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/
FU

M -separable and H-separable spaces were introduced by Scheepers
(1999) and Bella-Bonanzinga-Matveev (2009), respectively. The
latter equivalence was observed by Gruenhage-M. Sakai (2011).
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Is MA sufficient in the theorem above?
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Cp(X) is FU iff X is a y-set. O
Theorem (Scheepers 1999.)
Cp(X) is M-separable iff X" is Menger for all n € w. O

Thus ~-sets have all finite powers Menger. There are actually

“worlds” in between.
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Two similar questions

Question
Does MA imply that the product of two ~y-sets is Menger?

Question

Does MA imply that the product of two countable FU-sets is
M-separable?

“No" to the second one, the first one is open.
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necw

e At stage o we face a pair (S,, ), and have to do something if
Zq is a limit point of S, with respect to 7. Namely, we should
include into 7,41 a new set which contains x,, but no other point of
Sa, or better fix a sequence Y,, in S, convergent to x, w.r.t. to 7,,
and preserve its convergence “forever’. Similarly on the “o-side”.

e No problem to select Y, since 7, has weight < ¢ = p by recursive

assumption, and hence (w, o,) is FU.
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MA+(x) is consistent. O
We follow the idea of the proof by Dow-Shelah that MA is
consistent with the existence an wi-separated mad family. However,
their proof produces such a family which is tight,

whereas it is easy to see that a mad subfamily of Q] consisting of
convergent sequences and closed discrete subsets cannot be tight.

Corollary (BMZ 2027)

MA is consistent with the existence of two FU spaces with
non-M-separable product.
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Theorem (BMZ 2027)

In the Laver model, the product of two H-separable spaces is
mH-separable. g

It improved the following earlier result.

Theorem (Repovs-Z. 2016)

In the Laver model, the product of any two H-separable countable
spaces is M-separable. |
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