Selective properties of products of Fréchet-Urysohn spaces

#### Lyubomyr Zdomskyy

Institute für Mathematik (KGRC) Universität Wien

#### Toposym 2021/22 July 29, 2022, Prague, Czech Republic

Joint work with Serhii Bardyla and Fortunato Maesano

**Example.** There exists a countable FU space X and a metrizable space Y such that  $X \times Y$  is not FU.

**Example.** There exists a countable FU space X and a metrizable space Y such that  $X \times Y$  is not FU. E.g., let X be the classical FU fan, i.e.,  $\omega^2 \cup \{*\}$  with the strongest topology in which  $\{n\} \times \omega$  converges to \* for all  $n \in \omega$ ,

**Example.** There exists a countable FU space X and a metrizable space Y such that  $X \times Y$  is not FU. E.g., let X be the classical FU fan, i.e.,  $\omega^2 \cup \{*\}$  with the strongest topology in which  $\{n\} \times \omega$  converges to \* for all  $n \in \omega$ , and Y be the minimal non-locally compact metric space, say

 $Y = \{(0,0)\} \cup \{(\frac{1}{2^n}, \frac{1}{2^{n+m}}) : n, m \in \omega\} \subset \mathbb{R}^2.$ 

**Example.** There exists a countable FU space X and a metrizable space Y such that  $X \times Y$  is not FU. E.g., let X be the classical FU fan, i.e.,  $\omega^2 \cup \{*\}$  with the strongest topology in which  $\{n\} \times \omega$  converges to \* for all  $n \in \omega$ , and Y be the minimal non-locally compact metric space, say

 $Y = \{(0,0)\} \cup \{(\frac{1}{2^n}, \frac{1}{2^{n+m}}) : n, m \in \omega\} \subset \mathbb{R}^2.$ 

The preservation of the FU property by products was studied in detail by many people: P. Simon, Costantini, Nogura, ...

This was roughly speaking a search of *additional properties*, both global (e.g., compactness and weakenings thereof) and local (e.g.,  $\alpha_i$ ) which guarantee the preservation of the FU by products.

This was roughly speaking a search of *additional properties*, both global (e.g., compactness and weakenings thereof) and local (e.g.,  $\alpha_i$ ) which guarantee the preservation of the FU by products.

We go in a different direction: *Given a property P, do products of two (countable) FU spaces have it?* 

This was roughly speaking a search of *additional properties*, both global (e.g., compactness and weakenings thereof) and local (e.g.,  $\alpha_i$ ) which guarantee the preservation of the FU by products.

We go in a different direction: *Given a property P, do products of two (countable) FU spaces have it?* 

Since the singleton is FU, it makes sense to consider only P which follow from being FU.

This was roughly speaking a search of *additional properties*, both global (e.g., compactness and weakenings thereof) and local (e.g.,  $\alpha_i$ ) which guarantee the preservation of the FU by products.

We go in a different direction: *Given a property P, do products of two (countable) FU spaces have it?* 

Since the singleton is FU, it makes sense to consider only P which follow from being FU. In what follows we deal with *combinatorial density properties*.

X is  $H\mbox{-separable},$  if for every sequence  $\langle D_n:n\in\omega\rangle$  of dense subsets of X,

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called *mH-separable*.

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called *mH-separable*.

If we only demand that  $\bigcup_{n\in\omega}F_n$  is dense, we get the definition of M-separable spaces.

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called mH-separable.

If we only demand that  $\bigcup_{n\in\omega}F_n$  is dense, we get the definition of M-separable spaces.

H-separable  $\Rightarrow mH$ -separable  $\Rightarrow mM$ -separable  $\Leftrightarrow M$ -separable

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called mH-separable.

If we only demand that  $\bigcup_{n\in\omega}F_n$  is dense, we get the definition of M-separable spaces.

H-separable  $\Rightarrow$  mH-separable  $\Rightarrow$  mM-separable  $\Leftrightarrow$  M-separable  $\nearrow$  FU

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called mH-separable.

If we only demand that  $\bigcup_{n\in\omega}F_n$  is dense, we get the definition of  $M\mathchar`-separable$  spaces.

H-separable  $\Rightarrow$  mH-separable  $\Rightarrow$  mM-separable  $\Leftrightarrow$  M-separable  $\nearrow$  FU

M-separable and H-separable spaces were introduced by Scheepers (1999) and Bella-Bonanzinga-Matveev (2009), respectively.

X is *H*-separable, if for every sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of X, one can pick finite subsets  $F_n \subset D_n$  so that every nonempty open set  $O \subset X$  meets all but finitely many  $F_n$ 's.

Note that this is equivalent to  $\bigcup_{n\in I}F_n$  being dense for all infinite  $I\subset\omega.$ 

If the above selection is possible only for decreasing  $\langle D_n : n \in \omega \rangle$ , X is called mH-separable.

If we only demand that  $\bigcup_{n\in\omega}F_n$  is dense, we get the definition of  $M\mathchar`-separable$  spaces.

H-separable  $\Rightarrow$  mH-separable  $\Rightarrow$  mM-separable  $\Leftrightarrow$  M-separable  $\nearrow$  FU

*M*-separable and *H*-separable spaces were introduced by Scheepers (1999) and Bella-Bonanzinga-Matveev (2009), respectively. The latter equivalence was observed by Gruenhage-M. Sakai (2011).

#### Theorem (Barman-Dow 2011)

(CH) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Theorem (Barman-Dow 2011)

(CH) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Theorem (Barman-Dow 2012)

(PFA) The product of any two countable FU spaces is M-separable.

#### Theorem (Barman-Dow 2011)

(CH) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Theorem (Barman-Dow 2012)

(PFA) The product of any two countable FU spaces is M-separable.

#### Question

Is MA sufficient in the theorem above?

Let  $X \subset 2^{\omega}$ .

• An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.
- X is *Menger*, if for every sequence  $\langle U_n : n \in \omega \rangle$  in  $\mathcal{O}(X)$  there exists  $\langle \mathcal{V}_n : n \in \omega \rangle$  such that  $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$  and  $X = \bigcup_{n \in \omega} \cup \mathcal{V}_n$ .

Let  $X \subset 2^{\omega}$ .

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.

• X is *Menger*, if for every sequence  $\langle U_n : n \in \omega \rangle$  in  $\mathcal{O}(X)$  there exists  $\langle \mathcal{V}_n : n \in \omega \rangle$  such that  $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$  and  $X = \bigcup_{n \in \omega} \cup \mathcal{V}_n$ . Theorem (Gerlits-Nagy 1982.)  $C_n(X)$  is FU iff X is a  $\gamma$ -set.

Let  $X \subset 2^{\omega}$ .

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.

• X is *Menger*, if for every sequence  $\langle U_n : n \in \omega \rangle$  in  $\mathcal{O}(X)$  there exists  $\langle \mathcal{V}_n : n \in \omega \rangle$  such that  $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$  and  $X = \bigcup_{n \in \omega} \cup \mathcal{V}_n$ .

Theorem (Gerlits-Nagy 1982.)

 $C_p(X)$  is FU iff X is a  $\gamma$ -set.

Theorem (Scheepers 1999.)

 $C_p(X)$  is *M*-separable iff  $X^n$  is Menger for all  $n \in \omega$ .

Let  $X \subset 2^{\omega}$ .

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.

• X is *Menger*, if for every sequence  $\langle U_n : n \in \omega \rangle$  in  $\mathcal{O}(X)$  there exists  $\langle \mathcal{V}_n : n \in \omega \rangle$  such that  $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$  and  $X = \bigcup_{n \in \omega} \cup \mathcal{V}_n$ .

Theorem (Gerlits-Nagy 1982.)

 $C_p(X)$  is FU iff X is a  $\gamma$ -set.

#### Theorem (Scheepers 1999.)

 $C_p(X)$  is M-separable iff  $X^n$  is Menger for all  $n \in \omega$ . Thus  $\gamma$ -sets have all finite powers Menger.

イロト 不得下 イヨト イヨト 二日

Let  $X \subset 2^{\omega}$ .

- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is an  $\omega$ -cover of X, if for any  $F \in [X]^{<\omega}$  there exists  $U \in \mathcal{U}$  with  $F \subset U$ ;
- An infinite family  $\mathcal{U} \subset \mathcal{O}(X)$  is a  $\gamma$ -cover of X, if for any  $F \in [X]^{<\omega}$  we have  $F \subset U$  for all but finitely many  $U \in \mathcal{U}$ .
- X is a  $\gamma$ -set, if every  $\omega$ -cover of X contains a  $\gamma$ -subcover.

• X is *Menger*, if for every sequence  $\langle U_n : n \in \omega \rangle$  in  $\mathcal{O}(X)$  there exists  $\langle \mathcal{V}_n : n \in \omega \rangle$  such that  $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$  and  $X = \bigcup_{n \in \omega} \cup \mathcal{V}_n$ .

Theorem (Gerlits-Nagy 1982.)

 $C_p(X)$  is FU iff X is a  $\gamma$ -set.

#### Theorem (Scheepers 1999.)

 $C_p(X)$  is *M*-separable iff  $X^n$  is Menger for all  $n \in \omega$ .  $\Box$ Thus  $\gamma$ -sets have all finite powers Menger. There are actually "worlds" in between.

Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

Proof.

Let  $X_0, X_1$  be such as in the theorem above.
### Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

### Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

#### Proof.

Let  $X_0, X_1$  be such as in the theorem above. Then  $(X_0 \sqcup X_1)^2$  is not Menger, so  $C_p(X_0 \sqcup X_1) = C_p(X_0) \times C_p(X_1)$  is not *M*-separable.

### Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

### Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

#### Proof.

Let  $X_0, X_1$  be such as in the theorem above. Then  $(X_0 \sqcup X_1)^2$  is not Menger, so  $C_p(X_0 \sqcup X_1) = C_p(X_0) \times C_p(X_1)$  is not M-separable. Take a sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of  $C_p(X_0) \times C_p(X_1)$  witnessing this and let  $G_i$  be the subgroup of  $C_p(X_i)$  generated by  $pr_i(\bigcup_{n \in \omega} D_n)$ .

### Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

### Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

#### Proof.

Let  $X_0, X_1$  be such as in the theorem above. Then  $(X_0 \sqcup X_1)^2$  is not Menger, so  $C_p(X_0 \sqcup X_1) = C_p(X_0) \times C_p(X_1)$  is not M-separable. Take a sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of  $C_p(X_0) \times C_p(X_1)$  witnessing this and let  $G_i$  be the subgroup of  $C_p(X_i)$  generated by  $pr_i(\bigcup_{n \in \omega} D_n)$ .  $G_0 \times G_1$  is not M-separable.

### Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

### Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

#### Proof.

Let  $X_0, X_1$  be such as in the theorem above. Then  $(X_0 \sqcup X_1)^2$  is not Menger, so  $C_p(X_0 \sqcup X_1) = C_p(X_0) \times C_p(X_1)$  is not M-separable. Take a sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of  $C_p(X_0) \times C_p(X_1)$  witnessing this and let  $G_i$  be the subgroup of  $C_p(X_i)$  generated by  $pr_i(\bigcup_{n \in \omega} D_n)$ .  $G_0 \times G_1$  is not M-separable.

## Corollary (Ess. Barman-Dow)

(PFA) The product of two  $\gamma$ -sets is Menger.

### Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist  $\gamma$ -sets  $X_0, X_1$  with non-Menger product  $X_0 \times X_1$ .

### Corollary

(CH) There are two countable topological FU groups with non-M-separable product.

#### Proof.

Let  $X_0, X_1$  be such as in the theorem above. Then  $(X_0 \sqcup X_1)^2$  is not Menger, so  $C_p(X_0 \sqcup X_1) = C_p(X_0) \times C_p(X_1)$  is not M-separable. Take a sequence  $\langle D_n : n \in \omega \rangle$  of dense subsets of  $C_p(X_0) \times C_p(X_1)$  witnessing this and let  $G_i$  be the subgroup of  $C_p(X_i)$  generated by  $pr_i(\bigcup_{n \in \omega} D_n)$ .  $G_0 \times G_1$  is not M-separable.

## Corollary (Ess. Barman-Dow)

(PFA) The product of two  $\gamma$ -sets is Menger.

#### Question

Does MA imply that the product of two  $\gamma$ -sets is Menger?

#### Question

Does MA imply that the product of two  $\gamma$ -sets is Menger?

### Question

Does MA imply that the product of two countable FU-sets is M-separable?

#### Question

Does MA imply that the product of two  $\gamma$ -sets is Menger?

#### Question

*Does MA imply that the product of two countable FU-sets is M-separable?* 

"No" to the second one, the first one is open.

• We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .

- We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .
- Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.

- We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .
- Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.
- Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ ,

- We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .
- Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.
- Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-*M*-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .

- We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .
- Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.
- Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-*M*-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .
- At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ .

• We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .

• Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.

• Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-M-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .

• At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ . Namely, we should include into  $\tau_{\alpha+1}$  a new set which contains  $x_{\alpha}$  but no other point of  $S_{\alpha}$ ,

• We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .

• Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.

• Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-M-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .

• At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ . Namely, we should include into  $\tau_{\alpha+1}$  a new set which contains  $x_{\alpha}$  but no other point of  $S_{\alpha}$ , or better fix a sequence  $Y_{\alpha}$  in  $S_{\alpha}$  convergent to  $x_{\alpha}$  w.r.t. to  $\tau_{\alpha}$ ,

• We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .

• Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.

• Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-*M*-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .

• At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ . Namely, we should include into  $\tau_{\alpha+1}$  a new set which contains  $x_{\alpha}$  but no other point of  $S_{\alpha}$ , or better fix a sequence  $Y_{\alpha}$  in  $S_{\alpha}$  convergent to  $x_{\alpha}$  w.r.t. to  $\tau_{\alpha}$ , and preserve its convergence "forever".

- We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .
- Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.
- Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-*M*-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .
- At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ . Namely, we should include into  $\tau_{\alpha+1}$  a new set which contains  $x_{\alpha}$  but no other point of  $S_{\alpha}$ , or better fix a sequence  $Y_{\alpha}$  in  $S_{\alpha}$  convergent to  $x_{\alpha}$  w.r.t. to  $\tau_{\alpha}$ , and preserve its convergence "forever". Similarly on the " $\sigma$ -side".

• We start with topologies  $\tau_0 = \sigma_0$  on  $\omega$  turning it into a copy of  $\mathbb{Q}$ .

• Fix a sequence  $\langle E_n : n \in \omega \rangle$  of mutually disjoint dense subsets of  $\langle \omega^2, \tau_0 \otimes \sigma_0 \rangle$  such that  $E := \bigcup_{n \in \omega} E_n$  is a bijection.

• Our goal will be to construct recursively over  $\alpha \in \mathfrak{c}$  increasing sequences  $\langle \tau_{\alpha} : \alpha \in \mathfrak{c} \rangle$  and  $\langle \sigma_{\alpha} : \alpha \in \mathfrak{c} \rangle$  of topologies on  $\omega$ , such that  $X = \langle \omega, \tau_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \tau_{\alpha} \rangle Y = \langle \omega, \sigma_{\mathfrak{c}} = \bigcup_{\alpha \in \mathfrak{c}} \sigma_{\alpha} \rangle$  are FU spaces with non-*M*-separable product, as witnessed by  $\langle E_n : n \in \omega \rangle$ .

• At stage  $\alpha$  we face a pair  $\langle S_{\alpha}, x_{\alpha} \rangle$ , and have to do something if  $x_{\alpha}$  is a limit point of  $S_{\alpha}$  with respect to  $\tau_{\alpha}$ . Namely, we should include into  $\tau_{\alpha+1}$  a new set which contains  $x_{\alpha}$  but no other point of  $S_{\alpha}$ , or better fix a sequence  $Y_{\alpha}$  in  $S_{\alpha}$  convergent to  $x_{\alpha}$  w.r.t. to  $\tau_{\alpha}$ , and preserve its convergence "forever". Similarly on the " $\sigma$ -side".

• No problem to select  $Y_{\alpha}$  since  $\tau_{\alpha}$  has weight  $< \mathfrak{c} = \mathfrak{p}$  by recursive assumption, and hence  $\langle \omega, \sigma_{\alpha} \rangle$  is FU.

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever.

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ .

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ . Note that we must have  $Y \subset^* U$  for all  $Y \in \mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ . Note that we must have  $Y \subset^* U$  for all  $Y \in \mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side.

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ . Note that we must have  $Y \subset^* U$  for all  $Y \in \mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side. Thus we must have  $F^{\alpha}[U] \cap V = \emptyset$ ,

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ . Note that we must have  $Y \subset^* U$  for all  $Y \in \mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side. Thus we must have  $F^{\alpha}[U] \cap V = \emptyset$ ,  $F^{\alpha}[Y] \subset^* F^{\alpha}[U]$  for all  $Y \in \mathcal{Y}_{\alpha}$ ,

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}: n \in \omega \rangle$  with  $F_n^{\alpha} \in [E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U \times V$  is disjoint from  $F^{\alpha} := \bigcup_{n \in \omega} F_n^{\alpha}$ . Note that we must have  $Y \subset^* U$  for all  $Y \in \mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side. Thus we must have  $F^{\alpha}[U] \cap V = \emptyset$ ,  $F^{\alpha}[Y] \subset^* F^{\alpha}[U]$  for all  $Y \in \mathcal{Y}_{\alpha}$ , and  $Z \subset^* V$  for all  $Z \in \mathcal{Z}_{\alpha}$ .

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}:n\in\omega\rangle$  with  $F_n^{\alpha}\in[E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U\times V$  is disjoint from  $F^{\alpha}:=\bigcup_{n\in\omega}F_n^{\alpha}$ . Note that we must have  $Y\subset^* U$  for all  $Y\in\mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side. Thus we must have  $F^{\alpha}[U] \cap V = \emptyset$ ,  $F^{\alpha}[Y] \subset^* F^{\alpha}[U]$  for all  $Y \in \mathcal{Y}_{\alpha}$ , and  $Z \subset^* V$  for all  $Z \in \mathcal{Z}_{\alpha}$ . This means that it must be possible to separate the families  $\{F^{\alpha}[Y] : Y \in \mathcal{Y}_{\alpha}\}$  and  $\mathcal{Z}_{\alpha}$ .

10/16

• Thus at stage  $\alpha$  we shall have a family  $\mathcal{Y}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\tau_{\alpha}$  which must be preserved forever. The same with the second multiplicand: We have a family  $\mathcal{Z}_{\alpha}$  of size  $< \mathfrak{c}$  of convergent sequences w.r.t.  $\sigma_{\alpha}$  which must be preserved forever.

• But at this stage we also have to consider a sequence  $\langle F_n^{\alpha}:n\in\omega\rangle$  with  $F_n^{\alpha}\in[E_n]^{<\omega}$  and add U and V to  $\tau_{\alpha}$  and  $\sigma_{\alpha}$ , respectively, so that  $U\times V$  is disjoint from  $F^{\alpha}:=\bigcup_{n\in\omega}F_n^{\alpha}$ . Note that we must have  $Y\subset^* U$  for all  $Y\in\mathcal{Y}_{\alpha}$ , whenever the limit point of Y lies in U. Similarly for  $\mathcal{Z}_{\alpha}$  and V.

• For simplicity we assume that all  $Y \in \mathcal{Y}_{\alpha}$  converge to a point in U, and the same on the other side. Thus we must have  $F^{\alpha}[U] \cap V = \emptyset$ ,  $F^{\alpha}[Y] \subset^* F^{\alpha}[U]$  for all  $Y \in \mathcal{Y}_{\alpha}$ , and  $Z \subset^* V$  for all  $Z \in \mathcal{Z}_{\alpha}$ . This means that it must be possible to separate the families  $\{F^{\alpha}[Y] : Y \in \mathcal{Y}_{\alpha}\}$  and  $\mathcal{Z}_{\alpha}$ .

10/16

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ ,

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones.

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

## Theorem (BMZ 202?)

(MA+(\*)) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

## Theorem (BMZ 202?)

(MA+(\*)) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Corollary

PFA+(\*) is inconsistent.

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

## Theorem (BMZ 202?)

(MA+(\*)) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

### Corollary

PFA+(\*) is inconsistent.
But a better result is known:
## $\omega_1$ -separated mad families as helpers

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

## Theorem (BMZ 202?)

(MA+(\*)) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Corollary

PFA+(\*) is inconsistent.

But a better result is known:

## Theorem (Dow 2011)

PFA implies that there is no  $\omega_1$ -separated mad family.

## $\omega_1$ -separated mad families as helpers

A mad family  $\mathcal{A}$  is  $\omega_1$ -separated, if for any disjoint  $\mathcal{A}_0, \mathcal{A}_1 \in [\mathcal{A}]^{\omega_1}$  there exists  $R \subset \omega$  with  $A_0 \subset^* R$  and  $A_1 \subset^* \omega \setminus R$  for all  $A_0 \in \mathcal{A}_0$  and  $A_1 \in \mathcal{A}_1$ , respectively.

• Given such an  $\mathcal{A}$ , we can try to make sure in the construction that each  $Z \in \mathcal{Z}_{\alpha}$  as well as each  $E(Y), Y \in \mathcal{Y}_{\alpha}$ , is contained in some element of  $\mathcal{A}$ , and all in different ones. And this works.

(\*): There exists an  $\omega_1$ -separated mad family  $\mathcal{A} \subset [\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete sets.

## Theorem (BMZ 202?)

(MA+(\*)) There exist countable FU spaces X, Y whose product  $X \times Y$  is not M-separable.

#### Corollary

PFA+(\*) is inconsistent.

But a better result is known:

## Theorem (Dow 2011)

PFA implies that there is no  $\omega_1$ -separated mad family.

Theorem (Essentially Dow-Shelah 2012) MA+(\*) is consistent.

Theorem (Essentially Dow-Shelah 2012) MA+(\*) is consistent.

We follow the idea of the proof by Dow-Shelah that MA is consistent with the existence an  $\omega_1$ -separated mad family. However, their proof produces such a family which is *tight*,

Theorem (Essentially Dow-Shelah 2012) MA+(\*) is consistent.

We follow the idea of the proof by Dow-Shelah that MA is consistent with the existence an  $\omega_1$ -separated mad family. However, their proof produces such a family which is *tight*,

# Theorem (Essentially Dow-Shelah 2012) *MA+*(\*) *is consistent.*

We follow the idea of the proof by Dow-Shelah that MA is consistent with the existence an  $\omega_1$ -separated mad family. However, their proof produces such a family which is *tight*, whereas it is easy to see that a mad subfamily of  $[\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete subsets cannot be tight.

## Theorem (Essentially Dow-Shelah 2012) MA+(\*) is consistent.

We follow the idea of the proof by Dow-Shelah that MA is consistent with the existence an  $\omega_1$ -separated mad family. However, their proof produces such a family which is *tight*, whereas it is easy to see that a mad subfamily of  $[\mathbb{Q}]^{\omega}$  consisting of convergent sequences and closed discrete subsets cannot be tight.

## Corollary (BMZ 202?)

*MA* is consistent with the existence of two FU spaces with non-*M*-separable product.

*In the Laver model, the product of two H-separable spaces is mH-separable.* 

*In the Laver model, the product of two H-separable spaces is mH-separable.* 

It improved the following earlier result.

## Theorem (Repovš-Z. 2016)

In the Laver model, the product of any two H-separable countable spaces is *M*-separable.

П

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? *R*-separable?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? R-separable? Does PFA imply that the product of two  $\gamma$ -spaces is Hurewicz?

#### Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? R-separable? Does PFA imply that the product of two  $\gamma$ -spaces is Hurewicz? Rothberger?

The next question was essentially posed in the paper of Gruenhage-M. Sakai (2011).

## Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? R-separable? Does PFA imply that the product of two  $\gamma$ -spaces is Hurewicz? Rothberger?

The next question was essentially posed in the paper of Gruenhage-M. Sakai (2011).

#### Question

Is it consistent that each regular countable  $mH\mathchar`-separable$  space is H-separable?

## Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? R-separable? Does PFA imply that the product of two  $\gamma$ -spaces is Hurewicz? Rothberger?

The next question was essentially posed in the paper of Gruenhage-M. Sakai (2011).

#### Question

Is it consistent that each regular countable mH-separable space is H-separable? If not, is it consistent that each regular countable FU space is H-separable?

## Question

Is it consistent that the product of two (m)H-separable countable spaces is (m)H-separable? Is it consistent that the product of two countable FU spaces is (m)H-separable? What happens in the Laver model?

Let us note that by a result of Dow (2014) there are countable regular FU spaces with  $\pi$ -weight at least  $\mathfrak{b}$ , i.e., non-trivial ones in the context of the question above.

#### Question

Does PFA imply that the product of two FU spaces is (m)H-separable? R-separable? Does PFA imply that the product of two  $\gamma$ -spaces is Hurewicz? Rothberger?

The next question was essentially posed in the paper of Gruenhage-M. Sakai (2011).

## Question

Is it consistent that each regular countable mH-separable space is H-separable? If not, is it consistent that each regular countable FU space is H-separable? What happens in the Laver model?

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

# The role of the regularity

## Theorem (BMZ 202?)

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

•  $\alpha_3$ , if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

- $\alpha_3$ , if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;
- $\alpha_2$ , if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

- $\alpha_3$ , if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;
- $\alpha_2$ , if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

**Exercise.** Countable FU  $\alpha_2$  spaces are H-separable.

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

• 
$$\alpha_3$$
, if /-/ such that  $\{S \in S : |T \cap S| = \infty\}$  is infinite;

• 
$$\alpha_2$$
, if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

**Exercise.** Countable FU  $\alpha_2$  spaces are H-separable.

#### Question

Is  $\alpha_3$  sufficient?

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

• 
$$\alpha_3$$
, if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;

• 
$$\alpha_2$$
, if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

**Exercise.** Countable FU  $\alpha_2$  spaces are H-separable.

#### Question

Is  $\alpha_3$  sufficient? What about regular spaces?

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

• 
$$\alpha_3$$
, if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;

• 
$$\alpha_2$$
, if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

**Exercise.** Countable FU  $\alpha_2$  spaces are H-separable.

#### Question

Is  $\alpha_3$  sufficient? What about regular spaces?

• There exists a countable FU (and hence also mH-separable) space which is not H-separable;

• If  $\mathfrak{p} = \mathfrak{c}$ , then there exists a countable regular  $\alpha_4$  FU space which is not *H*-separable.

Recall that X is

•  $\alpha_4$ , if for every  $x \in X$  and a countable collection S of injective sequences convergent to x, there exists a sequence T convergent to x such that  $\{S \in S : T \cap S \neq \emptyset\}$  is infinite;

• 
$$\alpha_3$$
, if /-/ such that  $\{S \in \mathcal{S} : |T \cap S| = \infty\}$  is infinite;

• 
$$\alpha_2$$
, if /-/ such that  $|T \cap S| = \infty$  for all  $S \in S$ .

**Exercise.** Countable FU  $\alpha_2$  spaces are H-separable.

#### Question

Is  $\alpha_3$  sufficient? What about regular spaces?





# Glory to Defenders of Ukraine!





# Glory to Defenders of Ukraine!





Glory to Defenders of Ukraine! Glory to >40 Nations helping Ukraine to survive!