Scattered P-spaces of weight ω_1

Wojciech Bielas

joint work with Andrzej Kucharski and Szymon Plewik

University of Silesia in Katowice, Poland

July 25, 2022

W. Bielas, A. Kucharski, and Sz. Plewik Scattered P-spaces of weight ω_1

The name "*P*-space" was used in 1954 by L. Gillman and M. Henriksen as an abbreviation for "pseudo-discrete space", which means a completely regular space X such that for every point x in X, every continuous function $X \to \mathbb{R}$ is constant on some neighbourhood of x.

Proposition

A completely regular space X is pseudo-discrete if and only if the intersection of a countable family of open subsets of X is open.

In 1972 A. K. Misra proposed consideration of T_1 -spaces satisfying this condition: the intersection of a countable family of open subsets is open and called them *P*-spaces.

- Following M. Fréchet, if a space X can be embedded into a space Y, then we write X ⊂_h Y.
- If X ⊂_h Y and Y ⊂_h X, then we write X =_h Y and say that X and Y have the same topological rank (K. Kuratowski) or dimensional type (W. Sierpiński).

Theorem (W. D. Gillam, 2005)

The quasi-ordered set $(\mathcal{P}(\mathbb{Q}), \subset_h)$ contains neither an infinite antichain, nor an infinite descending chain.

- A topological space is scattered if its every non-empty subspace contains an isolated point.
- If X is a topological space and α is an ordinal number, then X^(α) denotes the α-th derivative of X.
- If X is a scattered space, then Cantor-Bendixson rank of X is the least ordinal N(X) such that the derivative $X^{(N(X))}$ is empty.
- If X is a scattered P-space of cardinality ω_1 , then $N(X) < \omega_2$.

Proposition

A scattered space of weight at most ω_1 is of cardinality at most ω_1 .

P-base at a point

- A point of a regular P-space of weight ω₁ has a base {V_α: α < ω₁} with the following properties:
 - $V_0 = X$ and sets V_{lpha} are closed-open,
 - $V_{\beta} \supseteq V_{\alpha}$ for $\beta < \alpha < \omega_1$,
 - $V_{\alpha} = \bigcap \{ V_{\beta} \colon \beta < \alpha \}$ for a limit ordinal number $\alpha < \omega_1$.
- We will say that $\{V_{\alpha} : \alpha < \omega_1\}$ is a P-base.
- The sets $V_{\alpha} \setminus V_{\alpha+1}$ will be called slices.
- There are exactly three, up to homeomorphism, P-spaces with one accumulation point: the number of uncountable slices can be 0, 1 or ω₁, which corresponds to spaces denoted by *i*(2), *i*(2) ⊕ D and J(2), respectively, where D is a discrete space of cardinality ω₁.

• • = • • = •

Spaces $J(\alpha)$

- If J(α) is defined, then we assume that J(α + 1) is a P-space with a P-base at a point x ∈ J(α + 1) such that its slices are homeomorphic to the sum ⊕_{ω1} J(α).
- If $\beta < \omega_2$ is a limit ordinal, then we define $J(\beta) = \bigoplus_{\alpha < \beta} J(\alpha)$.

Proposition

- If X is an elementary P-space of weight ω_1 with $N(X) = n < \omega$, then $X \subset_h J(n)$.
- If X is a scattered P-space of weight ω_1 such that N(X) > 2n, then $J(n+1) \subset_h X$.

The assumption N(X) > 2n is optimal in the sense that spaces i(4) and J(3) have incomparable dimensional types.

• • = • • = •

If $n < \omega$ and the space i(n - 1) has been defined, we assume that the space i(n) has the following properties:

- $i(n)^{(n-1)} = \{x\}$ (hence N(i(n)) = n),
- there is a P-base $\{V_{\alpha} : \alpha < \omega_1\}$ at x such that each slice $V_{\alpha} \setminus V_{\alpha+1}$ is homeomorphic to $\bigoplus_{\omega} i(n-1)$.

- B. Knaster and K. Urbanik showed that a separable scattered and metrizable space can be embedded in a sufficiently large countable ordinal number.
- R. Telgársky removed the assumption of separability from the above result.

Theorem

Any scattered P-space of weight ω_1 can be embedded into ω_2 .

A closed-open subset E of a P-space is elementary, whenever N(E) is a successor ordinal and $E^{(N(E)-1)}$ is a singleton.

Lemma

If X is a scattered P-space of weight ω_1 , then any open cover of X can be refined by a partition consisting of elementary sets.

- Spaces i(2) and J(2) have the following property of being stable: in both cases, there is a P-base at the accumulation point such that its slices are pairwise homeomorphic.
- Although the space $i(2) \oplus D$ has not such a P-base, its accumulation point has a neighbourhood U such that U is stable.
- A stable P-space is determined by a single slice of its P-base.

Proposition

For each $n < \omega$, there exist only finitely many non-homeomorphic stable sets with with rank n. Any elementary set with finite rank is the sum of a family of stable sets.

Proof.

- If {V_α: α < ω₁} is a P-base at x in elementary set E with rank n, then {V_α \ V_{α+1}: α < ω₁} is a cover of E \ {x}.
- There is a partition \mathcal{R} , which refines this cover and consists of elementary sets.
- Each slice $V_{\alpha} \setminus V_{\alpha+1}$ is the sum of stable sets with rank lower than *n*.
- Each stable set with rank lower than n appears in a slice countably or uncountably many times and we can make it uniform beginning at some α < ω₁.
- We can also assure that each stable set appears 0-, ω or ω_1 -many times in a slice $V_{\gamma} \setminus V_{\gamma+1}$, for $\gamma > \alpha$.

Theorem

Let (\mathcal{F}, \subset_h) be an ordered set, where \mathcal{F} is a family of scattered *P*-spaces of weight ω_1 with ranks $\leq n$.

Then every antichain is finite and every strictly decreasing chain is finite.

Proof.

- Let F_1, \ldots, F_m be all stable sets with rank not greater than n.
- We know that a scattered P-space X can be partitioned into stable sets, hence $X = \bigoplus_{\kappa_1^X} F_1 \oplus \ldots \oplus \bigoplus_{\kappa_m^X} F_m$, where $\kappa_i^X \leq \omega_1$.
- Thus we have defined a function $X \mapsto \varphi(X) = (\kappa_1^X, \dots, \kappa_m^X) \in [0, \omega_1]^m.$
- Observe that:

(1)
$$\varphi(X) \leq \varphi(Y) \Rightarrow X \subset_h Y;$$

(2) $X \subset_h Y$ and $Y \not\subset_h X \Rightarrow \exists_i \kappa_i^X < \kappa_i^Y.$

• This takes us to the coordinate-wise ordered set $[0,\omega_1]^m\dots$

 \ldots where we can use the following variant of Bolzano–Weierstrass theorem.

Proposition

If P is a well-ordered set, then any infinite subset of coordinate-wise ordered P^m contains an infinite increasing sequence.

In particular, any antichain and any decreasing sequence in P^m are finite.

Corollary

Let (\mathcal{F}, \subset_h) be an ordered set, where \mathcal{F} is a family of scattered *P*-spaces of weight ω_1 with finite Cantor–Bendixson rank. Then every antichain, every strictly decreasing chain are finite.

Proof.

- Fix an antichain $\mathcal{A} \subseteq \mathcal{F}$.
- If $X, Y \in A$, then 2N(X) < N(Y) is impossible, otherwise $X \subset_h J(N(X)) \subset_h Y$.
- Thus spaces in \mathcal{A} have ranks bounded by some $n < \omega$.
- Suppose X₁ ⊃_h X₂ ⊃_h... is a strictly decreasing sequence of scattered P-spaces with finite rank.
- Then all spaces X_n have ranks not greater than $N(X_1)$.

Proposition

If X is a scattered P-space such that $N(X) = \omega$, then $X =_h J(\omega)$.

Proof.

- Let X = ∪{E_γ: γ < ω₁} be a partition such that each E_γ is an elementary set.
- For each *n* there exists γ such that $N(E_{\gamma}) > 2n$, hence $J(n) \subset_h E_{\gamma}$.
- Therefore $J(\omega) \subset_h X$.
- Since $N(E_{\gamma}) < \omega$, we have $E_{\gamma} \subset_h J(\omega)$.
- Because of $J(\omega) \cong \bigoplus_{\omega_1} J(\omega)$, we get $X \subset_h J(\omega)$.

Scattered P-spaces with infinite rank

Proposition

If Y is an elementary set of weight ω_1 with Cantor–Bendixson rank $\alpha + 1$, then $Y \subset_h J(\alpha + 1)$.

Corollary

If X and Y are elementary sets with Cantor–Bendixson rank $\omega + 1$, both of the weight ω_1 , then $X =_h Y$.

Proposition

If $\beta \in Lim$, then $X \subset_h J(\beta)$ for each P-space X with $N(X) \leq \beta$.

Theorem

If X is a scattered P-space of weight ω_1 and Y is a crowded P-space of weight ω_1 , then $X \subset_h Y$.

Scattered P-spaces with infinite rank

Theorem

If $\beta < \omega_1$ is limit ordinal, then $J(\beta) =_h X$ for each P-space X with $N(X) = \beta$, and also $J(\beta + n) \subset_h Z$ for each elementary set with $N(Z) = \beta + 2n - 1$ for n > 0.

Corollary

If $\beta \in Lim$ and X is an elementary set with $N(X) = \beta + 1$, then $J(\beta + 1) =_h X$.

Theorem

If $\beta < \omega_1$ is a limit ordinal, then the classes of regular P-spaces

 $\{X: 0 < N(X) \leq \omega + 1\}$ and $\{X: \beta < N(X) \leq \beta + \omega + 1\}$

are \subset_h -isomorphic.

Bibliography

- W. Bielas, A. Kucharski, Sz. Plewik, *Inverse limits which are P-spaces*, Topology Appl. 312 (2022), Paper No. 108064, 18.
- A. Dow, More topological partition relations on βω. Topology Appl. 259 (2019), 50–66.
- R. Engelking, *General topology*. Mathematical Monographs, Vol. 60, PWN–Polish Scientific Publishers, Warsaw, (1977).
- M. Fréchet, *Les dimensions d'un ensemble abstrait*. Math. Ann. 68 (1910), no. 2, 145–168.
- W. D. Gillam, *Embeddability properties of countable metric spaces.* Topology Appl. 148 (2005), no. 1–3, 63–82.
- T. Jech, *Set theory*, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
- B. Knaster, K. Urbanik, *Sur les espaces complets séparables de dimension 0*. Fund. Math. 40 (1953), 194–202. → A = → A