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Fréchet-Urysohn property

X is Fréchet-Urysohn, if for any x ∈ Ā ⊂ X there exists a
sequence in A convergent to x.

Example. There exists a countable FU space X and a metrizable
space Y such that X × Y is not FU.
E.g., let X be the classical FU fan, i.e.,
ω2 ∪ {∗} with the strongest topology in which {n} × ω converges
to ∗ for all n ∈ ω,
and Y be the minimal non-locally compact metric space, say
Y = {(0, 0)} ∪ {( 1

2n ,
1

2n+m ) : n,m ∈ ω} ⊂ R2. 2
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sequence in A convergent to x.

Example. There exists a countable FU space X and a metrizable
space Y such that X × Y is not FU.
E.g., let X be the classical FU fan, i.e.,
ω2 ∪ {∗} with the strongest topology in which {n} × ω converges
to ∗ for all n ∈ ω,

and Y be the minimal non-locally compact metric space, say
Y = {(0, 0)} ∪ {( 1

2n ,
1

2n+m ) : n,m ∈ ω} ⊂ R2. 2

2 / 16



Fréchet-Urysohn property

X is Fréchet-Urysohn, if for any x ∈ Ā ⊂ X there exists a
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sequence in A convergent to x.

Example. There exists a countable FU space X and a metrizable
space Y such that X × Y is not FU.
E.g., let X be the classical FU fan, i.e.,
ω2 ∪ {∗} with the strongest topology in which {n} × ω converges
to ∗ for all n ∈ ω,
and Y be the minimal non-locally compact metric space, say
Y = {(0, 0)} ∪ {( 1

2n ,
1

2n+m ) : n,m ∈ ω} ⊂ R2. 2

2 / 16



The preservation of the FU property by products was studied in
detail by many people: P. Simon, Costantini, Nogura, ...

This led
Arhangel'skii to introduction of αi properties, to be considered later
in the talk.

This was roughly speaking a search of additional properties, both
global (e.g., compactness and weakenings thereof) and local (e.g.,
αi) which guarantee the preservation of the FU by products.

We go in a di�erent direction: Given a property P, do products of

two (countable) FU spaces have it?

Since the singleton is FU, it makes sense to consider only P which
follow from being FU. In what follows we deal with combinatorial

density properties.
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M - and (m)H-separable spaces

X is H-separable, if for every sequence 〈Dn : n ∈ ω〉 of dense
subsets of X,

one can pick �nite subsets Fn ⊂ Dn so that every
nonempty open set O ⊂ X meets all but �nitely many Fn's.

Note that this is equivalent to
⋃
n∈I Fn being dense for all in�nite

I ⊂ ω.
If the above selection is possible only for decreasing 〈Dn : n ∈ ω〉,
X is called mH-separable.

If we only demand that
⋃
n∈ω Fn is dense, we get the de�nition of

M -separable spaces.

H-separable ⇒ mH-separable ⇒ mM -separable ⇔ M -separable
↗

FU

M -separable and H-separable spaces were introduced by Scheepers
(1999) and Bella-Bonanzinga-Matveev (2009), respectively. The
latter equivalence was observed by Gruenhage-M. Sakai (2011).
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Motivation

Theorem (Barman-Dow 2011)

(CH) There exist countable FU spaces X,Y whose product X × Y
is not M -separable.

Theorem (Barman-Dow 2012)

(PFA) The product of any two countable FU spaces is M -separable.

Question
Is MA su�cient in the theorem above?
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Similar results via classical Cp-dualities for covering

properties

Let X ⊂ 2ω.

• An in�nite family U ⊂ O(X) is an ω-cover of X, if for any
F ∈ [X]<ω there exists U ∈ U with F ⊂ U ;

• An in�nite family U ⊂ O(X) is a γ-cover of X, if for any
F ∈ [X]<ω we have F ⊂ U for all but �nitely many U ∈ U .
• X is a γ-set, if every ω-cover of X contains a γ-subcover.

• X is Menger, if for every sequence 〈Un : n ∈ ω〉 in O(X) there
exists 〈Vn : n ∈ ω〉 such that Vn ∈ [Un]<ω and X =

⋃
n∈ω ∪Vn.

Theorem (Gerlits-Nagy 1982.)

Cp(X) is FU i� X is a γ-set. 2

Theorem (Scheepers 1999.)

Cp(X) is M -separable i� Xn is Menger for all n ∈ ω. 2

Thus γ-sets have all �nite powers Menger. There are actually
�worlds� in between.
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Similar results via classical Cp-dualities for covering

properties 2

Theorem (A. Miller-Tsaban-Z. 2016)

(CH) There exist γ-sets X0, X1 with non-Menger product X0×X1.

Corollary

(CH) There are two countable topological FU groups with

non-M-separable product.

Proof.
Let X0, X1 be such as in the theorem above. Then (X0 tX1)

2 is
not Menger, so Cp(X0 tX1) = Cp(X0)× Cp(X1) is not
M -separable. Take a sequence 〈Dn : n ∈ ω〉 of dense subsets of
Cp(X0)× Cp(X1) witnessing this and let Gi be the subgroup of
Cp(Xi) generated by pri(

⋃
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Two similar questions

Question
Does MA imply that the product of two γ-sets is Menger?

Question
Does MA imply that the product of two countable FU-sets is

M-separable?

�No� to the second one, the �rst one is open.
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Mission impossible: Trying to get a non-M -separable

product from MA

• We start with topologies τ0 = σ0 on ω turning it into a copy of
Q.

• Fix a sequence 〈En : n ∈ ω〉 of mutually disjoint dense subsets of
〈ω2, τ0 ⊗ σ0〉 such that E :=

⋃
n∈ω En is a bijection.

• Our goal will be to construct recursively over α ∈ c increasing
sequences 〈τα : α ∈ c〉 and 〈σα : α ∈ c〉 of topologies on ω, such
that X = 〈ω, τc =

⋃
α∈c τα〉 Y = 〈ω, σc =

⋃
α∈c σα〉 are FU spaces

with non-M -separable product, as witnessed by 〈En : n ∈ ω〉.
• At stage α we face a pair 〈Sα, xα〉, and have to do something if
xα is a limit point of Sα with respect to τα. Namely, we should
include into τα+1 a new set which contains xα but no other point of
Sα, or better �x a sequence Yα in Sα convergent to xα w.r.t. to τα,
and preserve its convergence �forever�. Similarly on the �σ-side�.

• No problem to select Yα since τα has weight < c = p by recursive
assumption, and hence 〈ω, σα〉 is FU.
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Mission impossible, continued

• Thus at stage α we shall have a family Yα of size < c of
convergent sequences w.r.t. τα which must be preserved forever.

The same with the second multiplicand: We have a family Zα of
size < c of convergent sequences w.r.t. σα which must be
preserved forever.

• But at this stage we also have to consider a sequence
〈Fαn : n ∈ ω〉 with Fαn ∈ [En]<ω and add U and V to τα and σα,
respectively, so that U × V is disjoint from Fα :=

⋃
n∈ω F

α
n . Note

that we must have Y ⊂∗ U for all Y ∈ Yα, whenever the limit
point of Y lies in U . Similarly for Zα and V .

• For simplicity we assume that all Y ∈ Yα converge to a point in
U , and the same on the other side. Thus we must have
Fα[U ] ∩ V = ∅,
Fα[Y ] ⊂∗ Fα[U ] for all Y ∈ Yα, and
Z ⊂∗ V for all Z ∈ Zα.
This means that it must be possible to separate the families
{Fα[Y ] : Y ∈ Yα} and Zα.
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convergent sequences w.r.t. τα which must be preserved forever.
The same with the second multiplicand: We have a family Zα of
size < c of convergent sequences w.r.t. σα which must be
preserved forever.

• But at this stage we also have to consider a sequence
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ω1-separated mad families as helpers

A mad family A is ω1-separated, if for any disjoint A0,A1 ∈ [A]ω1 there
exists R ⊂ ω with A0 ⊂∗ R and A1 ⊂∗ ω \R for all A0 ∈ A0 and
A1 ∈ A1, respectively.

• Given such an A, we can try to make sure in the construction that each
Z ∈ Zα as well as each E(Y ), Y ∈ Yα, is contained in some element of
A, and all in di�erent ones. And this works.

(∗): There exists an ω1-separated mad family A ⊂ [Q]ω consisting of
convergent sequences and closed discrete sets.

Theorem (BMZ 202?)
(MA+(∗)) There exist countable FU spaces X,Y whose product X × Y
is not M -separable. 2

Corollary
PFA+(∗) is inconsistent. 2

But a better result is known:

Theorem (Dow 2011)
PFA implies that there is no ω1-separated mad family. 2
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The consistency of our assumption

Theorem (Essentially Dow-Shelah 2012)

MA+(∗) is consistent. 2

We follow the idea of the proof by Dow-Shelah that MA is
consistent with the existence an ω1-separated mad family. However,
their proof produces such a family which is tight,
whereas it is easy to see that a mad subfamily of [Q]ω consisting of
convergent sequences and closed discrete subsets cannot be tight.

Corollary (BMZ 202?)

MA is consistent with the existence of two FU spaces with

non-M-separable product.
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One more result on products

Theorem (BMZ 202?)

In the Laver model, the product of two H-separable spaces is

mH-separable. 2

It improved the following earlier result.

Theorem (Repov²-Z. 2016)

In the Laver model, the product of any two H-separable countable

spaces is M-separable. 2
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More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable?

Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable?

What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?

R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable?

Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz?

Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable?

If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable?

What happens in the Laver model? 2

14 / 16



More questions

Question
Is it consistent that the product of two (m)H-separable countable spaces
is (m)H-separable? Is it consistent that the product of two countable FU
spaces is (m)H-separable? What happens in the Laver model? 2

Let us note that by a result of Dow (2014) there are countable regular
FU spaces with π-weight at least b, i.e., non-trivial ones in the context of
the question above.

Question
Does PFA imply that the product of two FU spaces is (m)H-separable?
R-separable? Does PFA imply that the product of two γ-spaces is
Hurewicz? Rothberger? 2

The next question was essentially posed in the paper of
Gruenhage-M. Sakai (2011).

Question
Is it consistent that each regular countable mH-separable space is
H-separable? If not, is it consistent that each regular countable FU space
is H-separable? What happens in the Laver model? 2

14 / 16



The role of the regularity

Theorem (BMZ 202?)
• There exists a countable FU (and hence also mH-separable) space
which is not H-separable;

• If p = c, then there exists a countable regular α4 FU space which is not
H-separable. 2

Recall that X is

• α4, if for every x ∈ X and a countable collection S of injective
sequences convergent to x, there exists a sequence T convergent to x
such that {S ∈ S : T ∩ S 6= ∅} is in�nite;
• α3, if /�/ such that {S ∈ S : |T ∩ S| =∞} is in�nite;
• α2, if /�/ such that |T ∩ S| =∞ for all S ∈ S.
Exercise. Countable FU α2 spaces are H-separable. 2

Question
Is α3 su�cient? What about regular spaces?
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