Matan Komisarchik

Bar Ilan University

Toposym 2022

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

"Such a considerable flourish of examples [James's and Tsirelson's spaces] had at least one consequence: everyone got lost. Nobody knew any longer what to expect, and even the most impetuous newcomers could hardly make any conjecture, which, for a mathematician, is a sad situation. The only general structure theorem which has been proved since then was Rosenthal's, dealing with l^1 and weak Cauchy subsequence."

Bernard Beauzamy, 1997, [1]

Gratitude

All of the results presented here are from a joint work with Michael Megrelishvili:

M. Komisarchik and M. Megrelishvili. "Tameness and Rosenthal type locally convex spaces". In: arXiv:2203.02368 (2022). Submitted.

Gratitude

All of the results presented here are from a joint work with Michael Megrelishvili:

M. Komisarchik and M. Megrelishvili. "Tameness and Rosenthal type locally convex spaces". In: arXiv:2203.02368 (2022). Submitted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We are indebted to Saak Gabriyelyan and Arkady Leiderman for their important suggestions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

 Locally convex analogues for Rosenthal, Asplund and reflexive Banach spaces.

 $(\mathsf{Ref}) \subseteq (\mathsf{Asp}) \subseteq (\mathsf{Ros})$ \downarrow $(\mathsf{DLP}) \subseteq (\mathsf{NP}) \subseteq (\mathsf{T}).$

 Locally convex analogues for Rosenthal, Asplund and reflexive Banach spaces.

```
(\operatorname{Ref}) \subseteq (\operatorname{Asp}) \subseteq (\operatorname{Ros})
\downarrow
(\operatorname{DLP}) \subseteq (\operatorname{NP}) \subseteq (\operatorname{T}).
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A generalized Haydon's theorem.

 Locally convex analogues for Rosenthal, Asplund and reflexive Banach spaces.

```
(\operatorname{Ref}) \subseteq (\operatorname{Asp}) \subseteq (\operatorname{Ros})
\downarrow
(\operatorname{DLP}) \subseteq (\operatorname{NP}) \subseteq (\operatorname{T}).
```

- A generalized Haydon's theorem.
- Extension of a result of Ruess (2014) about Rosenthal's dichotomy.

 Locally convex analogues for Rosenthal, Asplund and reflexive Banach spaces.

```
(\operatorname{Ref}) \subseteq (\operatorname{Asp}) \subseteq (\operatorname{Ros})
\downarrow
(\operatorname{DLP}) \subseteq (\operatorname{NP}) \subseteq (\operatorname{T}).
```

- A generalized Haydon's theorem.
- Extension of a result of Ruess (2014) about Rosenthal's dichotomy.
- ► A general framework for "smallness" of locally convex spaces.

Definition

A sequence of real functions $\{f_n \colon X \to \mathbb{R}\}_{n \in \mathbb{N}}$ on a set X is said to be **independent** (Rosenthal 1974) if there exist real numbers a < b such that

$$\bigcap_{n\in P} f_n^{-1}(-\infty,a) \cap \bigcap_{n\in M} f_n^{-1}(b,\infty) \neq \emptyset$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all finite disjoint subsets P, M of \mathbb{N} .

Definition

A sequence of real functions $\{f_n \colon X \to \mathbb{R}\}_{n \in \mathbb{N}}$ on a set X is said to be **independent** (Rosenthal 1974) if there exist real numbers a < b such that

$$\bigcap_{n\in P} f_n^{-1}(-\infty,a) \cap \bigcap_{n\in M} f_n^{-1}(b,\infty) \neq \emptyset$$

for all finite disjoint subsets P, M of \mathbb{N} .

Definition

A bounded family $F \subseteq \mathbb{R}^X$ is said to be **tame** if it contains no independent subsequence.

Definition

A sequence of real functions $\{f_n \colon X \to \mathbb{R}\}_{n \in \mathbb{N}}$ on a set X is said to be **independent** (Rosenthal 1974) if there exist real numbers a < b such that

$$\bigcap_{n\in P}f_n^{-1}(-\infty,a)\cap\bigcap_{n\in M}f_n^{-1}(b,\infty)\neq\emptyset$$

for all finite disjoint subsets P, M of \mathbb{N} .

Definition

A bounded family $F \subseteq \mathbb{R}^X$ is said to be **tame** if it contains no independent subsequence.

Exercise

If $\{f_n\}_{n\in\mathbb{N}}$ is **not** tame over X, then X is not tame over $\{f_n\}_{n\in\mathbb{N}}$.

Visualization

Figure: here
$$P = \{3\}$$
 and $M = \{1, 2, 4\}$

▶ ▲ 臣 ▶ 臣 • • • • • • •

Fragmented Functions

Definition

▶ A real-valued function f on a topological space (X, τ) is said to be **fragmented** if for every subset $A \subseteq X$ and $\varepsilon > 0$, there exists an open $O \in \tau$ such $A \cap O \neq \emptyset$ and diam $f(A \cap O) < \varepsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fragmented Functions

Definition

- ▶ A real-valued function f on a topological space (X, τ) is said to be **fragmented** if for every subset $A \subseteq X$ and $\varepsilon > 0$, there exists an open $O \in \tau$ such $A \cap O \neq \emptyset$ and diam $f(A \cap O) < \varepsilon$.
- A bounded family F ⊆ ℝ^X is said to be fragmented if for every A ⊆ X and ε > 0 we can find O ∈ τ such that the previous condition hold simultaneously for every f ∈ F.

Fragmented Functions

Definition

- ▶ A real-valued function f on a topological space (X, τ) is said to be **fragmented** if for every subset $A \subseteq X$ and $\varepsilon > 0$, there exists an open $O \in \tau$ such $A \cap O \neq \emptyset$ and diam $f(A \cap O) < \varepsilon$.
- A bounded family F ⊆ ℝ^X is said to be fragmented if for every A ⊆ X and ε > 0 we can find O ∈ τ such that the previous condition hold simultaneously for every f ∈ F.
- A bounded family F ⊆ ℝ^X is said to be eventually fragmented if every sequence in F contains a fragmented subsequence.

Definition

A Banach space V is **Rosenthal** if one of the following equivalent conditions holds:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

A Banach space V is **Rosenthal** if one of the following equivalent conditions holds:

- There is no embedding of l^1 in V.
- ▶ There isn't a bounded l¹-sequence in V.
- Every bounded sequence has a weak-Cauchy subsequence.

Definition

A Banach space V is **Rosenthal** if one of the following equivalent conditions holds:

- ► There is no embedding of I¹ in V.
- ▶ There isn't a bounded l¹-sequence in V.
- Every bounded sequence has a weak-Cauchy subsequence.

These are all well-known from Rosenthal. One can also show that the following are also equivalent to them:

- The ball B_V is tame (equivalently, eventually fragmented) over B_{V*}.
- Every bounded A ⊆ V is tame (equivalently, eventually fragmented) over every equicontinuous, weak-star compact M ⊆ V*.

Definition

A Banach space V is **Rosenthal** if one of the following equivalent conditions holds:

- There is no embedding of l^1 in V.
- ► There isn't a bounded l¹-sequence in V.
- Every bounded sequence has a weak-Cauchy subsequence.

These are all well-known from Rosenthal. One can also show that the following are also equivalent to them:

- The ball B_V is tame (equivalently, eventually fragmented) over B_{V*}.
- Every bounded A ⊆ V is tame (equivalently, eventually fragmented) over every equicontinuous, weak-star compact M ⊆ V*.

Why Tameness?

Tame families have been useful in the study of representations of dynamical systems on Rosenthal Banach spaces in several joint papers of Glasner and Megrelishvili and also in a paper about tame functionals on Banach algebras.

Why Tameness?

Tame families have been useful in the study of representations of dynamical systems on Rosenthal Banach spaces in several joint papers of Glasner and Megrelishvili and also in a paper about tame functionals on Banach algebras.

Definition (Kohler)

A compact G-space X is said to be tame (regular, in terms of Kohler) if the orbit fG is a tame family on X for every continuous $f: X \to \mathbb{R}$.

Why Tameness?

Tame families have been useful in the study of representations of dynamical systems on Rosenthal Banach spaces in several joint papers of Glasner and Megrelishvili and also in a paper about tame functionals on Banach algebras.

Definition (Kohler)

A compact G-space X is said to be tame (regular, in terms of Kohler) if the orbit fG is a tame family on X for every continuous $f: X \to \mathbb{R}$.

Fact (Glasner-Megrelishvili)

A compact space X is WRN (i.e., embedded into the dual of a Rosenthal Banach space with its weak-star topology) iff there exists a tame family F of continuous functions on X which separates the points of X.

Definition (New)

▶ We say that a bounded subset B of a lcs E is **tame** in E if it is tame (equivalently, eventually fragmented) over every equicontinuous, weak-star compact $M \subseteq E^*$.

Definition (New)

- ▶ We say that a bounded subset B of a lcs E is **tame** in E if it is tame (equivalently, eventually fragmented) over every equicontinuous, weak-star compact $M \subseteq E^*$.
- A locally convex space E is said to be tame if every bounded subset B of E is tame.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition (New)

- ▶ We say that a bounded subset B of a lcs E is **tame** in E if it is tame (equivalently, eventually fragmented) over every equicontinuous, weak-star compact $M \subseteq E^*$.
- A locally convex space E is said to be tame if every bounded subset B of E is tame.

Proposition

A Banach space is a tame lcs iff it is a Rosenthal Banach space.

Definition (New)

We say that a bounded subset B of a lcs E is NP in E if it is fragmented over every equicontinuous, weak-star compact M ⊆ E*.

Definition (New)

- We say that a bounded subset B of a lcs E is NP in E if it is fragmented over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be NP if every bounded subset B of E is NP.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (New)

- We say that a bounded subset B of a lcs E is NP in E if it is fragmented over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be NP if every bounded subset B of E is NP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Banach space is a NP lcs iff it is an Asplund Banach space.

Definition (New)

- We say that a bounded subset B of a lcs E is NP in E if it is fragmented over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be NP if every bounded subset B of E is NP.
- A Banach space is a NP lcs iff it is an Asplund Banach space.

 $(NP) \subseteq (T).$

Definition (New)

- We say that a bounded subset B of a lcs E is NP in E if it is fragmented over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be NP if every bounded subset B of E is NP.

A Banach space is a NP lcs iff it is an Asplund Banach space.

$$(\mathsf{NP}) \subseteq (\mathsf{T}).$$

Every lcs with a separable dual is NP.

Stability Properties of Tame and NP Locally Convex Spaces

Theorem

The classes (T) and (NP) are closed under taking:

- 1. subspaces
- 2. bound covering maps
- 3. products
- 4. direct sums

Moreover, if F is a large, dense subspace of the locally convex space E, and $F \in (\mathbf{T})$ (resp. $F \in (\mathbf{NP})$), then $E \in (\mathbf{T})$ (resp. $E \in (\mathbf{NP})$). In particular, if V is a normed tame (NP) space, then so is its completion.

Examples

- If the dual V* is a linear subspace in a product of separable lcs, then V is (NP).
- There exists an NP (even DLP) space which can't be embedded in the product of Rosenthal Banach spaces.
- A compact G-system is representable on a tame lcs if and only if it is tame.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Haydon's Theorem

Fact (important)

Haydon, 1976 Let V be a Banach space. The following are equivalent:

- V contains no l¹-sequence (i.e. V is a Rosenthal Banach space);
- 2. every weak-star compact convex subset of V* is the norm closed convex hull of its extreme points;
- 3. for every weak-star compact subset T of V^* ,

$$\overline{\mathrm{co}}^{w^*}(T) = \overline{\mathrm{co}}(T).$$

Generalized Haydon's Theorem

One of Our Main Results

Theorem

For a locally convex space E, the following are equivalent:

- 1. E is tame (equivalently, does not contain an l^1 -sequence);
- every equicontinuous, weak-star compact convex subset of E* is the strong closed convex hull of its extreme points. That is, co^{w*}(ext M) = co(ext M) for every convex M ∈ eqc (E*);
- 3. for every equicontinuous, weak-star compact subset T of E^* ,

$$\overline{\operatorname{co}}^{w^*}(T) = \overline{\operatorname{co}}(T).$$

What About *I*¹-Sequences?

Definition

Let *E* be a locally convex space. A bounded sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq E$ is said to be a generalized l^1 -sequence if there exist: a continuous seminorm ρ on *E* and $\delta > 0$, such that for every $c_1, \ldots, c_n \in \mathbb{R}$

$$\delta \sum_{i=1}^{n} |c_i| \leq \rho \left(\sum_{i=1}^{n} c_i x_i \right).$$
What About *I*¹-Sequences?

Definition

Let *E* be a locally convex space. A bounded sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq E$ is said to be a generalized l^1 -sequence if there exist: a continuous seminorm ρ on *E* and $\delta > 0$, such that for every $c_1, \ldots, c_n \in \mathbb{R}$

$$\delta \sum_{i=1}^{n} |c_i| \leq \rho \left(\sum_{i=1}^{n} c_i x_i \right).$$

Theorem

A locally convex space E is tame if and only if it has no bounded l^1 -sequence.

What About *I*¹-Sequences?

Definition

Let *E* be a locally convex space. A bounded sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq E$ is said to be a generalized l^1 -sequence if there exist: a continuous seminorm ρ on *E* and $\delta > 0$, such that for every $c_1, \ldots, c_n \in \mathbb{R}$

$$\delta \sum_{i=1}^{n} |c_i| \leq \rho \left(\sum_{i=1}^{n} c_i x_i \right).$$

Theorem

A locally convex space E is tame if and only if it has no bounded l^1 -sequence. If E is locally complete, then it is equivalent to l^1 not being embedded inside it.

Definition

We will say that a locally convex space *E* is **Rosenthal** if every bounded sequence has a weak-Cauchy subsequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

We will say that a locally convex space *E* is **Rosenthal** if every bounded sequence has a weak-Cauchy subsequence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition $(Ros) \subseteq (T).$

Definition

We will say that a locally convex space *E* is **Rosenthal** if every bounded sequence has a weak-Cauchy subsequence.

Proposition

 $(\mathsf{Ros}) \subseteq (\mathsf{T}).$

Theorem

There exists a tame complete (even reflexive) lcs which:

- (i) is not a Rosenthal lcs;
- (ii) does not contain any l¹-subsequence;
- (iii) contains a dense, Rosenthal subspace.

As a corollary: Rosenthal's dichotomy does not hold for such locally convex spaces.

Definition

We will say that a locally convex space *E* is **Rosenthal** if every bounded sequence has a weak-Cauchy subsequence.

Proposition

 $(\mathsf{Ros}) \subseteq (\mathsf{T}).$

Theorem

There exists a tame complete (even reflexive) lcs which:

- (i) is not a Rosenthal lcs;
- (ii) does not contain any l¹-subsequence;
- (iii) contains a dense, Rosenthal subspace.

As a corollary: Rosenthal's dichotomy does not hold for such locally convex spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

 $\mathbb{R}^{[0,1]}$

The Case of Spaces With Metrizable Bounded Subsets Extension of a Result of Ruess, 2014

Theorem

If *E* is a lcs with metrizable bounded subsets, then the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- E is tame.
- ► E has no bounded l¹-sequences.
- E is Rosenthal.

The Case of Spaces With Metrizable Bounded Subsets Extension of a Result of Ruess, 2014

Theorem

If *E* is a lcs with metrizable bounded subsets, then the following are equivalent:

- E is tame.
- ► E has no bounded l¹-sequences.
- E is Rosenthal.

This extends a known result due to W.M. Ruess (2014) about locally complete spaces with metrizable bounded subsets.

Definition

Let $F \subset \mathbb{R}^{K}$ be a family of real functions on a set K. Then F is said to have the **double limit property (DLP)** if for every sequence $\{f_n\}_{n\in\mathbb{N}}$ in F and every sequence $\{x_n\}_{n\in\mathbb{N}}$ in K, the limits

$$\lim_{n} \lim_{m} f_n(x_m) \quad and \quad \lim_{m} \lim_{n} f_n(x_m)$$

are equal whenever they both exist.

Definition

Let $F \subset \mathbb{R}^{K}$ be a family of real functions on a set K. Then F is said to have the **double limit property (DLP)** if for every sequence $\{f_n\}_{n\in\mathbb{N}}$ in F and every sequence $\{x_n\}_{n\in\mathbb{N}}$ in K, the limits

 $\lim_{n} \lim_{m} f_n(x_m) \quad and \quad \lim_{m} \lim_{n} f_n(x_m)$

are equal whenever they both exist.

Definition

We say that a bounded subset B of a lcs E is DLP in E if it is DLP over every equicontinuous, weak-star compact M ⊆ E*.

Definition

Let $F \subset \mathbb{R}^{K}$ be a family of real functions on a set K. Then F is said to have the **double limit property (DLP)** if for every sequence $\{f_n\}_{n\in\mathbb{N}}$ in F and every sequence $\{x_n\}_{n\in\mathbb{N}}$ in K, the limits

 $\lim_{n} \lim_{m} f_n(x_m) \quad and \quad \lim_{m} \lim_{n} f_n(x_m)$

are equal whenever they both exist.

Definition

- We say that a bounded subset B of a lcs E is DLP in E if it is DLP over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be DLP if every bounded subset B of E is DLP.

Definition

Let $F \subset \mathbb{R}^{K}$ be a family of real functions on a set K. Then F is said to have the **double limit property (DLP)** if for every sequence $\{f_n\}_{n\in\mathbb{N}}$ in F and every sequence $\{x_n\}_{n\in\mathbb{N}}$ in K, the limits

 $\lim_{n} \lim_{m} f_n(x_m) \quad and \quad \lim_{m} \lim_{n} f_n(x_m)$

are equal whenever they both exist.

Definition

- We say that a bounded subset B of a lcs E is DLP in E if it is DLP over every equicontinuous, weak-star compact M ⊆ E*.
- A locally convex space E is said to be DLP if every bounded subset B of E is DLP.

$$(\mathsf{DLP})\subseteq (\mathsf{NP})\subseteq (\mathsf{T}).$$

Examples of DLP spaces

Fact (Grothendieck)

A Banach space is DLP lcs iff it is reflexive.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples of DLP spaces

Fact (Grothendieck)

A Banach space is DLP lcs iff it is reflexive.

Example

The following are (**DLP**):

- Semi-reflexive lcs;
- Schwartz lcs (as a subspace of a reflexive lcs);
- Quasi-Montel Ics
- ► For every locally convex space E, the lcs (E, w) with its weak topology is (DLP).
- ► Every space C_p(X), in its pointwise topology (for every topological space X), is (DLP).

Example: Free Locally Convex Spaces and the DLP Bornological Class

Fact (Leiderman and Uspenskij, 2021)

- L(K) is multi-reflexive for every compact K.
- The space L(P) where P = N^N is the space of irrational numbers is not multi-reflexive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example: Free Locally Convex Spaces and the DLP Bornological Class

Fact (Leiderman and Uspenskij, 2021)

- ► L(K) is multi-reflexive for every compact K.
- The space L(P) where P = N^N is the space of irrational numbers is not multi-reflexive.

Proposition

The space L(X) is DLP for every Tychonoff space X.

Example: Free Locally Convex Spaces and the DLP Bornological Class

Fact (Leiderman and Uspenskij, 2021)

- L(K) is multi-reflexive for every compact K.
- The space L(P) where P = N^N is the space of irrational numbers is not multi-reflexive.

Proposition

The space L(X) is DLP for every Tychonoff space X.

Theorem

Let X be a Dieudonné complete space. Then L(X) is semi-reflexive if and only if X has no infinite compact subset.

The Case of C(X) for Scattered X

Fact (Pełczyński and Semadeni, 1959)

Let K be a compact space. The following are equivalent:

- 1. I^1 cannot be embedded in C(K).
- 2. The dual of every separable Banach subspace of C(K) is separable.
- 3. K is scattered.

In 2015, Gabriyelyan–Kakol–Kubiś–Marciszewski gave a natural generalization for the lcs $C_k(X)$ where X is a Tychonoff space.

The Case of C(X) for Scattered X

Fact (Pełczyński and Semadeni, 1959)

Let K be a compact space. The following are equivalent:

- 1. I^1 cannot be embedded in C(K).
- 2. The dual of every separable Banach subspace of C(K) is separable.
- 3. K is scattered.

In 2015, Gabriyelyan–Kakol–Kubiś–Marciszewski gave a natural generalization for the lcs $C_k(X)$ where X is a Tychonoff space.

Fact (GKKM15)

For every Tychonoff space X the following are equivalent:

- 1. $C_k(X)$ contains a copy of l^1 .
- 2. $C_k(X)$ contains a separable Banach space V with non-separable dual.
- 3. X contains a non scattered compact set.

The Case of C(X) for Scattered X

Proposition (New)

For every Tychonoff space X the following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. $C_k(X)$ is a tame lcs.
- 2. $C_k(X)$ is (**NP**).
- 3. Every compact subset of X is scattered.

A Map of Banach Spaces

Reflexive	Asplund	Rosenthal
The evaluation map	Every separable	l^1 is not embedded
$J\colonV oV^{**}$ is an	subspace of V has	in V
isomorphism	a separable dual	
The closed unit ball	Frechet differentia-	Every bounded
of V is weak com-	bility on dense G_δ	sequence has a
pact	subsets	weak-Cauchy sub-
		sequence
Every bounded se-	every non-empty	Every element of
quence in V has a	bounded subset of	V^{stst} is the weak-star
weakly convergent	V^* has weak*-slices	limit of elements of
subsequence	of arbitrarily small	V
	diameter	
B_V has the DLP	B_V is fragmented	B_V is tame viewed
viewed as a fam-	viewed as a fam-	as a family of func-
ily of functions over	ily of functions over	tions over B_{V^*}
B_{V^*}	B_{V^*}	

Reflexive	Asplund	Rosenthal
The evaluation map	Every separable	l^1 is not embedded
$J\colon V oV^{**}$ is an	subspace of V has	in V
isomorphism	a separable dual	
The closed unit ball	Frechet differentia-	Every bounded
of V is weak com-	bility on dense G_δ	sequence has a
pact	subsets	weak-Cauchy sub-
		sequence
Every bounded se-	every non-empty	Every element of
quence in V has a	bounded subset of	V^{stst} is the weak-star
weakly convergent	V^* has weak*-slices	limit of elements of
subsequence	of arbitrarily small	V
	diameter	
B_V has the DLP	B_V is fragmented	B_V is tame viewed
viewed as a fam-	viewed as a fam-	as a family of func-
ily of functions over	ily of functions over	tions over B_{V^*}
B_{V^*}	B_{V^*}	

Reflexive	Asplund	Rosenthal
The evaluation map	Every separable	I ¹ is not embedded
$J\colonV oV^{**}$ is an	subspace of V has	in V
isomorphism	a separable dual	
The closed unit ball	Frechet differentia-	Every bounded
of V is weak com-	bility on dense G_δ	sequence has a
pact	subsets	weak-Cauchy sub-
		sequence
Every bounded se-	every non-empty	Every element of
quence in V has a	bounded subset of	V^{stst} is the weak-star
weakly convergent	V^* has weak*-slices	limit of elements of
subsequence	of arbitrarily small	V
	diameter	
B_V has the DLP	B_V is fragmented	B_V is tame viewed
viewed as a fam-	viewed as a fam-	as a family of func-
ily of functions over	ily of functions over	tions over B_{V^*}
B_{V^*}	B_{V^*}	

Reflexive	Asplund	Rosenthal
The evaluation map	Every separable	I ¹ is not embedded
$J\colonV oV^{**}$ is an	subspace of V has	in V
isomorphism	a separable dual	
The closed unit ball	Frechet differentia-	Every bounded
of V is weak com-	bility on dense G_δ	sequence has a
pact	subsets	weak-Cauchy sub-
		sequence
Every bounded se-	every non-empty	Every element of
quence in V has a	bounded subset of	V^{stst} is the weak-star
weakly convergent	V^* has weak*-slices	limit of elements of
subsequence	of arbitrarily small	V
	diameter	
B_V has the DLP	B_V is fragmented	B_V is tame viewed
viewed as a fam-	viewed as a fam-	as a family of func-
ily of functions over	ily of functions over	tions over B_{V^*}
B_{V^*}	B_{V^*}	

Reflexive	Asplund	Rosenthal
The evaluation map	Every separable	I ¹ is not embedded
$J\colonV ightarrowV^{**}$ is an	subspace of V has	in V
isomorphism	a separable dual	
The closed unit ball	Frechet differentia-	Every bounded
of V is weak com-	bility on dense G_δ	sequence has a
pact	subsets	weak-Cauchy sub-
		sequence
Every bounded se-	every non-empty	Every element of
quence in V has a	bounded subset of	V^{stst} is the weak-star
weakly convergent	V^* has weak*-slices	limit of elements of
subsequence	of arbitrarily small	V
	diameter	
B_V has the DLP	B_V is fragmented	B_V is tame viewed
viewed as a fam-	viewed as a fam-	as a family of func-
ily of functions over	ily of functions over	tions over B_{V^*}
B_{V^*}	B_{V^*}	

Definition

A bornological class $\mathfrak B$ is an assignment

 $Comp \rightarrow \{Bornologies\}, \quad K \mapsto \mathfrak{B}_K$

from the class of all compact spaces Comp to the class of vector bornologies such that \mathfrak{B}_K is a separated convex vector bornology on the Banach space C(K) satisfying the following properties:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A bornological class $\mathfrak B$ is an assignment

 $Comp \rightarrow \{Bornologies\}, \quad K \mapsto \mathfrak{B}_K$

from the class of all compact spaces Comp to the class of vector bornologies such that \mathfrak{B}_K is a separated convex vector bornology on the Banach space C(K) satisfying the following properties:

1. **boundedness**: \mathfrak{B}_K consists of bounded subsets in C(K).

Definition

A bornological class $\mathfrak B$ is an assignment

 $Comp \rightarrow \{Bornologies\}, \quad K \mapsto \mathfrak{B}_K$

from the class of all compact spaces Comp to the class of vector bornologies such that \mathfrak{B}_K is a separated convex vector bornology on the Banach space C(K) satisfying the following properties:

- 1. **boundedness**: \mathfrak{B}_{K} consists of bounded subsets in C(K).
- 2. **consistency**: Suppose that $\varphi \colon K_1 \to K_2$ is a continuous map.

2.1 If $A \in \mathfrak{B}_{K_2}$, then $A \circ \varphi \in \mathfrak{B}_{K_1}$. 2.2 If φ is surjective, then the converse is also true, namely that $A \circ \varphi \in \mathfrak{B}_{K_1}$ implies $A \in \mathfrak{B}_{K_2}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A bornological class $\mathfrak B$ is an assignment

 $Comp \rightarrow \{Bornologies\}, \quad K \mapsto \mathfrak{B}_K$

from the class of all compact spaces Comp to the class of vector bornologies such that \mathfrak{B}_K is a separated convex vector bornology on the Banach space C(K) satisfying the following properties:

- 1. **boundedness**: \mathfrak{B}_{K} consists of bounded subsets in C(K).
- 2. **consistency**: Suppose that $\varphi \colon K_1 \to K_2$ is a continuous map.

2.1 If A ∈ 𝔅_{K2}, then A ∘ φ ∈ 𝔅_{K1}.
2.2 If φ is surjective, then the converse is also true, namely that A ∘ φ ∈ 𝔅_{K1} implies A ∈ 𝔅_{K2}.

3. **Bipolarity**: If $A \in \mathfrak{B}_K$, then $A^{\circ\circ} = \overline{\operatorname{acx}}^w A \in \mathfrak{B}_K$ where the polar is taken with respect to the dual $C(K)^*$ (note that we use the Bipolar Theorem).

Examples of Bornological Classes

- [DLP] Bounded families satisfying the DLP.
- ▶ [NP] Fragmented families.
- ▶ [T] Tame/eventually fragmented families.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Back to Locally Convex Spaces

Definition

Let \mathfrak{B} be a bornological class. A bounded subset $B \subseteq E$ is said to be \mathfrak{B} -small if for every $M \in eqc(E^*)$, $r_M(B) \in \mathfrak{B}_M$ where $r_M \colon E \to C(M)$ is the restriction operator. A locally convex space is said to be \mathfrak{B} -small if every bounded subset is \mathfrak{B} -small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back to Locally Convex Spaces

Definition

Let \mathfrak{B} be a bornological class. A bounded subset $B \subseteq E$ is said to be \mathfrak{B} -small if for every $M \in eqc(E^*)$, $r_M(B) \in \mathfrak{B}_M$ where $r_M \colon E \to C(M)$ is the restriction operator. A locally convex space is said to be \mathfrak{B} -small if every bounded subset is \mathfrak{B} -small.

Lemma

Let E be a locally convex space and \mathfrak{B} a bornological class. The family of \mathfrak{B} -small subsets in E is a saturated, convex vector bornology, denoted by small (\mathfrak{B}, E) .

Properties of \mathfrak{B} -Small Spaces

Theorem

The class of \mathfrak{B} -small locally convex spaces is closed under:

- 1. subspaces
- 2. bound covering maps
- 3. products
- 4. direct sums
- 5. inverse limits.

Moreover, if F is a large, dense subspace of the locally convex space E, and F is \mathfrak{B} -small, then so is E. In particular, if V is a normed \mathfrak{B} -small space, then so is its completion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Co-B-Small Subsets

Definition

A bornological class \mathfrak{B} is said to be **polarly compatible** if whenever $A \in \mathfrak{B}_K$ for compact K, then $r_{B_{C(K)^*}}(A) \in \mathfrak{B}_{B_{C(K)^*}}$ where $r_{B_{C(K)^*}} : C(K) \to C(B_{C(K)^*})$ is the canonical map defined by:

$$(r_{B_{\mathcal{C}(\mathcal{K})^*}}(f))(\varphi) := \varphi(f).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Co-B-Small Subsets

Definition

Let \mathfrak{B} be a bornological class and $A \subseteq E$ is a bounded subset. An equicontinuous, $M \subseteq E^*$ is said to be **co**- \mathfrak{B} -small with respect **to** A if $r(A) \in \mathfrak{B}_{\overline{M}^{w^*}}$, where $r: E \to C(\overline{M}^{w^*})$ is the restriction map. If this is true for every bounded subset of E, then we will simply say that M is **co**- \mathfrak{B} -small.

Lemma

Let \mathfrak{B} be a polarly compatible bornological class and let $A \subseteq E$ be bounded. The family of co- \mathfrak{B} -small subsets with respect to A of E^* is a **weak-star saturated**, **convex bornology**. Denote this bornology as small^{*} (\mathfrak{B}, E, A). We also write

$$\operatorname{small}^*(\mathfrak{B}, E) := \bigcap_{A \subseteq E} \operatorname{small}^*(\mathfrak{B}, E, A)$$

where A runs over bounded subsets. Clearly, $small^*(\mathfrak{B}, E)$ is also a weak-star saturated, locally convex bornology.
Strongest \mathfrak{B} -Small topology

Definition

Let \mathfrak{B} be a polarly compatible bornological class, and (E, τ) be a locally convex space. Recall that Lemma -1.37 applies in this case so small^{*} (\mathfrak{B}, E) is a convex bornology. We define $\tau_{\mathfrak{B}}$ to be the polar topology generated by small^{*} (\mathfrak{B}, E) . Since small^{*} (\mathfrak{B}, E) consists of equicontinuous subsets, $\tau_{\mathfrak{B}} \subseteq \tau$.

Strongest \mathfrak{B} -Small topology

Definition

Let \mathfrak{B} be a polarly compatible bornological class, and (E, τ) be a locally convex space. Recall that Lemma -1.37 applies in this case so small^{*} (\mathfrak{B}, E) is a convex bornology. We define $\tau_{\mathfrak{B}}$ to be the polar topology generated by small^{*} (\mathfrak{B}, E) . Since small^{*} (\mathfrak{B}, E) consists of equicontinuous subsets, $\tau_{\mathfrak{B}} \subseteq \tau$.

Theorem

For every lcs (E, τ) , $\tau_{\mathfrak{B}}$ is the strongest locally convex, \mathfrak{B} -small topology coarser than τ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

More Applications of Bornological Classes

- ► A generalization of co-tame subsets.
- ▶ Defining the strongest 𝔅-small topology on a given space.
- Relation to the Mackey topology and other similar definitions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The DJFP Factorization

Davis-Figiel-Johnson-Pelczyński

Definition

We say that a linear continuous map $T : E \to F$ between lcs is **tame** if there exists a zero neighborhood $U \subseteq E$ such that $T(U) \subseteq F$ is a tame subset in F.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The DJFP Factorization

Davis-Figiel-Johnson-Pelczyński

Definition

We say that a linear continuous map $T : E \to F$ between lcs is **tame** if there exists a zero neighborhood $U \subseteq E$ such that $T(U) \subseteq F$ is a tame subset in F.

Proposition

Every tame operator $T: E \rightarrow X$ between a lcs E and a Banach space X can be factored through a Rosenthal Banach space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bibliography I

- H. Fetter and B.G. de Buen. *The James Forest*. London Mathematical Society Lecture Note Series. Cambridge University Press, 1997. DOI: 10.1017/CB09780511662379.
- M. Komisarchik and M. Megrelishvili. "Tameness and Rosenthal type locally convex spaces". In: arXiv:2203.02368 (2022). Submitted. DOI: 10.48550/ARXIV.2203.02368. URL: https://arxiv.org/abs/2203.02368.