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"Such a considerable flourish of examples [James’s and
Tsirelson’s spaces] had at least one consequence: everyone
got lost. Nobody knew any longer what to expect, and
even the most impetuous newcomers could hardly make
any conjecture, which, for a mathematician, is a sad situ-
ation. The only general structure theorem which has
been proved since then was Rosenthal’s, dealing with
l1 and weak Cauchy subsequence."

Bernard Beauzamy, 1997, [1]
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What Are We going to Talk About?

I Locally convex analogues for Rosenthal, Asplund and reflexive
Banach spaces.

(Ref) ⊆ (Asp) ⊆ (Ros)

↓

(DLP) ⊆ (NP) ⊆ (T).

I A generalized Haydon’s theorem.
I Extension of a result of Ruess (2014) about Rosenthal’s

dichotomy.
I A general framework for "smallness" of locally convex spaces.
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Tame Families

Definition
A sequence of real functions {fn : X → R}n∈N on a set X is said to
be independent (Rosenthal 1974) if there exist real numbers
a < b such that⋂

n∈P
f −1
n (−∞, a) ∩

⋂
n∈M

f −1
n (b,∞) 6= ∅

for all finite disjoint subsets P,M of N.

Definition
A bounded family F ⊆ RX is said to be tame if it contains no
independent subsequence.

Exercise
If {fn}n∈N is not tame over X, then X is not tame over {fn}n∈N.
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Tame Families
Visualization

Figure: here P = {3} and M = {1, 2, 4}



Fragmented Functions

Definition
I A real-valued function f on a topological space (X , τ) is said

to be fragmented if for every subset A ⊆ X and ε > 0, there
exists an open O ∈ τ such A∩O 6= ∅ and diam f (A∩O) < ε.

I A bounded family F ⊆ RX is said to be fragmented if for
every A ⊆ X and ε > 0 we can find O ∈ τ such that the
previous condition hold simultaneously for every f ∈ F .

I A bounded family F ⊆ RX is said to be eventually
fragmented if every sequence in F contains a fragmented
subsequence.



Fragmented Functions

Definition
I A real-valued function f on a topological space (X , τ) is said

to be fragmented if for every subset A ⊆ X and ε > 0, there
exists an open O ∈ τ such A∩O 6= ∅ and diam f (A∩O) < ε.

I A bounded family F ⊆ RX is said to be fragmented if for
every A ⊆ X and ε > 0 we can find O ∈ τ such that the
previous condition hold simultaneously for every f ∈ F .

I A bounded family F ⊆ RX is said to be eventually
fragmented if every sequence in F contains a fragmented
subsequence.



Fragmented Functions

Definition
I A real-valued function f on a topological space (X , τ) is said

to be fragmented if for every subset A ⊆ X and ε > 0, there
exists an open O ∈ τ such A∩O 6= ∅ and diam f (A∩O) < ε.

I A bounded family F ⊆ RX is said to be fragmented if for
every A ⊆ X and ε > 0 we can find O ∈ τ such that the
previous condition hold simultaneously for every f ∈ F .

I A bounded family F ⊆ RX is said to be eventually
fragmented if every sequence in F contains a fragmented
subsequence.



Rosenthal Banach Spaces

Definition
A Banach space V is Rosenthal if one of the following equivalent
conditions holds:

I There is no embedding of l1 in V .
I There isn’t a bounded l1-sequence in V .
I Every bounded sequence has a weak-Cauchy subsequence.

These are all well-known from Rosenthal. One can also show that
the following are also equivalent to them:
I The ball BV is tame (equivalently, eventually fragmented)

over BV ∗ .
I Every bounded A ⊆ V is tame (equivalently, eventually

fragmented) over every equicontinuous, weak-star compact
M ⊆ V ∗.
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Why Tameness?

Tame families have been useful in the study of representations of
dynamical systems on Rosenthal Banach spaces in several joint
papers of Glasner and Megrelishvili and also in a paper about tame
functionals on Banach algebras.

Definition (Kohler)
A compact G-space X is said to be tame (regular, in terms of
Kohler) if the orbit fG is a tame family on X for every continuous
f : X → R.

Fact (Glasner-Megrelishvili)
A compact space X is WRN (i.e., embedded into the dual of a
Rosenthal Banach space with its weak-star topology) iff there
exists a tame family F of continuous functions on X which
separates the points of X.
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Tame Locally Convex Spaces

Definition (New)
I We say that a bounded subset B of a lcs E is tame in E if it

is tame (equivalently, eventually fragmented) over every
equicontinuous, weak-star compact M ⊆ E ∗.

I A locally convex space E is said to be tame if every bounded
subset B of E is tame.

Proposition
A Banach space is a tame lcs iff it is a Rosenthal Banach space.
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NP Locally Convex Spaces

Definition (New)
I We say that a bounded subset B of a lcs E is NP in E if it is

fragmented over every equicontinuous, weak-star compact
M ⊆ E ∗.

I A locally convex space E is said to be NP if every bounded
subset B of E is NP.

A Banach space is a NP lcs iff it is an Asplund Banach space.

(NP) ⊆ (T).

Every lcs with a separable dual is NP.
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Stability Properties of Tame and NP Locally Convex
Spaces

Theorem
The classes (T) and (NP) are closed under taking:
1. subspaces
2. bound covering maps
3. products
4. direct sums

Moreover, if F is a large, dense subspace of the locally convex
space E, and F ∈ (T) (resp. F ∈ (NP)), then E ∈ (T) (resp.
E ∈ (NP)). In particular, if V is a normed tame (NP) space, then
so is its completion.



Examples

I If the dual V ∗ is a linear subspace in a product of separable
lcs, then V is (NP).

I There exists an NP (even DLP) space which can’t be
embedded in the product of Rosenthal Banach spaces.

I A compact G-system is representable on a tame lcs if and
only if it is tame.



Haydon’s Theorem

Fact (important)
Haydon, 1976 Let V be a Banach space. The following are
equivalent:
1. V contains no l1-sequence (i.e. V is a Rosenthal Banach

space);
2. every weak-star compact convex subset of V ∗ is the norm

closed convex hull of its extreme points;
3. for every weak-star compact subset T of V ∗,

co w∗(T ) = co (T ).



Generalized Haydon’s Theorem
One of Our Main Results

Theorem
For a locally convex space E, the following are equivalent:
1. E is tame (equivalently, does not contain an l1-sequence);
2. every equicontinuous, weak-star compact convex subset of E ∗

is the strong closed convex hull of its extreme points. That is,
co w∗(extM) = co (extM) for every convex M ∈ eqc (E ∗);

3. for every equicontinuous, weak-star compact subset T of E ∗,

co w∗(T ) = co (T ).



What About l1-Sequences?

Definition
Let E be a locally convex space. A bounded sequence
{xn}n∈N ⊆ E is said to be a generalized l1-sequence if there
exist: a continuous seminorm ρ on E and δ > 0, such that for
every c1, . . . , cn ∈ R

δ
n∑

i=1
|ci | ≤ ρ

( n∑
i=1

cixi

)
.

Theorem
A locally convex space E is tame if and only if it has no bounded
l1-sequence. If E is locally complete, then it is equivalent to l1 not
being embedded inside it.
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Rosenthal’s Theorem for Locally Convex Spaces
Definition
We will say that a locally convex space E is Rosenthal if every
bounded sequence has a weak-Cauchy subsequence.

Proposition
(Ros) ⊆ (T).

Theorem
There exists a tame complete (even reflexive) lcs which:
(i) is not a Rosenthal lcs;
(ii) does not contain any l1-subsequence;
(iii) contains a dense, Rosenthal subspace.
As a corollary: Rosenthal’s dichotomy does not hold for such
locally convex spaces.

Example
R[0,1].
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The Case of Spaces With Metrizable Bounded Subsets
Extension of a Result of Ruess, 2014

Theorem
If E is a lcs with metrizable bounded subsets, then the following
are equivalent:
I E is tame.
I E has no bounded l1-sequences.
I E is Rosenthal.

This extends a known result due to W.M. Ruess (2014) about
locally complete spaces with metrizable bounded subsets.
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DLP Spaces

Definition
Let F ⊂ RK be a family of real functions on a set K. Then F is
said to have the double limit property (DLP) if for every
sequence {fn}n∈N in F and every sequence {xn}n∈N in K, the limits

lim
n

lim
m

fn(xm) and lim
m

lim
n

fn(xm)

are equal whenever they both exist.

Definition
I We say that a bounded subset B of a lcs E is DLP in E if it is

DLP over every equicontinuous, weak-star compact M ⊆ E ∗.
I A locally convex space E is said to be DLP if every bounded

subset B of E is DLP.

(DLP) ⊆ (NP) ⊆ (T).
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Examples of DLP spaces

Fact (Grothendieck)
A Banach space is DLP lcs iff it is reflexive.

Example
The following are (DLP):
I Semi-reflexive lcs;
I Schwartz lcs (as a subspace of a reflexive lcs);
I Quasi-Montel lcs
I For every locally convex space E , the lcs (E ,w) with its weak

topology is (DLP).
I Every space Cp(X ), in its pointwise topology (for every

topological space X ), is (DLP).
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Example: Free Locally Convex Spaces and the DLP
Bornological Class

Fact (Leiderman and Uspenskij, 2021)
I L(K ) is multi-reflexive for every compact K.
I The space L(P) where P = NN is the space of irrational

numbers is not multi-reflexive.

Proposition
The space L(X ) is DLP for every Tychonoff space X.

Theorem
Let X be a Dieudonné complete space. Then L(X ) is semi-reflexive
if and only if X has no infinite compact subset.
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The Case of C(X ) for Scattered X
Fact (Pełczyński and Semadeni, 1959)
Let K be a compact space. The following are equivalent:
1. l1 cannot be embedded in C(K ).
2. The dual of every separable Banach subspace of C(K ) is

separable.
3. K is scattered.

In 2015, Gabriyelyan–Kakol–Kubiś–Marciszewski gave a natural
generalization for the lcs Ck(X ) where X is a Tychonoff space.

Fact (GKKM15)
For every Tychonoff space X the following are equivalent:
1. Ck(X ) contains a copy of l1.
2. Ck(X ) contains a separable Banach space V with

non-separable dual.
3. X contains a non scattered compact set.
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The Case of C(X ) for Scattered X

Proposition (New)
For every Tychonoff space X the following are equivalent:
1. Ck(X ) is a tame lcs.
2. Ck(X ) is (NP).
3. Every compact subset of X is scattered.

proof (sketch).
(2)⇒ (1) Obvious.
(3)⇒ (2) A consequence of Ck(X ) = lim←−

K⊆X
C(K ).

(1)⇒ (3) The restriction map rK : Ck(X )→ C(K ) is bound
covering.



A Map of Banach Spaces



Possible Generalization Methods
Reflexive Asplund Rosenthal
The evaluation map
J : V → V ∗∗ is an
isomorphism

Every separable
subspace of V has
a separable dual

l1 is not embedded
in V

The closed unit ball
of V is weak com-
pact

Frechet differentia-
bility on dense Gδ
subsets

Every bounded
sequence has a
weak-Cauchy sub-
sequence

Every bounded se-
quence in V has a
weakly convergent
subsequence

every non-empty
bounded subset of
V ∗ has weak*-slices
of arbitrarily small
diameter

Every element of
V ∗∗ is the weak-star
limit of elements of
V

BV has the DLP
viewed as a fam-
ily of functions over
BV ∗

BV is fragmented
viewed as a fam-
ily of functions over
BV ∗

BV is tame viewed
as a family of func-
tions over BV ∗



Possible Generalization Methods
Reflexive Asplund Rosenthal
The evaluation map
J : V → V ∗∗ is an
isomorphism

Every separable
subspace of V has
a separable dual

l1 is not embedded
in V

The closed unit ball
of V is weak com-
pact

Frechet differentia-
bility on dense Gδ
subsets

Every bounded
sequence has a
weak-Cauchy sub-
sequence

Every bounded se-
quence in V has a
weakly convergent
subsequence

every non-empty
bounded subset of
V ∗ has weak*-slices
of arbitrarily small
diameter

Every element of
V ∗∗ is the weak-star
limit of elements of
V

BV has the DLP
viewed as a fam-
ily of functions over
BV ∗

BV is fragmented
viewed as a fam-
ily of functions over
BV ∗

BV is tame viewed
as a family of func-
tions over BV ∗



Possible Generalization Methods
Reflexive Asplund Rosenthal
The evaluation map
J : V → V ∗∗ is an
isomorphism

Every separable
subspace of V has
a separable dual

l1 is not embedded
in V

The closed unit ball
of V is weak com-
pact

Frechet differentia-
bility on dense Gδ
subsets

Every bounded
sequence has a
weak-Cauchy sub-
sequence

Every bounded se-
quence in V has a
weakly convergent
subsequence

every non-empty
bounded subset of
V ∗ has weak*-slices
of arbitrarily small
diameter

Every element of
V ∗∗ is the weak-star
limit of elements of
V

BV has the DLP
viewed as a fam-
ily of functions over
BV ∗

BV is fragmented
viewed as a fam-
ily of functions over
BV ∗

BV is tame viewed
as a family of func-
tions over BV ∗



Possible Generalization Methods
Reflexive Asplund Rosenthal
The evaluation map
J : V → V ∗∗ is an
isomorphism

Every separable
subspace of V has
a separable dual

l1 is not embedded
in V

The closed unit ball
of V is weak com-
pact

Frechet differentia-
bility on dense Gδ
subsets

Every bounded
sequence has a
weak-Cauchy sub-
sequence

Every bounded se-
quence in V has a
weakly convergent
subsequence

every non-empty
bounded subset of
V ∗ has weak*-slices
of arbitrarily small
diameter

Every element of
V ∗∗ is the weak-star
limit of elements of
V

BV has the DLP
viewed as a fam-
ily of functions over
BV ∗

BV is fragmented
viewed as a fam-
ily of functions over
BV ∗

BV is tame viewed
as a family of func-
tions over BV ∗



Possible Generalization Methods
Reflexive Asplund Rosenthal
The evaluation map
J : V → V ∗∗ is an
isomorphism

Every separable
subspace of V has
a separable dual

l1 is not embedded
in V

The closed unit ball
of V is weak com-
pact

Frechet differentia-
bility on dense Gδ
subsets

Every bounded
sequence has a
weak-Cauchy sub-
sequence

Every bounded se-
quence in V has a
weakly convergent
subsequence

every non-empty
bounded subset of
V ∗ has weak*-slices
of arbitrarily small
diameter

Every element of
V ∗∗ is the weak-star
limit of elements of
V

BV has the DLP
viewed as a fam-
ily of functions over
BV ∗

BV is fragmented
viewed as a fam-
ily of functions over
BV ∗

BV is tame viewed
as a family of func-
tions over BV ∗



What Makes a Family of Functions Small?
Definition
A bornological class B is an assignment

Comp → {Bornologies}, K 7→ BK

from the class of all compact spaces Comp to the class of vector
bornologies such that BK is a separated convex vector bornology
on the Banach space C(K ) satisfying the following properties:

1. boundedness: BK consists of bounded subsets in C(K ).
2. consistency: Suppose that ϕ : K1 → K2 is a continuous map.

2.1 If A ∈ BK2 , then A ◦ ϕ ∈ BK1 .
2.2 If ϕ is surjective, then the converse is also true, namely that

A ◦ ϕ ∈ BK1 implies A ∈ BK2 .
3. Bipolarity: If A ∈ BK , then A◦◦ = acx wA ∈ BK where the

polar is taken with respect to the dual C(K )∗ (note that we
use the Bipolar Theorem).
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Examples of Bornological Classes

I [DLP] - Bounded families satisfying the DLP.
I [NP] - Fragmented families.
I [T] - Tame/eventually fragmented families.



Back to Locally Convex Spaces

Definition
Let B be a bornological class. A bounded subset B ⊆ E is said to
be B-small if for every M ∈ eqc (E ∗), rM(B) ∈ BM where
rM : E → C(M) is the restriction operator.
A locally convex space is said to be B-small if every bounded
subset is B-small.

Lemma
Let E be a locally convex space and B a bornological class. The
family of B-small subsets in E is a saturated, convex vector
bornology, denoted by small (B,E ).
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Properties of B-Small Spaces

Theorem
The class of B-small locally convex spaces is closed under:
1. subspaces
2. bound covering maps
3. products
4. direct sums
5. inverse limits.

Moreover, if F is a large, dense subspace of the locally convex
space E, and F is B-small, then so is E . In particular, if V is a
normed B-small space, then so is its completion.



Co-B-Small Subsets

Definition
A bornological class B is said to be polarly compatible if
whenever A ∈ BK for compact K, then rBC(K)∗ (A) ∈ BBC(K)∗ where
rBC(K)∗ : C(K )→ C(BC(K)∗) is the canonical map defined by:

(rBC(K)∗ (f ))(ϕ) := ϕ(f ).



Co-B-Small Subsets
Definition
Let B be a bornological class and A ⊆ E is a bounded subset. An
equicontinuous, M ⊆ E ∗ is said to be co-B-small with respect
to A if r(A) ∈ B

Mw∗ , where r : E → C(Mw∗
) is the restriction

map. If this is true for every bounded subset of E , then we will
simply say that M is co-B-small.

Lemma
Let B be a polarly compatible bornological class and let A ⊆ E be
bounded. The family of co-B-small subsets with respect to A of
E ∗ is a weak-star saturated, convex bornology. Denote this
bornology as small∗ (B,E ,A). We also write

small∗ (B,E ) :=
⋂

A⊆E
small∗ (B,E ,A)

where A runs over bounded subsets. Clearly, small∗ (B,E ) is also
a weak-star saturated, locally convex bornology.



Strongest B-Small topology

Definition
Let B be a polarly compatible bornological class, and (E , τ) be a
locally convex space. Recall that Lemma -1.37 applies in this case
so small∗ (B,E ) is a convex bornology. We define τB to be the
polar topology generated by small∗ (B,E ). Since small∗ (B,E )
consists of equicontinuous subsets, τB ⊆ τ .

Theorem
For every lcs (E , τ), τB is the strongest locally convex, B-small
topology coarser than τ .
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More Applications of Bornological Classes

I A generalization of co-tame subsets.
I Defining the strongest B-small topology on a given space.
I Relation to the Mackey topology and other similar definitions.



The DJFP Factorization
Davis-Figiel-Johnson-Pelczyński

Definition
We say that a linear continuous map T : E → F between lcs is
tame if there exists a zero neighborhood U ⊆ E such that
T (U) ⊆ F is a tame subset in F .

Proposition
Every tame operator T : E → X between a lcs E and a Banach
space X can be factored through a Rosenthal Banach space.
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