nontrivial, maximal, nice closed filter F on
N× 2ω1 .

1 Here ‘nontrivial’ means that for all xn ∈ 2ω1 , n ∈ N, there
exists F ∈ F such that {n ∈ N : (n, xn) ̸∈ F} is infinite.
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Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of N∗ in N∗.

Dow used an Aronszajn tree in 2<ω1 to prove the existence of
a so-called nontrivial, maximal, nice closed filter F on
N× 2ω1 .

1 Here ‘maximal’ means that if for every n ∈ N, {Cn
0 , C

1
n} is a

clopen paritition of 2ω1 , there exist F ∈ F and f ∈ 2N such
that for every n, F ∩ ({n} × 2ω1) ⊆ {n} × Cn

f(n).
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Let Y = β(N× 2ω1), the Čech-Stone compactification of
N× 2ω1 .

Then, as Dow showed, KF =
⋂

F∈F F is a ‘nontrivial’ copy of
N∗ in βY .

We are not done since Y does not embed in N∗.

So instead of in 2ω1 , Dow used E(2ω1), the projective cover
(or absolute) of 2ω1 . It is an extremally disconnected compact
separable space of weight c.

Each node of the Aronszajn tree is associated to a
‘compatible’ ultrafilter of regular open sets in some 2α, for
α < ω1.

This allowed Dow to do the same thing as above in
β(N× E(2ω1)) instead of β(N× 2ω1).

Kunen’s machinery of constructing a weak P -point in N∗ is
used to embed β(N× E(2ω1)) as a weak P -set in N∗.
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This gives a nontrivial copy of N∗ in N∗ that is contained in a
separable closed subspace of N∗.

Hence it is not a weak P -set.

The question of whether there exists a nowhere dense weak
P -set copy of N∗ in N∗ was asked before 1990. It was
mentioned in the list of open problems on βN by K.P. Hart
and vM, published in the Open Problems in Topology Book in
1990.

Theorem (Dow and vM)

There is copy of N∗ in N∗ that is a nowhere dense weak P -set.

Instead of E(2ω1) we use the Stone space of the measure
algebra Mω1 on 2ω1 .
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That space is extremally disconnected, and every countable
subset has nowhere dense closure, so it is not separable.

We let every node in the Aronszajn tree that we used before
correspond to a ‘compatible’remote point in the Stone space
of a certain subalgebra of Mω1 .

A remote point of a space X is a point p ∈ βX \X such that
p ̸∈ clβXA, for any nowhere dense subset A of X.

So a remote point of X cannot be ‘reached’ by any nowhere
dense subset of X.

So in the Stone space of our measure algebra, such a point
cannot be ‘reached’ by any countable subset of its
complement.

It is known by the work of van Douwen and Chae and Smith
that any nonspeudocompact space of countable π-weight has
a remote point.

We cannot apply that result, but in the case of measure
algebras there is an easy way out.
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Many weak P -sets

To see this, let X be any compact space, λ a Radon
probability measure on X, with the property that λ(A) = 0
for any nowhere dense A ⊆ X. We claim that N×X has a
remote point.

Alan and I and possibly others knew about this around 1980,
but did not we write it down since it is simple and we did not
have an ‘application’ for it.

Now we do! Never forget a good result!

These are the main ingredients for the (quite involved) proof
of the theorem.
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Theorem (Dow and vM (2020))

There is a copy X of N∗ in N∗ having the following properties:
1 There is a countable subset E contained in N∗ \X such that the

closure of E contains X,

2 for every countable discrete subset F in N∗ \X, the closure of F
misses X.

Klaas Pieter Hart and myself just completed an update on,
and expansion of, our paper Open problems on βω in the
book Open Problems in Topology. See
https://arxiv.org/abs/2205.11204.

We invite comments, corrections, more problems, ...
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THANK YOU!


