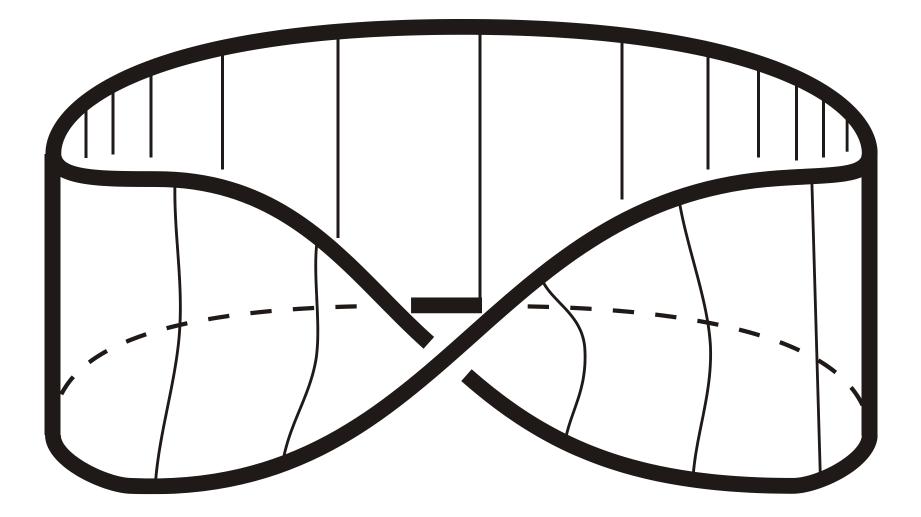
Embeddings of the pseudo-arc into some Spaces

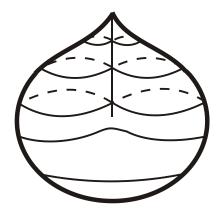
Alejandro Illanes

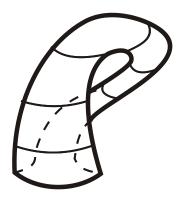
Universidad Nacional Autónoma de México

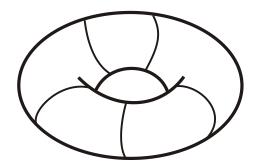
Toposym, Charles University, July 2022

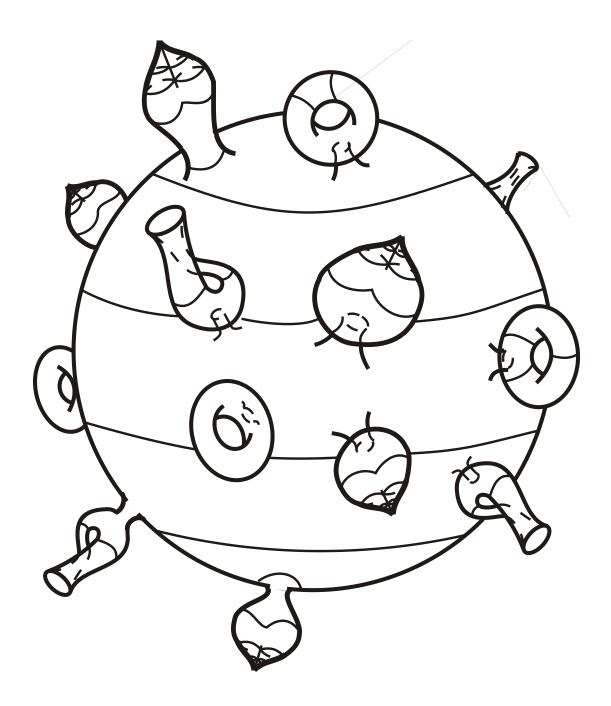
A *continuum* is a compact connected metric space with more than one point

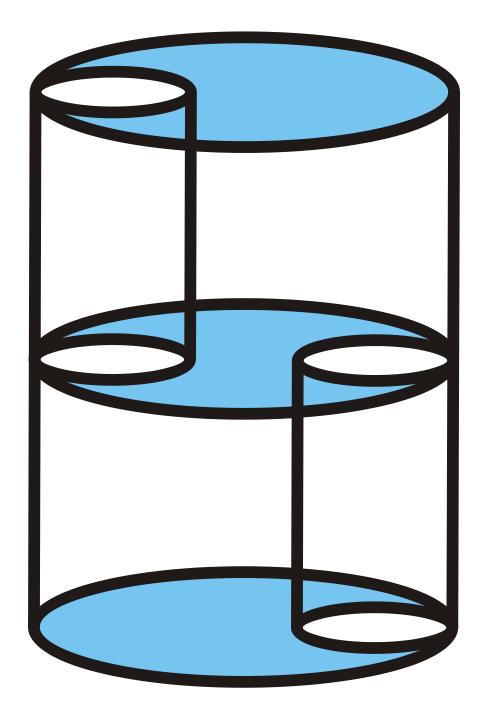


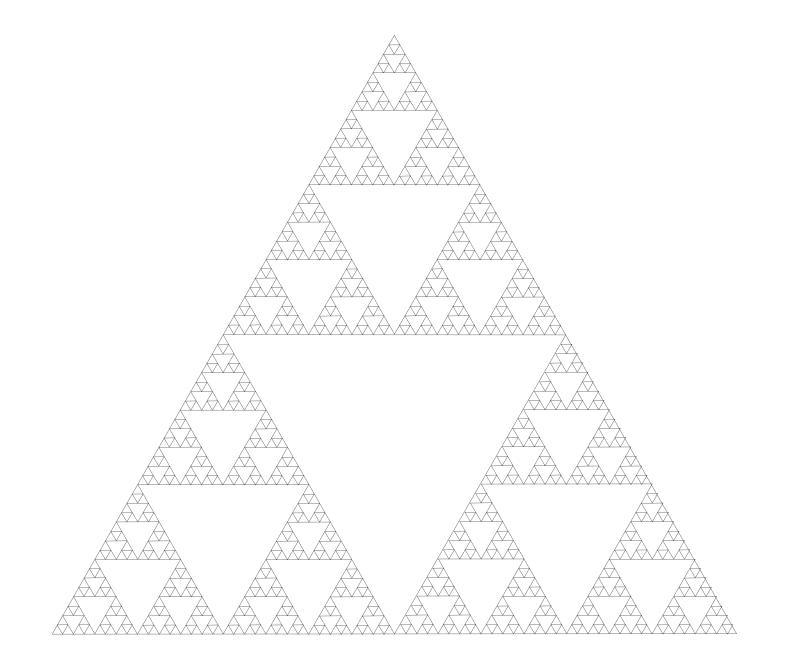


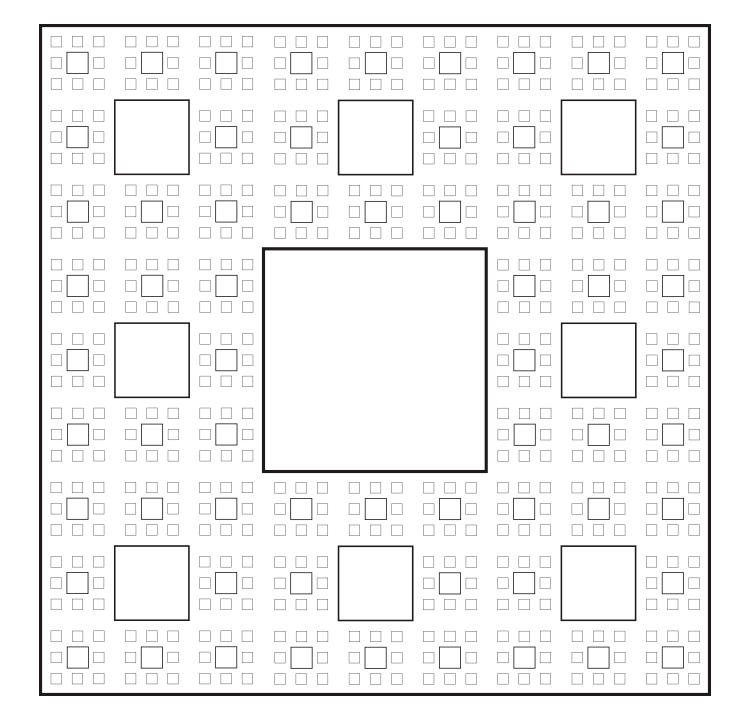


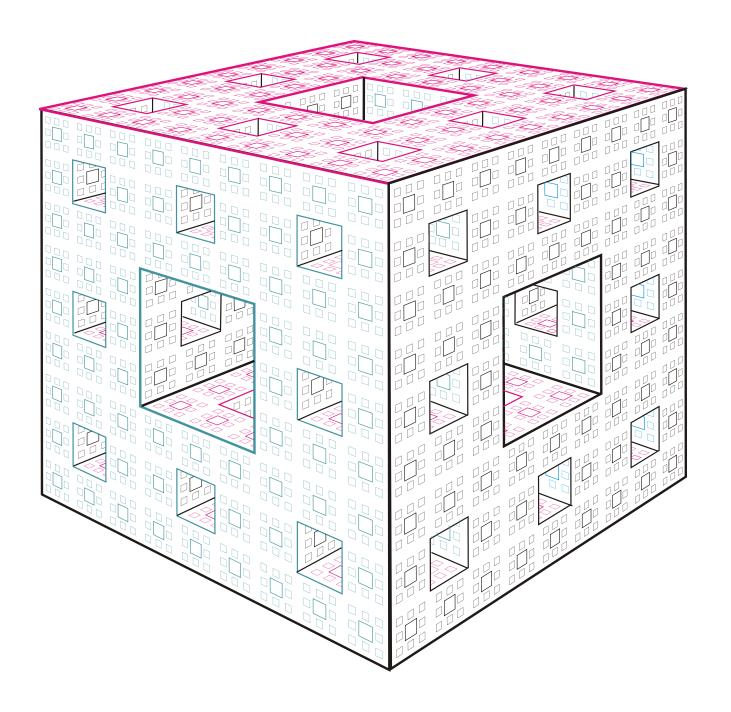


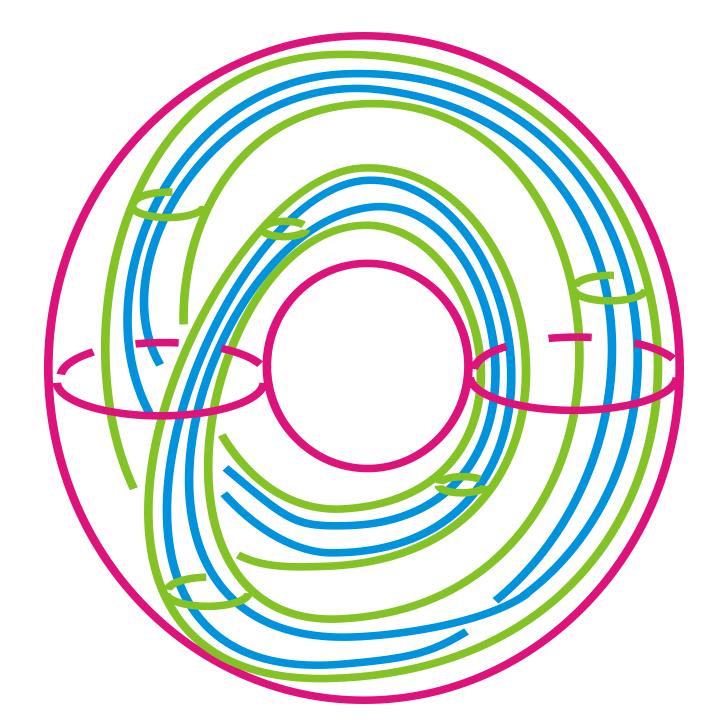


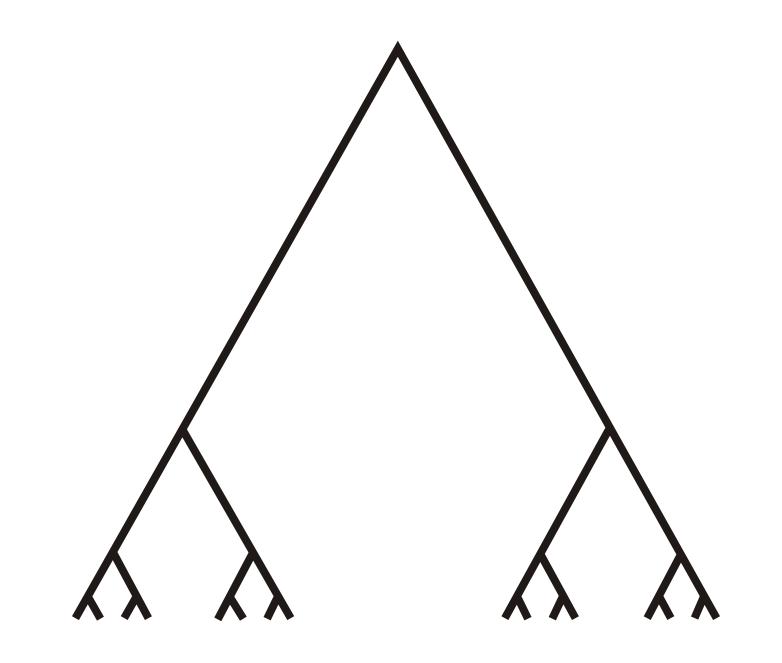


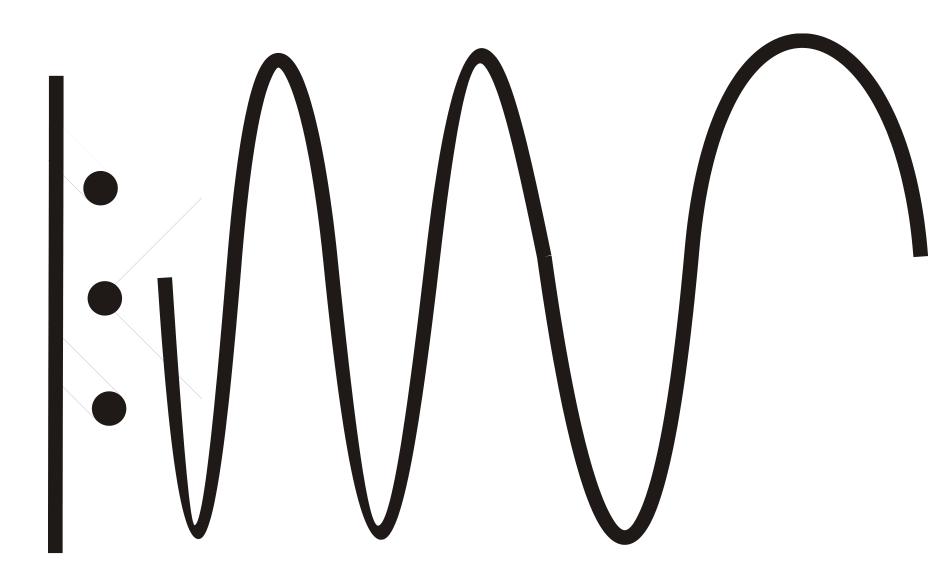


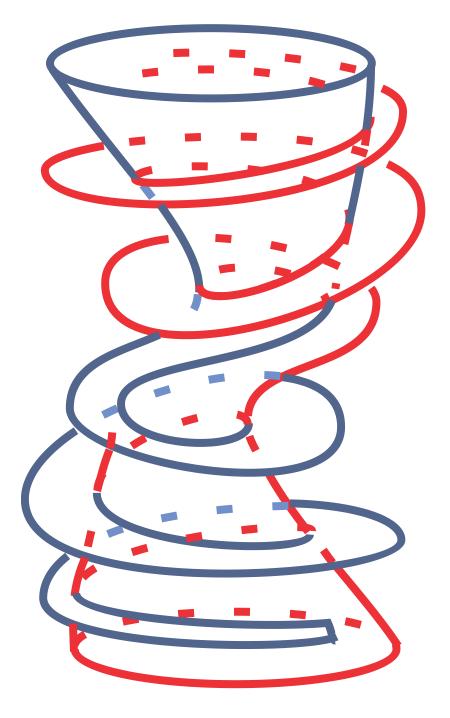








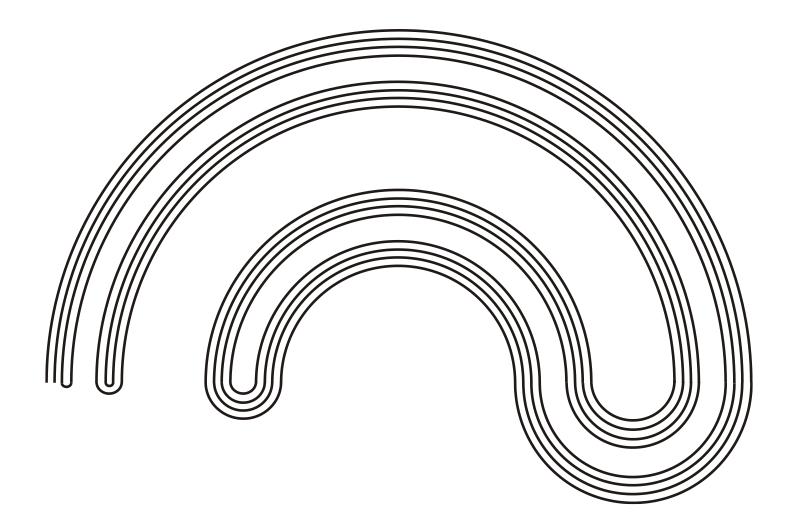




A continuum Y is *indecomposable* if Y is not the union of two proper subcontinua.

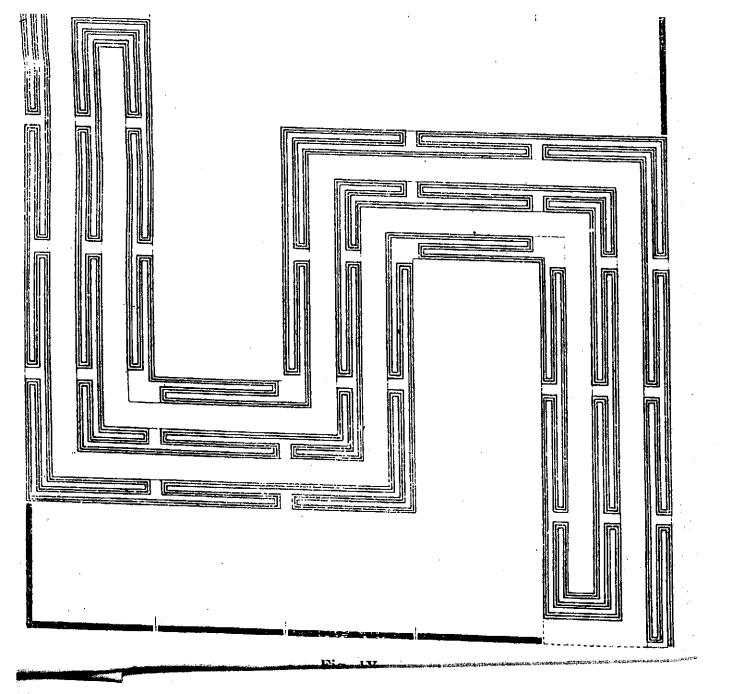
A continuum X is *hereditarily indecomposable* if each of its subcontinua is indecomposable.

Brouwer-Janiszewski-Knaster



Knaster and Kuratowski asked if there exists a hereditarily indecomposable continuum.

Knaster produced one in 1922.



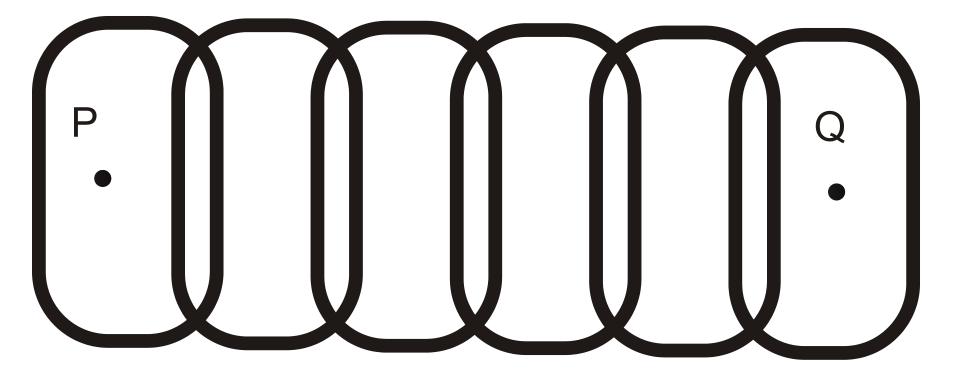
A continuum X is *chainable* if for each r > 0 there exists an open cover

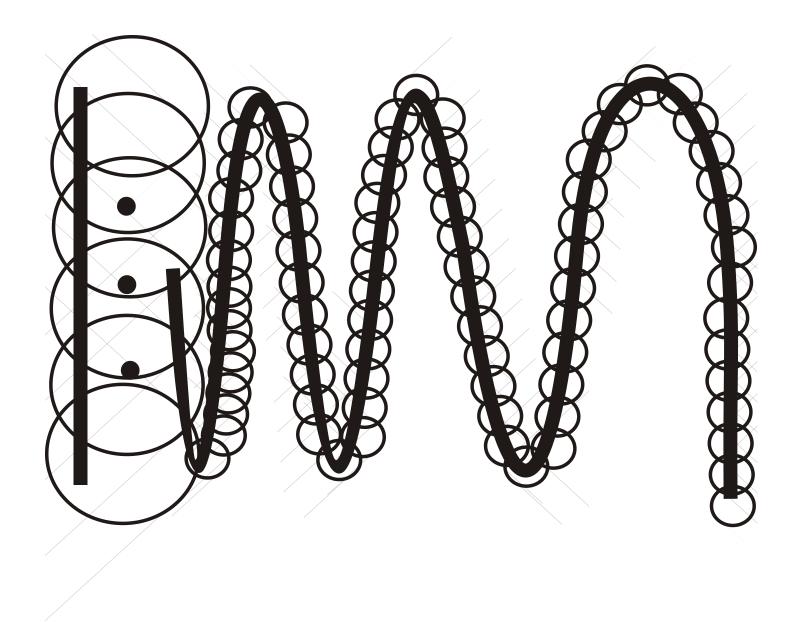
$$U_1, ..., U_n$$
 of X s. t.

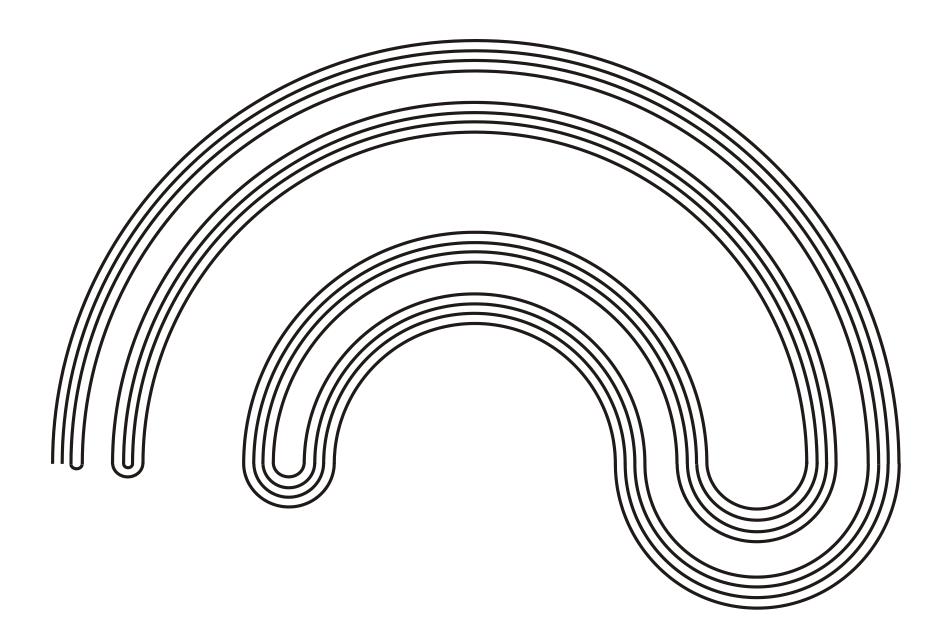
 $\mathsf{U_i}\cap\mathsf{U_k}\neq \phi$

if and only if $|i - j| \le 1$

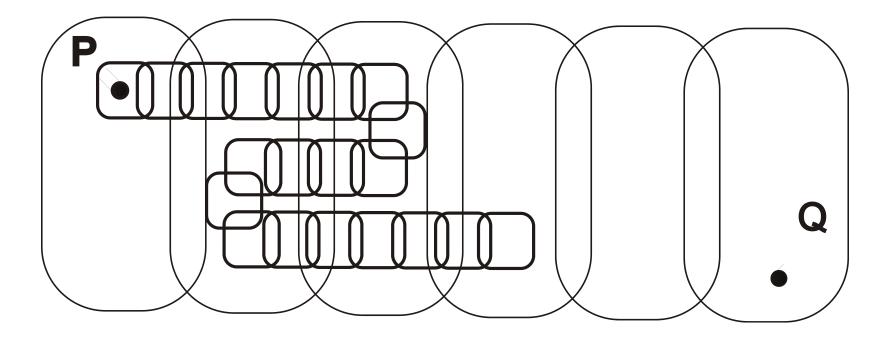
& each U_i has diameter less than r.

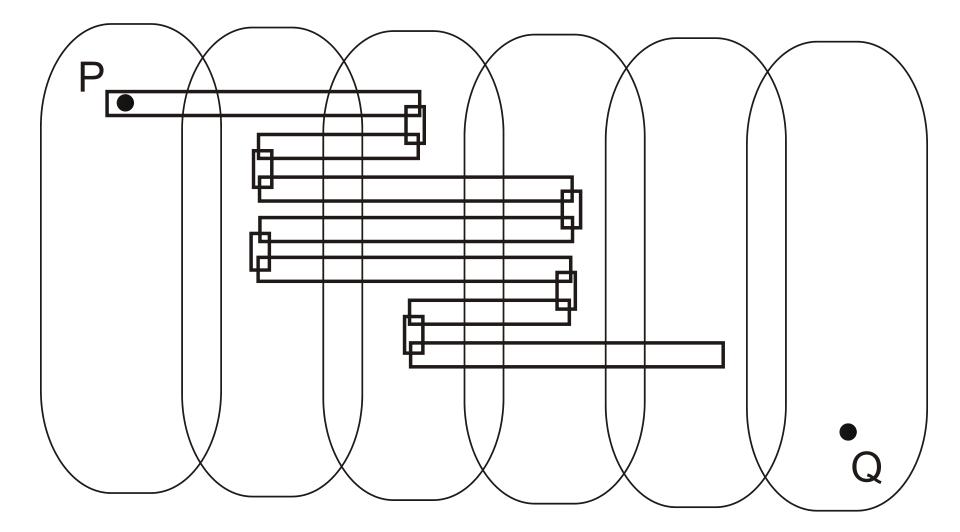


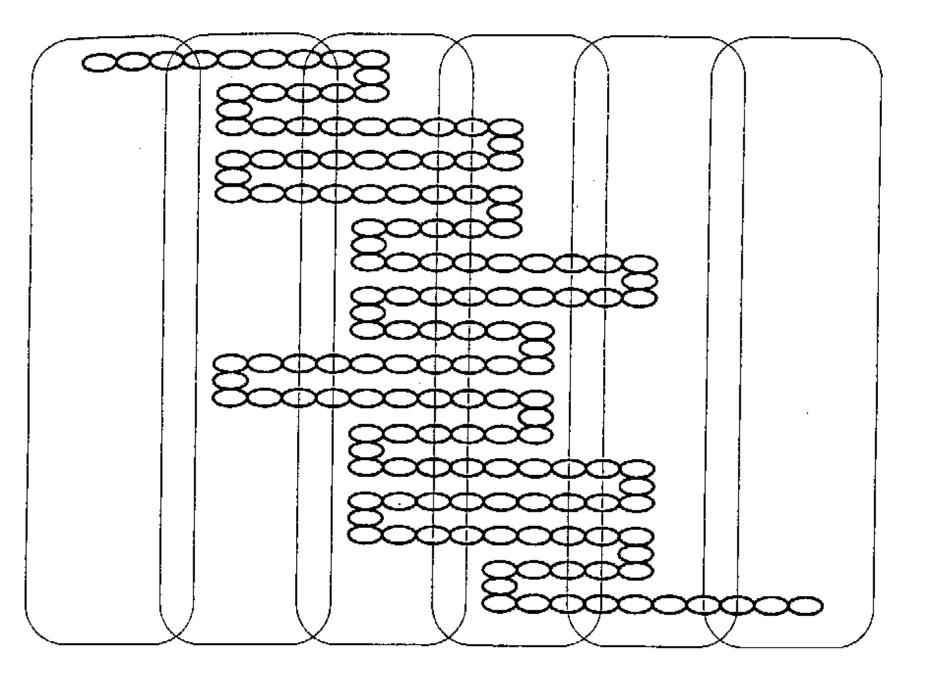




To go from one link U_i to another link U_j , with i + 2 < j, one has to visit first U_{j-1} , then visit U_{i+1} and then we can go to U_i



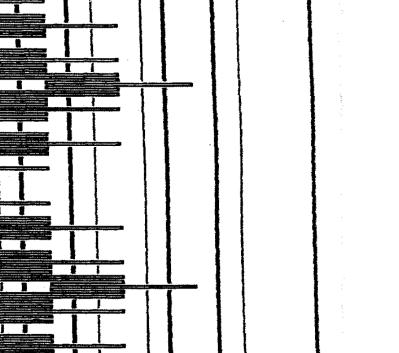




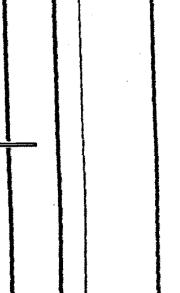


.

Roatten the



ŕ



For each n,

$X_n = \cup$ links of the nth-chain

$$\mathbf{P} = \mathbf{X}_1 \cap \mathbf{X}_2 \cap \dots$$

P is the pseudo-arc.

Theorem (RH Bing, 1948). The pseudo-arc is homogeneous (if p,q are in P, then there exists a homeomorphism $h : P \rightarrow P$ such that h(p) = q).

Theorem (E. E. Moise, 1948). The pseudo-arc is homeomorphic to each of its nondegenerate subcontinua.

Theorem (RH Bing).

The pseudo-arc is the only chainable hereditarily indecomposable continuum.

Issac Kapuano, 1953 published a "proof" that the pseudo-arc is not homogeneous.

A. S. Evening-Volpin, in Referativnyl Zhurnal commented: "in the light of this, the problem of Knaster and Kuratowski remains open"

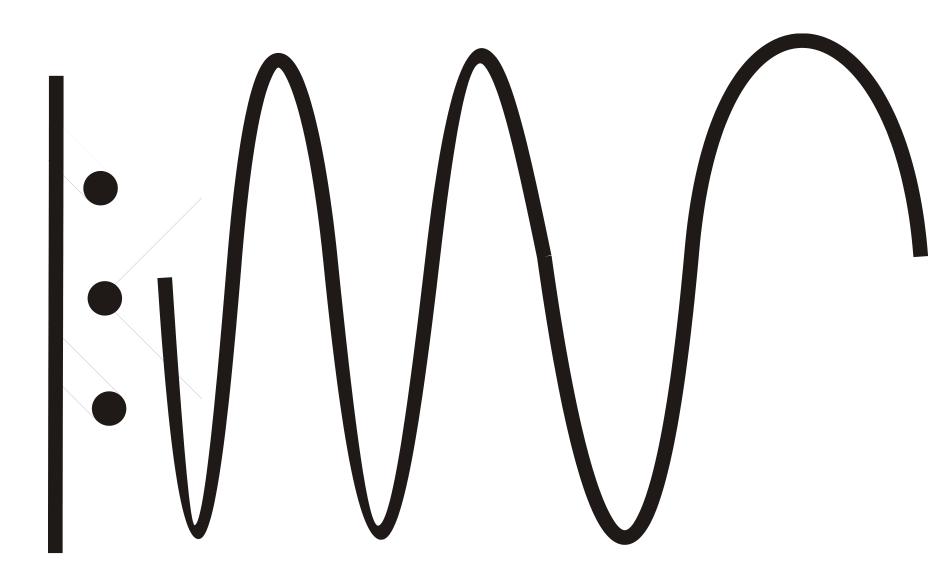
A. Lelek and M Rochowski produced a 60 pages monograph, with all the details,

Problem 1. Is there another continuum, different from P and [0,1] homeomorphic to each of its nondegenerate subcontinuum?

Theorem (L. Hoehn, and L. Oversteegen, 2014). There are only three homogeneous continua in the plane:

- (a) a simple closed curve,
- (b) the pseudo-arc,
- (c) the circle of pseudo-arcs.

1. Compactifications of the ray [0,1)



Two continua X and Y are *comparable* provided that there exists an onto mapping from one to the other.

Theorem (W. Awartani, 1993). There is an uncountable family, F, of non-mutually comparable compactifications of the ray [0,1), with remainder an arc.

Theorem (V. Martínez de la Vega, 2004). There is an uncountable family of nonmutually homeomorphic compactifications of the ray [0,1), with remainder a pseudoarc.

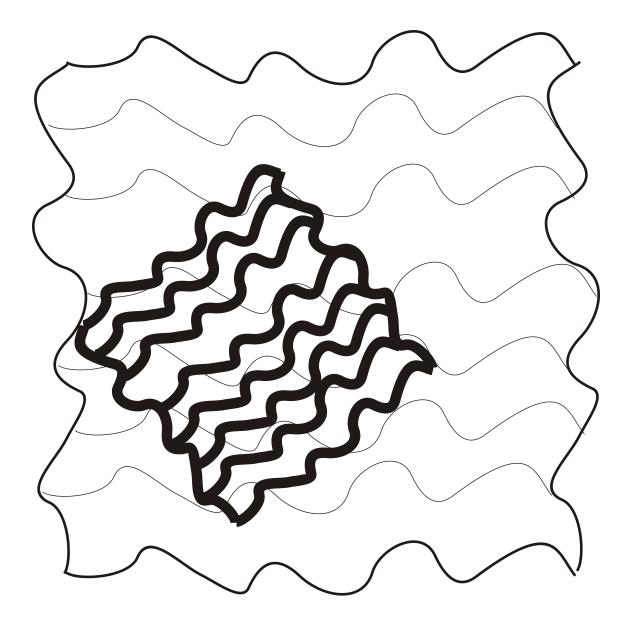
Theorem (V. Martínez de la Vega and P. Minc, 2015). For each continuum X, there is an uncountable family of non-mutually homeomorphic compactifications of the ray [0,1), with remainder X. **Theorem** (A. Illanes, P. Minc and F. Sturm, 2015). If X and Y are compactifications of the ray [0,1), with remainder pseudo-arcs P and Q, respectively, then each onto mapping from P to Q can be extended to an onto mapping from X to Y.

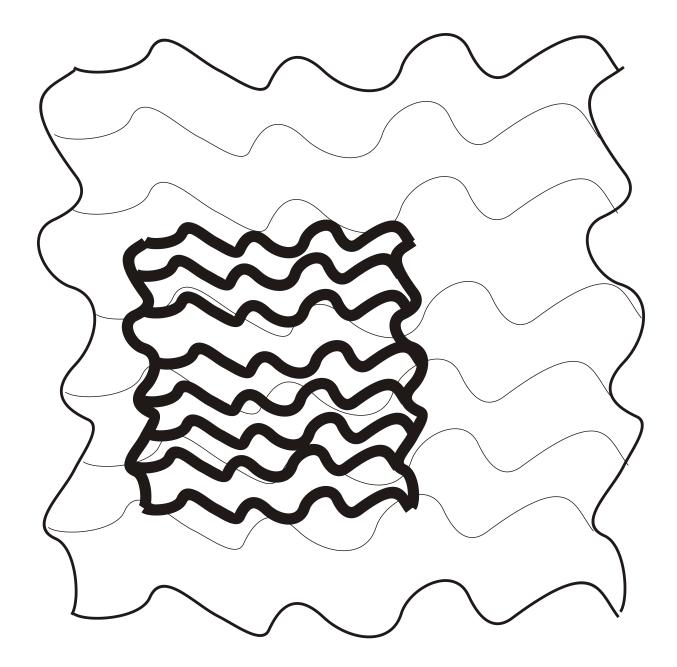
Problem 2. Is there a compactification of the ray [0,1), X, with remainder the pseudo-arc P such that every homeomorphism from P onto P can be extended to X?

2. Embedding a product of pseudo-arcs into a product of pseudo-arcs

- **Theorem** (D. P. Bellamy and J. Kennedy, 1986).
- Let X be a finite or countable product of pseudo-arcs. Then each homeomorphism from X onto X is a product of homeomorphisms (up to permutation of coordinates).

- **Theorem** (M. E. Chacón, A. Illanes and R. Leonel, 2012).
- If $E : P \times P \rightarrow P \times P$ is an embedding, then
- E is a product of embeddings, up to a permutation of coordinates.





- **Problem 3.** If E : $P \times P \times P \to P \times P \times P$ is an embedding, then is E a product of embeddings, up to a permutation of coordinates?
- What about embeddings of P^n into P^n , for $n \ge 4$?

For a continuum X, the *nth-symmetric product* of X is the hyperspace

 $F_n(X) = \{A c X : A \text{ is nonempty and contains} at most n points\}.$

 $F_n(X)$ is considered with the Hausdorff metric.

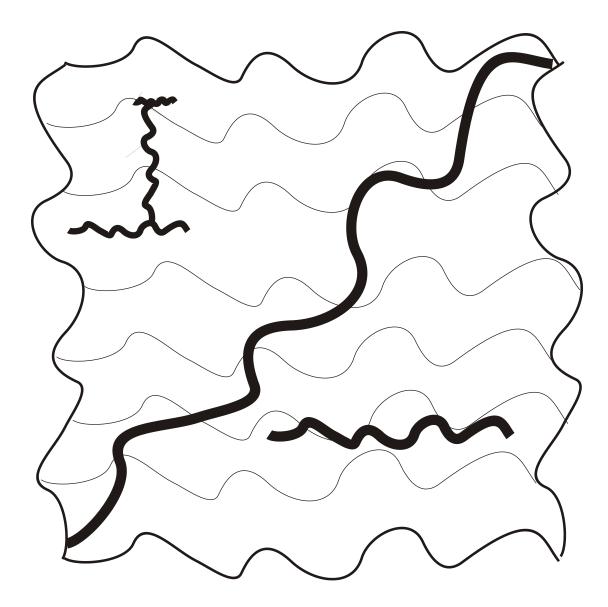
Theorem (I. Calderón, R. Hernández and A. Illanes, 2015).

If $E : F_2(P) \rightarrow F_2(P)$, is an embedding, then there is an embedding $e : P \rightarrow P$ such that $E(\{p,q\}) = \{e(p),e(q)\}$ for every p,q $\in P$.

Corollary (I. Calderón, R. Hernández and A. Illanes, 2015). If $H : F_2(P) \rightarrow F_2(P)$, is a homeomorphism, then $H(F_1(P)) \subset F_1(P)$.

Problem 4. What about embeddings of $F_n(P)$ into $F_n(P)$, for $n \ge 3$?

3. The product P x P



Problem (David P. Bellamy, 2007). Does each nondegenerate subcontinuum of Pⁿ contain a pseudo-arc?

Example (A.I., 2014). There exists a subcontinuum of P x P that contains no pseudo-arcs.

6. Compact subsets of Euclidean spaces contained in pseudo-arcs

4. Compact subsets of Euclidean spaces contained in pseudo-arcs.

Theorem (R. L. Moore, J. R. Kline, 1919). In the plane, a closed and compact set M is a subset of an arc if and only if every component of M is either a one-point set or an arc α such that no point of α , except its end points, is a limit point of M - α .

Theorem (H. Cook, 1961) If K is a compact plane set, then there exists a pseudo-arc P with $K \subset P \subset R^2$ if and only if each one of the nondegenerate components of K is a pseudo-arc.

Theorem (A. I., 2014).

If k \ge 3 and K is a compact subset of the Euclidean space R^k, then there exists a pseudo-arc P such that K \subset P \subset R^k if and only if each nondegenerate component of K is a pseudo-arc.

Problem (D. Bellamy, 2007). Let X be a compact subset of R^k such that each of its nondegenerate components is hereditarily indecomposable continuum, does there exist a hereditarily indecomposable continuum X in R^{k+1} such that $K \subset X$?

Theorem (A. I., 2014). Let K be a compact subset of R^k (k > 2) such that K does not separate R^k and each of its nondegenerate components is hereditarily indecomposable, then there exists a hereditarily indecomposable continuum X in R^k such that $K \subset X$

5. Pseudo-arcs in the hyperspace of subcontinua of the pseudo-arc

Given a continuum X, C(X) denotes the hyperspace of subcontinua of X, with the Hausdorff metric

A Whitney map is a continuous function g from C(X) into [0,1] such that:

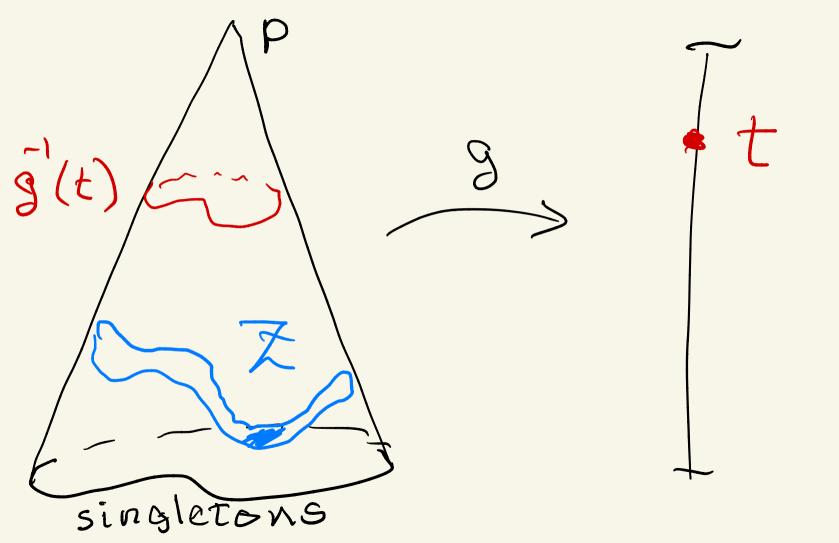
(a). g({p}) = 0 for each p in X, and(b). g(A) < g(B), if A is a proper subcontinuum of B.

Whitney levels are the fibers of the Whitney maps.

Problem (Norman Passmore, 1976; David P. Bellamy, 2007).

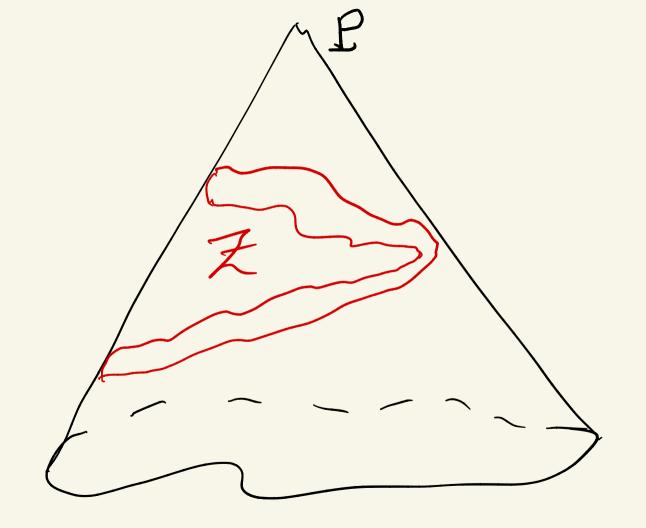
Let P be the pseudo-arc and let Z be a pseudo-arc contained in C(P). Does Z is a subset of a Whitney level for some Whitney map?

What if Z does not contain singletons?



Example (A. I., E. R. Marquez and J. M. Martinez-Montejano, 2022).

- -There exists a pseudo-arc Z in C(P) such that Z does not contain singletons and Z is not contained in any Whitney level.
- -There exists a pseudo-arc contained in the cone of P such that Z does not have the vertex and its projection on P is not one-to-one.



Thanks