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Homogeneous structures

A structure A is (ultra)homogeneous if every isomorphism of its
finite substructures can be extended to an automorphism of A.

Examples

▶ (Q,≤)

▶ The countable random (Rado) graph

▶ F∞
2

The age of A is the class of all finite substructures of A.
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Topological dynamics

Theorem (Kechris, Pestov, Todorcevic’05)

Let A be homogeneous. Then Aut(A) is extremely amenable if
and only if Age(A) has the Ramsey property.

Definition
A topological group G is extremely amenable if every continuous
action of G on a compact space has a fixed point.

Definition
Class C of finite structures has the Ramsey property if for every
A,B ∈ C there is C ∈ C such that C −→ (B)A2,1.

One can use Ramsey property to compute universal minimal flows
[KPT, Nguyen Van The, Zucker].
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Partition arrow
Let A,B,C be structures and let k , t ∈ ω. We denote by

C −→ (B)Ak,t

the statement that for every colouring c : Emb(A,C) → k there is
f ∈ Emb(B,C) such that

|c(f ◦ Emb(A,C))| ≤ t.
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Partition arrow
Let A,B,C be structures and let k , t ∈ ω. We denote by

C −→ (B)Ak,t

the statement that for every colouring c : Emb(A,C) → k there is
f ∈ Emb(B,C) such that

|c(f ◦ Emb(A,C))| ≤ t.

Given M and A ∈ Age(M), the big Ramsey degree of A in M is
the least t ∈ ω ∪ {ω} such that for every k ∈ ω it holds that
M −→ (M)Ak,t .

Understanding big Ramsey degrees is helpful for computing universal
completion flows [Zucker’19].



Big Ramsey degrees

Question
Given a (countably infinite) structure M and a finite colouring of
its substructures isomorphic to A, is there a monochromatic
(oligochromatic) copy of M?
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▶ Sets (Ramsey’s theorem) more precisely (ω,≤)

▶ (Q,≤) −→ (Q,≤)·k,1
▶ (Q,≤) ̸−→ (Q)··2,1
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Sierpiński’s colouring
Fix an enumeration ⊴ of Q. Given a < b ∈ Q, put χ(a, b) = 0 if
a ◁ b and χ(a, b) = 1 otherwise.

Theorem (Sierpiński’33)

Every copy of Q in Q contains pairs of both colours.

χ is a bad colouring.
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Colouring of n-element subsets

1. Enumerate Q and get the tree of types.
2. Let S be a finite subset of Q.
3. Let S̄ be the meet-closure of S .
4. Colour S by the shape of S̄ , let χn be this colouring.
5. Profit.
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1. Enumerate Q and get the tree of types.
2. Let S be a finite subset of Q.
3. Let S̄ be the meet-closure of S .
4. Colour S by the shape of S̄ , let χn be this colouring.
5. Profit.

Theorem (Laver’69)

χn is a universal colouring.
That is, for every finite colouring ξn of n-tuples of rationals there is
an isomorphic copy Q̃ of Q on which ξn factorizes through χn

(χn(x) = χn(y) ⇒ ξn(x) = ξn(y)). (Uses Milliken’s tree theorem.)

[Devlin 1979] found a sub-colouring of χn which is bad and
universal at the same time, giving the big Ramsey degrees for Q.
(The big Ramsey degree of the n-element order is tan(2n−1)(0).)
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The random graph

Given a finite set S of vertices, let S̄ be its meet-closure. Let χn

map every set S of size n to the shape of S̄ .

Theorem (Sauer 2006)

χn is a universal colouring. (Uses Milliken’s tree theorem.)

Theorem (Laflamme, Sauer, Vuksanović 2006)

There is a sub-colouring of χn which is both universal and bad.
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Examples
▶ (N,≤) [Ramsey, 1928] (Ramsey)

▶ (Q,≤) [Laver 1969, Devlin 1979, Galvin] (Milliken)

▶ random graph [Sauer 2006, Laflamme, Sauer, Vuksanović
2006] (Milliken)

▶ Kn-free graphs [Dobrinen 2016, Balko, Chodounský, Dobrinen,
Hubička, K, Vena, Zucker 2021] (Custom, using forcing)

▶ Generic partial order [Hubička 2020] (Carlson–Simpson)

▶ Metric spaces with finitely many distances [Balko,
Chodounský, Hubička, K, Nešeťril, Vena 2020]
(Carlson–Simpson)

▶ Free amalgamation classes in a finite binary language [Zucker
2020, Balko, Chodounský, Dobrinen, Hubička, K, Vena,
Zucker 2021] (Custom, using forcing)

▶ 3-uniform hypergraphs [Balko, Chodounský, Hubička, K, Vena
2020] (Product Milliken)

▶ . . .



The 3-uniform hypergraph

Theorem (Balko, Chodounský, Hubička, K, Vena 2020)

The colourings by shapes in the product of the trees are universal.
(Uses the product Milliken tree theorem.)
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Theorem (BChdRHKK, 2022)

Let L be a countable relational language with finitely many unaries and let H
be the Fräıssé limit of the class of all finite L-structures where each
relation is injective. TFAE

1. H has finite big Ramsey degrees (there are universal
colourings with finite domain),

2. H is ω-categorical,

3. L has finitely many relations of each arity,

4. the tree of (1)-types is finitely branching,

5. the tree of (n)-types is finitely branching for every n.

(Using the product Milliken tree theorem.)



Lower bound

Proposition

Let T be the tree of all finite sequences of natural numbers. There
is a colouring c : T → ω such that whenever T ′ is a strong subtree
of T of infinite height then c[T ′] = ω.

Proof.

1. Given t ∈ T , put w(t) = |t|+
∑

i<|t| t(i) and define ℓ(t) to
be the least ℓ such that w(t ↾ℓ) ≥ |t|.

2. Put c(t) = w(t ↾ℓ(t))− |t|.
3. Let T ′ be a strong subtree of T of infinite height, let r be the

root of t ′ and let n ∈ ω be such that n > w(r) and
T ′ ∩ T (n) ̸= ∅. Put k = n − w(r)− 1, fix a colour x ∈ ω and
find t ∈ T ′ such that |t| = n and r⌢(k + x) ⊑ t.

4. Now, w(r) < n, so ℓ(t) > |r |. On the other hand,
w(r⌢(k + x)) = k + x + w(r) + 1 = n + x ≥ n, hence
ℓ(t) = |r |+ 1 and c(t) = x .



Thank you!


