Jan van Mill

University of Amsterdam TU Delft

Twelfth Symposium on General Topology and its Relations to Modern Analysis and Algebra July 25-29, 2016, Prague

The beginning

TOPOSYM 2016

1961 1966 1971 1976 1981 1986 1991 1996 2001 2006 2011 2016 stat

Fourth Symposium on General Topology

and its Relations to Modern Analysis and Algebra

Prague 1976

The beginning

Jan van Mill, Jan van Wouwe and Geertje van Mill 1976

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The beginning

Hotel in 1976

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

The beginning

TOPOSYM	Dimitrovova kole Praha 6 - Bubene A. A. Ždanova 6		j č	Tůžek T	Pokoj č. 83
Příjmení VAN POEDEROOYEN		Jméno (GEERTJE		
Státní příslušnost Holandsko	040706245075	Číslo cest. dokladu - CP N 906144			
Ubytování od .22. do srpna 1976			Počet nocí		
Zeplaceno Kös 5/3 slovy tristssedmidesátosm V Praze dne 22 srpna 1976 Macluo USS 34-80					
Číslo ubytovací pokázky 056 22. 8. 1976 – 19					
		tolefon d	1-2	21 23	

Documents

The beginning

THE CLASS OF 1976

▲ロト ▲聞 ▶ ▲ 国 ▶ ▲ 国 ● のへの

The beginning

Say hello to all my friends in Prague! Tell them Brexit was not my idea!!!

Definition

A space X is *Countable Dense Homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f: X \to X$ such that f(D) = E.

Definition

A space X is *Countable Dense Homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f: X \to X$ such that f(D) = E.

• There are many CDH-spaces: Cantor set, manifolds, Hilbert cube, etc. etc.

Introduction

• In the first part of the lecture, all spaces are *separable and metrizable*.

Definition

A space X is *Countable Dense Homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f: X \to X$ such that f(D) = E.

 There are many CDH-spaces: Cantor set, manifolds, Hilbert cube, etc.

• 'Nice' spaces tend to be CDH.

Definition

A space X is *Countable Dense Homogeneous* (abbreviated: CDH) if given any two countable dense subsets D and E of X there is a homeomorphism $f: X \to X$ such that f(D) = E.

- There are many CDH-spaces: Cantor set, manifolds, Hilbert cube, etc. etc.
- 'Nice' spaces tend to be CDH.
- Bennett proved in 1972 that connected (first-countable) CDH-spaces are homogeneous.

Introduction

Actually, connected CDH-spaces X are *n*-homogeneous for every n. That is, for all finite subsets A, B ⊆ X such that |A| = |B| there is a homeomorphism f: X → X such that f(A) = B (vM, 2013).

Introduction

- Actually, connected CDH-spaces X are *n*-homogeneous for every n. That is, for all finite subsets A, B ⊆ X such that |A| = |B| there is a homeomorphism f: X → X such that f(A) = B (vM, 2013).
- Hence for connected spaces, CDH-ness can be thought of as a very strong form of homogeneity.

Introduction

- Actually, connected CDH-spaces X are *n*-homogeneous for every n. That is, for all finite subsets A, B ⊆ X such that |A| = |B| there is a homeomorphism f: X → X such that f(A) = B (vM, 2013).
- Hence for connected spaces, CDH-ness can be thought of as a very strong form of homogeneity.
- After 1972, the interest in CDH-spaces was kept alive mainly by Fitzpatrick.

Question (Fitzpatrick and Zhou, 1990)

Is every connected Polish CDH-space locally connected?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question (Fitzpatrick and Zhou, 1990)

Is every connected Polish CDH-space locally connected?

• A Polish space is one that is (separable and) completely metrizable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question (Fitzpatrick and Zhou, 1990)

Is every connected Polish CDH-space locally connected?

• A Polish space is one that is (separable and) completely metrizable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Yes, for locally compact spaces (Fitzpatrick, 1972).

Question (Fitzpatrick and Zhou, 1990)

Is every connected Polish CDH-space locally connected?

- A Polish space is one that is (separable and) completely metrizable.
- Yes, for locally compact spaces (Fitzpatrick, 1972).

Theorem (vM, 2015)

Let X be a non-meager connected CDH-space and assume that for some point x in X we have that for every open neighborhood W of x, the quasi-component of x in W is nontrivial. Then X is locally connected.

• The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.
- Hence the quasi-component of x contains the component of x.

- The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.
- Hence the quasi-component of x contains the component of x.
- The condition of the theorem says that some x in X has the following property: for every open neighborhood W of x there is a point y ∈ W \ {x} so that x and y cannot be separated by (relative) clopen subsets of W.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.
- Hence the quasi-component of x contains the component of x.
- The condition of the theorem says that some x in X has the following property: for every open neighborhood W of x there is a point y ∈ W \ {x} so that x and y cannot be separated by (relative) clopen subsets of W.
- A counterexample to the Fitzpatrick-Zhou question (if it exists) must therefore be terrible: it is similar to a homogeneous version of the one-point connectification of complete *complete Erdős space*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.
- Hence the quasi-component of x contains the component of x.
- The condition of the theorem says that some x in X has the following property: for every open neighborhood W of x there is a point y ∈ W \ {x} so that x and y cannot be separated by (relative) clopen subsets of W.
- A counterexample to the Fitzpatrick-Zhou question (if it exists) must therefore be terrible: it is similar to a homogeneous version of the one-point connectification of complete *complete Erdős space*.
- Complete Erdős space is the set of all vectors $x = (x_n)_n$ in Hilbert space ℓ^2 such that x_n is irrational for every n.

- The quasi-component of x in X is the intersection of all open-and-closed subsets of X that contain x.
- Hence the quasi-component of x contains the component of x.
- The condition of the theorem says that some x in X has the following property: for every open neighborhood W of x there is a point y ∈ W \ {x} so that x and y cannot be separated by (relative) clopen subsets of W.
- A counterexample to the Fitzpatrick-Zhou question (if it exists) must therefore be terrible: it is similar to a homogeneous version of the one-point connectification of complete *complete Erdős space*.
- Complete Erdős space is the set of all vectors $x = (x_n)_n$ in Hilbert space ℓ^2 such that x_n is irrational for every n.
- It is totally disconnected (any two points can be separated by clopen sets) but 1-dimensional (Erdős, 1940).

• All of it nonempty clopen subsets have unbounded norm, and hence it can be made connected by the adjunction of a single point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- All of it nonempty clopen subsets have unbounded norm, and hence it can be made connected by the adjunction of a single point.
- But the resulting space is not homogeneous.

- All of it nonempty clopen subsets have unbounded norm, and hence it can be made connected by the adjunction of a single point.
- But the resulting space is not homogeneous.
- The Erdős space is a very famous example in topology.

Question (Fitzpatrick and Zhou, 1990)

Does there exist a CDH-space that is not completely metrizable?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question (Fitzpatrick and Zhou, 1990)

Does there exist a CDH-space that is not completely metrizable?

Theorem (Hrušák and Zamora Avilés, 2005) Borel CDH-spaces are Polish.

Theorem (Farah, Hrušák and Martínez Ranero, 2005)

There is an absolute example of a CDH-subspace of \mathbb{R} of cardinality \aleph_1 .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Question (Fitzpatrick and Zhou, 1990)

Does there exist a CDH-space that is not completely metrizable?

Theorem (Hrušák and Zamora Avilés, 2005) Borel CDH-spaces are Polish.

Theorem (Farah, Hrušák and Martínez Ranero, 2005)

There is an absolute example of a CDH-subspace of \mathbb{R} of cardinality \aleph_1 .

• A space X is called a λ -set if all of its countable subsets are G_{δ} .

Question (Fitzpatrick and Zhou, 1990)

Does there exist a CDH-space that is not completely metrizable?

Theorem (Hrušák and Zamora Avilés, 2005) Borel CDH-spaces are Polish.

Theorem (Farah, Hrušák and Martínez Ranero, 2005)

There is an absolute example of a CDH-subspace of \mathbb{R} of cardinality \aleph_1 .

- A space X is called a λ -set if all of its countable subsets are G_{δ} .
- A crowded λ -set is meager (we will prove this in a moment).

Question (Fitzpatrick and Zhou, 1990)

Does there exist a CDH-space that is not completely metrizable?

Theorem (Hrušák and Zamora Avilés, 2005) Borel CDH-spaces are Polish.

Theorem (Farah, Hrušák and Martínez Ranero, 2005)

There is an absolute example of a CDH-subspace of \mathbb{R} of cardinality \aleph_1 .

- A space X is called a λ -set if all of its countable subsets are G_{δ} .
- A crowded λ -set is meager (we will prove this in a moment).
- The space in the last theorem is a λ-set, hence is meager and so is not Polish.

The second question

Theorem

- **1** There is a λ -set of size ω_1 (Lusin, 1921).
- **2** Every crowded λ -set is meager.
- Every meager CDH-space is a λ-set (Fitzpatrick and Zhou, 1992).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

- **1** There is a λ -set of size ω_1 (Lusin, 1921).
- **2** Every crowded λ -set is meager.
- Every meager CDH-space is a λ-set (Fitzpatrick and Zhou, 1992).

Proof.

For (1), consider the quasi-order
$$\leq^*$$
 on ω^{ω} defined by

$$f \leq^* g \Leftrightarrow (\exists N < \omega) (\forall n \ge N) (f(n) \le g(n)).$$

It is easy to construct a sequence $\{f_{\alpha} : \alpha < \omega_1\}$ of elements of ω^{ω} such that $f_{\alpha} <^* f_{\beta}$ for all $\alpha < \beta < \omega_1$. Then X is a λ -set in the subspace topology it inherits from ω^{ω} (with the standard Tychonoff product topology).

Proof.

For (2), let X be a λ -set, and consider any countable dense subset D of X. Then D is G_{δ} , hence $X \setminus D$ is F_{σ} . All closed sets involved are nowhere dense.

For (3), let $\{B_n : n < \omega\}$ be a countable base for X consisting of nonempty sets. In addition, write X as $\bigcup_{n < \omega} F_n$, where each F_n is closed and nowhere dense. Pick a point $x_n \in B_n \setminus \bigcup_{i \le n} F_i$ for every n. Put $D = \{x_n : n < \omega\}$. Then $D \cap F_n$ is finite, hence $F_n \setminus D$ is F_{σ} , for every n. This shows that $X \setminus D$ is F_{σ} , hence D is G_{δ} . The rest follows from CDH-ness.
Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

For every uncountable cardinal $\kappa \leq \mathfrak{c}$, the following statements are equivalent:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- **1** There is a meager CDH-space of size κ ,
- **2** There is a λ -set of size κ .

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

For every uncountable cardinal $\kappa \leq \mathfrak{c}$, the following statements are equivalent:

- **1** There is a meager CDH-space of size κ ,
- **2** There is a λ -set of size κ .
 - By an old result of Rothberger from 1939, this gives us:

Corollary

For every cardinal κ such that $\omega_1 \leq \kappa \leq \mathfrak{b}$ there exists a meager CDH-space of size κ .

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

For every uncountable cardinal $\kappa \leq \mathfrak{c}$, the following statements are equivalent:

- **1** There is a meager CDH-space of size κ ,
- **2** There is a λ -set of size κ .
 - By an old result of Rothberger from 1939, this gives us:

Corollary

For every cardinal κ such that $\omega_1 \leq \kappa \leq \mathfrak{b}$ there exists a meager CDH-space of size κ .

• Here $\mathfrak{b} = \min\{|B| : |B| \text{ is an unbounded subset of } \omega^{\omega}\}$. (With respect to the standard quasi-order that we defined above.)

 This motivates the question whether there is (in ZFC) a CDH-space of *any* cardinality below c.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• This motivates the question whether there is (in ZFC) a CDH-space of *any* cardinality below c.

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

It is consistent with ZFC that the continuum is arbitrarily large and every CDH-space has size either ω_1 or c, and moreover

- **1** all CDH-spaces of size ω_1 are λ -sets, and
- all CDH-spaces of size c are non-meager.

• This motivates the question whether there is (in ZFC) a CDH-space of *any* cardinality below c.

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

It is consistent with ZFC that the continuum is arbitrarily large and every CDH-space has size either ω_1 or \mathfrak{c} , and moreover

- **1** all CDH-spaces of size ω_1 are λ -sets, and
- all CDH-spaces of size c are non-meager.
 - As we saw, there are spaces answering the Fitzpatrick-Zhou question that are not Polish because they are meager. How about Baire spaces?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• This motivates the question whether there is (in ZFC) a CDH-space of *any* cardinality below c.

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

It is consistent with ZFC that the continuum is arbitrarily large and every CDH-space has size either ω_1 or \mathfrak{c} , and moreover

- **1** all CDH-spaces of size ω_1 are λ -sets, and
- 2 all CDH-spaces of size c are non-meager.
 - As we saw, there are spaces answering the Fitzpatrick-Zhou question that are not Polish because they are meager. How about Baire spaces?

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014) There is a CDH-subspace of \mathbb{R} which is Baire but not Polish.

The second question

Question

Is it consistent with ZFC to have a (separable metric) Baire CDH-space without isolated points of size less than c?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Question

Can a nontrivial meager CDH-space be connected?

Question

Can a nontrivial meager CDH-space be connected?

 A nontrivial connected space has size c. Hence a positive answer to this question implies the existence of a λ-set of size c.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Can a nontrivial meager CDH-space be connected?

- A nontrivial connected space has size c. Hence a positive answer to this question implies the existence of a λ-set of size c.
- By Miller (1993), the existence of a λ-set of size c it is independent of ZFC.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Can a nontrivial meager CDH-space be connected?

- A nontrivial connected space has size c. Hence a positive answer to this question implies the existence of a λ-set of size c.
- By Miller (1993), the existence of a λ-set of size c it is independent of ZFC.
- Hence ZFC alone cannot prove the existence of a nontrivial connected meager CDH-space.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Can a nontrivial meager CDH-space be connected?

- A nontrivial connected space has size c. Hence a positive answer to this question implies the existence of a λ-set of size c.
- By Miller (1993), the existence of a λ-set of size c it is independent of ZFC.
- Hence ZFC alone cannot prove the existence of a nontrivial connected meager CDH-space.

Theorem (Hrušák and vM, 2016)

The following are equivalent:

• There is a λ -set of size \mathfrak{c} , and

2 there is a connected λ -set.

Theorem (Hrušák and vM, 2016)

The Continuum Hypothesis (abbreviated: CH) implies that there is a nontrivial meager connected CDH-subspace of the Hilbert cube Q.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Hrušák and vM, 2016)

The Continuum Hypothesis (abbreviated: CH) implies that there is a nontrivial meager connected CDH-subspace of the Hilbert cube Q.

Corollary (Hrušák and vM, 2016)

The existence of a nontrivial connected meager CDH-space is independent of ZFC

Theorem (Hrušák and vM, 2016)

The Continuum Hypothesis (abbreviated: CH) implies that there is a nontrivial meager connected CDH-subspace of the Hilbert cube Q.

Corollary (Hrušák and vM, 2016)

The existence of a nontrivial connected meager CDH-space is independent of ZFC

• The Hilbert cube Q is $\prod_{n=1}^{\infty} [-1,1]_n$.

Theorem (Hrušák and vM, 2016)

The Continuum Hypothesis (abbreviated: CH) implies that there is a nontrivial meager connected CDH-subspace of the Hilbert cube Q.

Corollary (Hrušák and vM, 2016)

The existence of a nontrivial connected meager CDH-space is independent of ZFC

- The Hilbert cube Q is $\prod_{n=1}^{\infty} [-1, 1]_n$.
- B(Q) is the so-called *pseudo-boundary* of Q, i.e.,

$$B(Q) = \{ x \in Q : (\exists n \in \mathbb{N}) (|x_n| = 1) \}.$$

Theorem (Hrušák and vM, 2016)

The Continuum Hypothesis (abbreviated: CH) implies that there is a nontrivial meager connected CDH-subspace of the Hilbert cube Q.

Corollary (Hrušák and vM, 2016)

The existence of a nontrivial connected meager CDH-space is independent of ZFC

- The Hilbert cube Q is $\prod_{n=1}^{\infty} [-1, 1]_n$.
- B(Q) is the so-called *pseudo-boundary* of Q, i.e.,

$$B(Q) = \{ x \in Q : (\exists n \in \mathbb{N}) (|x_n| = 1) \}.$$

• The proof of the theorem uses the following results:

Lemma

Let A be a G_{δ} -subset of [-1,1] such that $[-1,1] \setminus A \neq \emptyset$. Then there is a homeomorphism $f: Q \to Q$ such that $f(B(Q)) = B(Q) \setminus A^{\infty}$.

Lemma

Let A be a G_{δ} -subset of [-1,1] such that $[-1,1] \setminus A \neq \emptyset$. Then there is a homeomorphism $f: Q \to Q$ such that $f(B(Q)) = B(Q) \setminus A^{\infty}$.

• A subset B of Q for which there exists a homeomorphism $f: Q \to Q$ such that f(B) = B(Q) is called a *capset*.

Lemma

Let A be a G_{δ} -subset of [-1, 1] such that $[-1, 1] \setminus A \neq \emptyset$. Then there is a homeomorphism $f : Q \to Q$ such that $f(B(Q)) = B(Q) \setminus A^{\infty}$.

A subset B of Q for which there exists a homeomorphism
 f: Q → Q such that f(B) = B(Q) is called a *capset*.

Lemma

Let M and N be capsets in Q. In addition, let D^0 be a countable dense subset of $Q \setminus M$ containing the dense subset E^0 such that $F^0 = D^0 \setminus E^0$ is dense as well. Moreover, let D^1 be a countable dense subset of $Q \setminus N$ containing the dense subset E^1 such that $F^1 = D^1 \setminus E^1$ is dense as well. Then there is a homeomorphism hof Q such that h(M) = N, $h(E^0) = E^1$ and $h(F^0) = F^1$.

• So assume CH, and write [-1,1] as $\bigcup_{\alpha < \omega_1} A_{\alpha}$, so that $A_0 = \emptyset$, each A_{α} is a G_{δ} -subset of [-1,1], $A_{\alpha} \subseteq A_{\beta}$ if $\alpha < \beta$, and $[-1,1] \setminus A_{\alpha} \neq \emptyset$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The third question

- So assume CH, and write [-1,1] as U_{α<ω1} A_α, so that A₀ = Ø, each A_α is a G_δ-subset of [-1,1], A_α ⊆ A_β if α < β, and [-1,1] \ A_α ≠ Ø.
- Enumerate all closed subsets of Q that separate Q by $\{K_{\alpha} : \alpha < \omega_1\}$, and enumerate all pairs of countable dense subsets of Q by $\{(E_{\alpha}, F_{\alpha}) : \alpha < \omega_1\}$ such that each pair is listed ω_1 -many times.

- So assume CH, and write [-1,1] as U_{α<ω1} A_α, so that A₀ = Ø, each A_α is a G_δ-subset of [-1,1], A_α ⊆ A_β if α < β, and [-1,1] \ A_α ≠ Ø.
- Enumerate all closed subsets of Q that separate Q by $\{K_{\alpha} : \alpha < \omega_1\}$, and enumerate all pairs of countable dense subsets of Q by $\{(E_{\alpha}, F_{\alpha}) : \alpha < \omega_1\}$ such that each pair is listed ω_1 -many times.
- We shall recursively construct a decreasing sequence
 {B_α : α < ω₁} of capsets and an increasing sequence
 {D_α : α < ω₁} of countable subsets of Q, together with an
 increasing sequence {H_α : α < ω₁} of countable subgroups of
 H(Q) so that (denoting Q \ B_α by s_α) for every α < ω₁:

$D_{\alpha} \text{ is a countable dense subset of } s_{\alpha}, \text{ and } D_{\alpha} \cap K_{\alpha} \neq \emptyset,$

 $D_{\alpha} \text{ is a countable dense subset of } s_{\alpha}, \text{ and } D_{\alpha} \cap K_{\alpha} \neq \emptyset,$

② there exists an ordinal $f(\alpha) < \omega_1$ such that $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha},$

 $D_{\alpha} \text{ is a countable dense subset of } s_{\alpha}, \text{ and } D_{\alpha} \cap K_{\alpha} \neq \emptyset,$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- There exists an ordinal $f(\alpha) < \omega_1$ such that
 $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha}$,
- $\ \, {\it O}_{\alpha}, \ s_{\alpha} \ {\rm and} \ B_{\alpha} \ {\rm are \ invariant \ under \ } H_{\alpha}, \ \,$

- **1** D_{α} is a countable dense subset of s_{α} , and $D_{\alpha} \cap K_{\alpha} \neq \emptyset$,
- ② there exists an ordinal $f(\alpha) < \omega_1$ such that $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha},$
- $\ \, {\it O}_{\alpha}, \ s_{\alpha} \ {\rm and} \ B_{\alpha} \ {\rm are \ invariant \ under \ } H_{\alpha},$
- if $E_{\alpha} \cup F_{\alpha} \subseteq D_{\alpha}$, and $D_{\alpha} \setminus (E_{\alpha} \cup F_{\alpha})$ is dense, then there exists an element h of H_{α} such that $h(E_{\alpha}) = F_{\alpha}$,

- **1** D_{α} is a countable dense subset of s_{α} , and $D_{\alpha} \cap K_{\alpha} \neq \emptyset$,
- ② there exists an ordinal $f(\alpha) < \omega_1$ such that $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha},$
- $\ \, {\bf 0} \ \, D_{\alpha}, \ \, s_{\alpha} \ \, {\rm and} \ \, B_{\alpha} \ \, {\rm are \ \, invariant \ \, under \ \, } H_{\alpha},$
- if $E_{\alpha} \cup F_{\alpha} \subseteq D_{\alpha}$, and $D_{\alpha} \setminus (E_{\alpha} \cup F_{\alpha})$ is dense, then there exists an element h of H_{α} such that $h(E_{\alpha}) = F_{\alpha}$,
- **5** if $\gamma < \alpha$, $D_{\alpha} \setminus D_{\gamma}$ is a dense subset of Q contained in $s_{\alpha} \setminus s_{\gamma}$.

- **1** D_{α} is a countable dense subset of s_{α} , and $D_{\alpha} \cap K_{\alpha} \neq \emptyset$,
- ② there exists an ordinal $f(\alpha) < \omega_1$ such that $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha},$
- $\ \, {\bf 0} \ \, D_{\alpha}, \ \, s_{\alpha} \ \, {\rm and} \ \, B_{\alpha} \ \, {\rm are \ \, invariant \ \, under \ \, } H_{\alpha},$
- if $E_{\alpha} \cup F_{\alpha} \subseteq D_{\alpha}$, and $D_{\alpha} \setminus (E_{\alpha} \cup F_{\alpha})$ is dense, then there exists an element h of H_{α} such that $h(E_{\alpha}) = F_{\alpha}$,
- if $\gamma < \alpha$, $D_{\alpha} \setminus D_{\gamma}$ is a dense subset of Q contained in $s_{\alpha} \setminus s_{\gamma}$.

6 if $\gamma < \alpha$, then H_{γ} is a subgroup of H_{α} .

- **1** D_{α} is a countable dense subset of s_{α} , and $D_{\alpha} \cap K_{\alpha} \neq \emptyset$,
- There exists an ordinal $f(\alpha) < \omega_1$ such that
 $B(Q) \setminus A^{\infty}_{f(\alpha)} \subseteq B_{\alpha}$,
- $\ \, {\bf 0} \ \, D_{\alpha}, \ \, s_{\alpha} \ \, {\rm and} \ \, B_{\alpha} \ \, {\rm are \ \, invariant \ \, under \ \, } H_{\alpha},$
- if $E_{\alpha} \cup F_{\alpha} \subseteq D_{\alpha}$, and $D_{\alpha} \setminus (E_{\alpha} \cup F_{\alpha})$ is dense, then there exists an element h of H_{α} such that $h(E_{\alpha}) = F_{\alpha}$,
- if $\gamma < \alpha$, $D_{\alpha} \setminus D_{\gamma}$ is a dense subset of Q contained in $s_{\alpha} \setminus s_{\gamma}$.

- 6 if $\gamma < \alpha$, then H_{γ} is a subgroup of H_{α} .
 - Then $D = \bigcup_{\alpha < \omega_1} D_{\alpha}$ is the example we are looking for.

The third question

Question

Is there, assuming CH, a connected meager CDH-space in the plane?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The third question

Question

Is there, assuming CH, a connected meager CDH-space in the plane?

Question

Is it consistent with ZFC that there is a connected $\lambda\text{-set}$ yet there is no connected meager CDH-space?

The fourth question

A space X is called Strongly Locally Homogeneous
(abbreviated: SLH) if it has an open base B such that for all
B ∈ B and x, y ∈ B there is a homeomorphism f: X → X
such that f(x) = y and f(z) = z for every z ∉ B.

The fourth question

- A space X is called Strongly Locally Homogeneous (abbreviated: SLH) if it has an open base B such that for all B ∈ B and x, y ∈ B there is a homeomorphism f: X → X such that f(x) = y and f(z) = z for every z ∉ B.
- (Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

The fourth question

- A space X is called Strongly Locally Homogeneous (abbreviated: SLH) if it has an open base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f: X \to X$ such that f(x) = y and f(z) = z for every $z \notin B$.
- (Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

Theorem (Kennedy, 1984)

A 2-homogeneous continuum X must be SLH, provided that X admits a nontrivial homeomorphism that is the identity on some nonempty open set.
The fourth question

- A space X is called Strongly Locally Homogeneous (abbreviated: SLH) if it has an open base B such that for all B ∈ B and x, y ∈ B there is a homeomorphism f: X → X such that f(x) = y and f(z) = z for every z ∉ B.
- (Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

Theorem (Kennedy, 1984)

A 2-homogeneous continuum X must be SLH, provided that X admits a nontrivial homeomorphism that is the identity on some nonempty open set.

• Observe that for compact spaces, SLH \Rightarrow CDH (Bessaga and Pełczyński).

The fourth question

- A space X is called Strongly Locally Homogeneous
 (abbreviated: SLH) if it has an open base B such that for all
 B∈B and x, y∈B there is a homeomorphism f: X → X
 such that f(x) = y and f(z) = z for every z ∉ B.
- (Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

Theorem (Kennedy, 1984)

A 2-homogeneous continuum X must be SLH, provided that X admits a nontrivial homeomorphism that is the identity on some nonempty open set.

- Observe that for compact spaces, SLH \Rightarrow CDH (Bessaga and Pełczyński).
- CDH and connected \Rightarrow *n*-homogeneous for every *n* (vM).

The fourth question

- A space X is called Strongly Locally Homogeneous (abbreviated: SLH) if it has an open base \mathcal{B} such that for all $B \in \mathcal{B}$ and $x, y \in B$ there is a homeomorphism $f: X \to X$ such that f(x) = y and f(z) = z for every $z \notin B$.
- (Bessaga and Pełczyński, 1970) Every Polish SLH-space is CDH.

Theorem (Kennedy, 1984)

A 2-homogeneous continuum X must be SLH, provided that X admits a nontrivial homeomorphism that is the identity on some nonempty open set.

- Observe that for compact spaces, SLH \Rightarrow CDH (Bessaga and Pełczyński).
- CDH and connected \Rightarrow *n*-homogeneous for every *n* (vM).
- Compact + 2-homogeneous + ∃ a special homeomorphism ⇒
 SLH (Kennedy).

The fourth question

• Hence for continua admitting such a homeomorphism we have: SLH ⇔ 2-homogeneous ⇔ CDH.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Hence for continua admitting such a homeomorphism we have: SLH ⇔ 2-homogeneous ⇔ CDH.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Does every 2-homogeneous continuum admit such a homeomorphism?

The fourth question

 Hence for continua admitting such a homeomorphism we have: SLH ⇔ 2-homogeneous ⇔ CDH.

Question

Does every 2-homogeneous continuum admit such a homeomorphism?

• Compactness is essential in this problem.

Theorem (vM, 2005)

There is a connected, Polish, CDH-space X that is not SLH. In fact, a homeomorphism on X that is the identity on some nonempty open subset of X must be the identity on all of X.

• Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.

• Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Are there in ZFC compact CDH-spaces that are not metrizable? • Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Are there in ZFC compact CDH-spaces that are not metrizable?

Theorem (Steprans and Zhou, 1988)

```
2^{\kappa} is CDH for every \kappa < \mathfrak{p}.
```

- Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.
- Are there in ZFC compact CDH-spaces that are not metrizable?

Theorem (Steprans and Zhou, 1988)

 2^{κ} is CDH for every $\kappa < \mathfrak{p}$.

• Here $\mathfrak{p} = \min\{|\mathcal{F}| : \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip which has no infinite pseudo-intersection}\}.$

- Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.
- Are there in ZFC compact CDH-spaces that are not metrizable?

Theorem (Steprans and Zhou, 1988)

 2^{κ} is CDH for every $\kappa < \mathfrak{p}$.

• Here $\mathfrak{p} = \min\{|\mathcal{F}| : \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip which has no infinite pseudo-intersection}\}.$

• Under Martin's Axiom, abbreviated MA, $\mathfrak{p} = \mathfrak{c}$.

- Now we leave the separable metrizable world, from now on all spaces under discussion are *Tychonoff*.
- Are there in ZFC compact CDH-spaces that are not metrizable?

Theorem (Steprans and Zhou, 1988)

 2^{κ} is CDH for every $\kappa < \mathfrak{p}$.

- Here $\mathfrak{p} = \min\{|\mathcal{F}| : \mathcal{F} \text{ is a subfamily of } [\omega]^{\omega} \text{ with the sfip which has no infinite pseudo-intersection}\}.$
- Under Martin's Axiom, abbreviated MA, $\mathfrak{p} = \mathfrak{c}$.

```
Corollary (Steprans and Zhou, 1988)
Under MA+\negCH, 2^{\omega_1} is CDH.
```

Theorem

 (Arhangel'skii and vM, 2013) Under CH, there is a compact CDH-space of uncountable weight. In fact, it is both hereditarily Lindelöf and hereditarily separable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

- (Arhangel'skii and vM, 2013) Under CH, there is a compact CDH-space of uncountable weight. In fact, it is both hereditarily Lindelöf and hereditarily separable.
- (Arhangel'skii and νM, 2013) Under c < 2^{ω1}, every compact CDH-space is first-countable.

Theorem

- (Arhangel'skii and vM, 2013) Under CH, there is a compact CDH-space of uncountable weight. In fact, it is both hereditarily Lindelöf and hereditarily separable.
- (Arhangel'skii and νM, 2013) Under c < 2^{ω1}, every compact CDH-space is first-countable.
- (Arhangel'skii and vM, 2013) The Alexandroff-Urysohn double is not CDH.

Theorem

- (Arhangel'skii and vM, 2013) Under CH, there is a compact CDH-space of uncountable weight. In fact, it is both hereditarily Lindelöf and hereditarily separable.
- (Arhangel'skii and νM, 2013) Under c < 2^{ω1}, every compact CDH-space is first-countable.
- (Arhangel'skii and vM, 2013) The Alexandroff-Urysohn double is not CDH.

Theorem (Hernández-Gutiérrez, 2013)

The Alexandroff-Urysohn double has c types of countable dense sets.

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

The double arrow space over a saturated λ' -set Y is a compact CDH-space of weight |A|.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

The double arrow space over a saturated λ' -set Y is a compact CDH-space of weight |A|.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary

There exists a linearly ordered, compact, zero-dimensional CDH-space of weight ω_1 .

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

The double arrow space over a saturated λ' -set Y is a compact CDH-space of weight |A|.

Corollary

There exists a linearly ordered, compact, zero-dimensional CDH-space of weight ω_1 .

Question

Is there a compact CDH-space of weight \mathfrak{c} in ZFC?

Theorem (Hernández-Gutiérrez, Hrušák and vM, 2014)

The double arrow space over a saturated λ' -set Y is a compact CDH-space of weight |A|.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Corollary

There exists a linearly ordered, compact, zero-dimensional CDH-space of weight ω_1 .

Question

Is there a compact CDH-space of weight \mathfrak{c} in ZFC?

Question

Is there a non-metrizable CDH-continuum?

The fifth question

THANK YOU FOR YOUR ATTENTION!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで