There are no large sets which can be translated away from every Marczewski null set

> Wolfgang Wohofsky joint work with Jörg Brendle

> > Universität Hamburg

wolfgang.wohofsky@gmx.at

TOPOSYM 2016 Prague, Czech Republic

26th July 2016

(ZFC) No set of reals of size continuum is " s_0 -shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\iff \forall p \in \mathbb{S}$$
 $\exists q \leq p \qquad [q] \cap Y = \emptyset$

Definition

A set $X \subseteq 2^{\omega}$ is s_0 -shiftable : $\iff \forall Y \in s_0$ $\iff \forall Y \in s_0 \quad \exists t \in 2^{\omega} \quad (X + t) \cap Y = \emptyset.$

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\implies \forall p \in \mathbb{S}$$
 $\exists q \leq p \quad [q] \cap Y = \emptyset$

Definition

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\iff orall p \in \mathbb{S}$$
 $\exists q \leq p \qquad [q] \cap Y = \emptyset$

Definition

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

イロト イヨト イヨト

(ZFC) No set of reals of size continuum is " s_0 -shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\iff orall p \in \mathbb{S}$$
 $\exists q \leq p \qquad [q] \cap Y = \emptyset$

Definition

A set $X \subseteq 2^{\omega}$ is s_0 -shiftable : $\iff \forall Y \in s_0$ $\iff \forall Y \in s_0$ $\exists t \in 2^{\omega}$ $(X + t) \cap Y = \emptyset$.

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

(ZFC) No set of reals of size continuum is " s_0 -shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\iff \forall p \in \mathbb{S}$$
 $\exists q \leq p \qquad [q] \cap Y = \emptyset$

Definition

A set $X \subseteq 2^{\omega}$ is s_0 -shiftable : $\iff \forall Y \in s_0$ $\iff \forall Y \in s_0 \quad \exists t \in 2^{\omega} \quad (X + t) \cap Y = \emptyset.$

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

イロト 不得下 イヨト イヨト 二日

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Definition

A set $Y \subseteq 2^{\omega}$ is Marczewski null $(Y \in s_0)$: \iff for any perfect set $P \subseteq 2^{\omega}$ there is a perfect set $Q \subseteq P$ with $Q \cap Y = \emptyset$.

$$\iff \forall p \in \mathbb{S}$$
 $\exists q \leq p \qquad [q] \cap Y = \emptyset$

Definition

A set $X \subseteq 2^{\omega}$ is s_0 -shiftable : $\iff \forall Y \in s_0$ $\iff \forall Y \in s_0 \quad \exists t \in 2^{\omega} \quad (X + t) \cap Y = \emptyset.$

Theorem (Brendle-W., 2015, restated more explicitly)

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in s_0$ with $X + Y = 2^{\omega}$.

イロン 不聞と 不同と 不同と

For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero if for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero if for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \le \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$. For an interval $I \subseteq \mathbb{R}$, let $\lambda(I)$ denote its length.

Definition (well-known)

A set $X \subseteq \mathbb{R}$ is (Lebesgue) measure zero if for each positive real number $\varepsilon > 0$ there is a sequence of intervals $(I_n)_{n < \omega}$ of total length $\sum_{n < \omega} \lambda(I_n) \le \varepsilon$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

Definition (Borel; 1919)

A set $X \subseteq \mathbb{R}$ is strong measure zero if for each sequence of positive real numbers $(\varepsilon_n)_{n < \omega}$ there is a sequence of intervals $(I_n)_{n < \omega}$ with $\forall n \in \omega \ \lambda(I_n) \le \varepsilon_n$ such that $X \subseteq \bigcup_{n < \omega} I_n$.

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 \qquad \sigma$ -ideal of Marczewski null sets

only the countable sets are \mathcal{M} -shiftable \iff : BC only the countable sets are \mathcal{N} -shiftable \iff : dBC only the countable sets are s_0 -shiftable \iff : MBC

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 \qquad \sigma$ -ideal of Marczewski null sets

only the countable sets are \mathcal{M} -shiftable \iff :BConly the countable sets are \mathcal{N} -shiftable \iff :dBConly the countable sets are s_0 -shiftable \iff :MBC

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 \qquad \sigma$ -ideal of Marczewski null sets
 - \mathcal{M} -shiftable \iff strong measure zero \mathcal{N} -shiftable \iff : strongly meager s_0 -shiftable

only the countable sets are \mathcal{M} -shiftable \iff :BConly the countable sets are \mathcal{N} -shiftable \iff :dBConly the countable sets are s_0 -shiftable \iff :MBC

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 \qquad \sigma$ -ideal of Marczewski null sets

$\mathcal{M} ext{-shiftable}$	\iff	strong measure zero
$\mathcal{N} ext{-shiftable}$	\iff :	strongly meager
s_0 -shiftable		

only the countable sets are \mathcal{M} -shiftable \iff : BConly the countable sets are \mathcal{N} -shiftable \iff : dBConly the countable sets are s_0 -shiftable $\stackrel{\text{Thilo Weinert}}{\iff}$: MBC

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 = \sigma$ -ideal of Marczewski null sets
 - \mathcal{M} -shiftable \iff strong measure zero \mathcal{N} -shiftable \iff : strongly meager s_0 -shiftable

only the countable sets are \mathcal{M} -shiftable	⇐⇒:	BC
only the countable sets are $\mathcal N\text{-shiftable}$	\iff :	dBC
only the countable sets are s_0 -shiftable		MBC

- \mathcal{M} σ -ideal of meager sets
- \mathcal{N} σ -ideal of Lebesgue measure zero ("null") sets
- $s_0 \qquad \sigma$ -ideal of Marczewski null sets

$\mathcal{M} ext{-shiftable}$	\iff	strong measure zero
$\mathcal{N} ext{-shiftable}$	\iff :	strongly meager
s_0 -shiftable		

only the countable sets are \mathcal{M} -shiftable	⇐⇒:	BC
only the countable sets are \mathcal{N} -shiftable	\iff :	dBC
only the countable sets are $\boldsymbol{s_0}\text{-shiftable}$	$\stackrel{\text{Thilo Weinert}}{\Longleftrightarrow}:$	MBC

3

・ロト ・聞ト ・ヨト ・ヨト

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Corollary

CH implies MBC (i.e., s_0 -shiftables = $[2^{\omega}]^{\leq \aleph_0}$).

So what about larger continuum?

Theorem (Brendle-W., 2015)

In the Cohen model, MBC holds.

- 本間 と 本語 と 本語

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Corollary

CH implies MBC (i.e., s_0 -shiftables = $[2^{\omega}]^{\leq \aleph_0}$).

So what about larger continuum?

Theorem (Brendle-W., 2015)

In the Cohen model, MBC holds.

(ZFC) No set of reals of size continuum is "s₀-shiftable".

Corollary

CH implies MBC (i.e.,
$$s_0$$
-shiftables = $[2^{\omega}]^{\leq \aleph_0}$).

So what about larger continuum?

Theorem (Brendle-W., 2015)

In the Cohen model, MBC holds.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.
- By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.
- By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.
- By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.
- By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

Sketch of proof.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.

By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Proposition

Let $Y \subseteq 2^{\omega}$ with $|Y| < \mathfrak{c}$. Then $Y \in \mathfrak{s}_0$.

Why? Perfect sets can be split into "perfectly many" disjoint perfect sets.

Theorem

There is a set $Y \in s_0$ with $|Y| = \mathfrak{c}$.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq \mathbb{S}$ in Sacks forcing.
- In particular, $|[q_{\alpha}] \cap [q_{\beta}]| \leq \aleph_0$ for any $\alpha \neq \beta$.
- So (for each $\alpha < \mathfrak{c}$) we can pick $y_{\alpha} \in [q_{\alpha}] \setminus \bigcup_{\beta < \alpha} [q_{\beta}]$.
- By maximality of the antichain, and the proposition above,
 Y := {y_α : α < c} is as desired.

Let $X \subseteq 2^{\omega}$, and let $D \subseteq S$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*.

Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., X is not s_0 -shiftable).

Sketch of proof.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq D$ (within the dense set D).
- Fix an enumeration $2^{\omega} = \{z_{\alpha} : \alpha < \mathfrak{c}\}.$
- By our assumptions, we can pick $x_{\alpha} \in X \setminus \bigcup_{\beta < \alpha} (z_{\alpha} + [q_{\beta}])$.
- Let $y_{\alpha} := x_{\alpha} + z_{\alpha}$. And let $Y := \{y_{\alpha} : \alpha < \mathfrak{c}\}.$

• Then

•
$$X + Y = 2^{\omega}$$
, and

•
$$Y \in s_0$$
.

Let $X \subseteq 2^{\omega}$, and let $D \subseteq S$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*.

Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., X is not s_0 -shiftable).

Sketch of proof.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq D$ (within the dense set D).
- Fix an enumeration $2^{\omega} = \{z_{\alpha} : \alpha < \mathfrak{c}\}.$
- By our assumptions, we can pick $x_{\alpha} \in X \setminus \bigcup_{\beta < \alpha} (z_{\alpha} + [q_{\beta}])$.
- Let $y_{\alpha} := x_{\alpha} + z_{\alpha}$. And let $Y := \{y_{\alpha} : \alpha < \mathfrak{c}\}$.

• Then

•
$$X + Y = 2^{\omega}$$
, and

•
$$Y \in s_0$$
.

Let $X \subseteq 2^{\omega}$, and let $D \subseteq S$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*.

Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., X is not s_0 -shiftable).

Sketch of proof.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq D$ (within the dense set D).
- Fix an enumeration $2^{\omega} = \{z_{\alpha} : \alpha < \mathfrak{c}\}.$
- By our assumptions, we can pick $x_{\alpha} \in X \setminus \bigcup_{\beta < \alpha} (z_{\alpha} + [q_{\beta}])$.
- Let $y_{\alpha} := x_{\alpha} + z_{\alpha}$. And let $Y := \{y_{\alpha} : \alpha < \mathfrak{c}\}.$

• Then

•
$$X + Y = 2^{\omega}$$
, and

Let $X \subseteq 2^{\omega}$, and let $D \subseteq S$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*.

Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., X is not s_0 -shiftable).

Sketch of proof.

- Fix a maximal antichain $\{q_{\alpha} : \alpha < \mathfrak{c}\} \subseteq D$ (within the dense set D).
- Fix an enumeration $2^{\omega} = \{z_{\alpha} : \alpha < \mathfrak{c}\}.$
- By our assumptions, we can pick $x_{\alpha} \in X \setminus \bigcup_{\beta < \alpha} (z_{\alpha} + [q_{\beta}])$.
- Let $y_{\alpha} := x_{\alpha} + z_{\alpha}$. And let $Y := \{y_{\alpha} : \alpha < \mathfrak{c}\}.$

Then

•
$$X + Y = 2^{\omega}$$
, and

$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p$ $[q] \cap Y = \emptyset$

 $\red{eq: point of the second second$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

 $Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p$ $[q] \cap Y = \emptyset$

 $???? \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

 $Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p \qquad [q] \cap Y = \emptyset$

 $Y = \emptyset \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset$

$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \le p \qquad [q] \cap Y = \emptyset$$
$$Y = \emptyset \iff \forall p \in \mathbb{S} \quad \exists q \le p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset$$
$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \le p \qquad [[q] \cap Y] < \mathfrak{c}$$
$$Y \text{ is } \ldots \iff \forall p \in \mathbb{S} \quad \exists q \le p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \mathfrak{c}$$

э

æ

• • • • • • • •

$$\begin{array}{ll} Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p & [q] \cap Y = \emptyset \\ Y = \emptyset \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset \\ Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p & |[q] \cap Y| < \mathfrak{c} \\ Y \text{ is } \ldots \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \mathfrak{c} \end{array}$$

э

æ

• • • • • • • •

$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \le p \qquad [q] \cap Y = \emptyset$$
$$Y = \emptyset \iff \forall p \in \mathbb{S} \quad \exists q \le p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset$$
$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \le p \qquad |[q] \cap Y| < \mathfrak{c}$$
$$Y \text{ is } \ldots \iff \forall p \in \mathbb{S} \quad \exists q \le p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \mathfrak{c}$$

Definition

A set $Y \subseteq 2^{\omega}$ is $<\kappa$ -transitively Marczewski null ($<\kappa$ -trans- s_0) $\iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \kappa.$

A set $Y \subseteq 2^{\omega}$ is $\leq \kappa$ -transitively Marczewski null ($\leq \kappa$ -trans- s_0) $\iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| \leq \kappa.$

$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p \qquad [q] \cap Y = \emptyset$$
$$Y = \emptyset \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad ([q] + t) \cap Y = \emptyset$$
$$Y \in s_0 \iff \forall p \in \mathbb{S} \quad \exists q \leq p \qquad |[q] \cap Y| < \mathfrak{c}$$
$$Y \text{ is } \ldots \iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \mathfrak{c}$$
Definition
$$A \text{ set } Y \subseteq 2^{\omega} \text{ is } \leq \kappa \text{-transitively Marczewski null } (\leq \kappa \text{-trans-so})$$

 $\iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| < \kappa.$

A set $Y \subseteq 2^{\omega}$ is $\leq \kappa$ -transitively Marczewski null ($\leq \kappa$ -trans- s_0) $\iff \forall p \in \mathbb{S} \quad \exists q \leq p \quad \forall t \in 2^{\omega} \quad |([q] + t) \cap Y| \leq \kappa.$
Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: \mathcal{M} -Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: \mathcal{M} -Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: \mathcal{M} -Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: \mathcal{M} -Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: \mathcal{M} -Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: M-Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: M-Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Recall the notion of Luzin set (we could say: M-Luzin set):

X is (generalized) Luzin if

 $(|X| = \mathfrak{c} \text{ and})$ its intersection with any meager set is of size less than \mathfrak{c} .

So the above lemma says:

There are no "*s*₀-Luzin sets" (in ZFC).

Proof.

• 1st case: $X \in s_0$, and we are finished :-)

Lemma (from previous slide)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Main Lemma

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}$ -trans- \mathfrak{s}_0 .

Outline of the proof:

• W.I.o.g. $X \in s_0$ (by the lemma above).

- 4 回 ト 4 三 ト 4 三

Lemma (from previous slide)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Main Lemma

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}$ -trans- \mathfrak{s}_0 .

Outline of the proof:

• W.I.o.g. $X \in s_0$ (by the lemma above).

・ 何 ト ・ ヨ ト ・ ヨ ト

Lemma (from previous slide)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $X' \in \mathfrak{s}_0$.

Main Lemma

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

Outline of the proof:

• W.I.o.g. $X \in s_0$ (by the lemma above).

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}s_0$.

• W.I.o.g. $X \in s_0$ (by the lemma above).

- $p \in \mathbb{S}$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in \mathbb{S}$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} |([r] + t) \cap X| < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in \mathbb{S}$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in \mathbb{S}$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in \mathbb{S}$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} |([r] + t) \cap X| < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in \mathbb{S}$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in \mathbb{S}$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} |([r] + t) \cap X| < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} |([r] + t) \cap X| < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = c$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in \mathbb{S}$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is <c-trans-s₀, i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} |([r] + t) \cap X| < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in \mathbb{S}$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in \mathbb{S}$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ▶ Hence, X is < c-trans- s_0 , i.e., $\forall q \in S \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < c$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ▶ Hence, X is < c-trans- s_0 , i.e., $\forall q \in S \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < c$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ▶ Hence, X is < c-trans- s_0 , i.e., $\forall q \in S \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < c$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Image: A mathematical states and a mathem

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = \mathfrak{c}$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since p is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Image: A mathematical states and a mathem

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}\text{-trans-}\mathfrak{s}_0$.

- W.I.o.g. $X \in s_0$ (by the lemma above).
- $p \in S$ is skew if there is at most one splitting node on each level.
- We distinguish two cases:
- 1st Case: For each skew $p \in S$: $|[p] \cap X| < \mathfrak{c}$.
 - The collection of skew trees is dense and translation-invariant.
 - ► Hence, X is $< \mathfrak{c}$ -trans- s_0 , i.e., $\forall q \in \mathbb{S} \exists r \leq q \forall t \in 2^{\omega} | ([r] + t) \cap X | < \mathfrak{c}$.
- 2nd Case: Fix a skew tree $p \in S$ with $|[p] \cap X| = c$.
 - Define $X' := [p] \cap X$. (So $|X'| = \mathfrak{c}$.)
 - ▶ Then X' is <c-trans- s_0 (actually even X' is $\leq \aleph_0$ -trans- s_0). Why?
 - Since *p* is skew, $t \neq 0 \Rightarrow |[p] \cap [p+t]| \leq 2$.
 - Therefore, $\{p + t : t \in 2^{\omega}\}$ is an antichain in S.
 - ▶ Given $q \in S$, we now use $X' \in s_0$ to find $r \leq q$, and finish the proof :-))

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}-\mathsf{trans}-s_0$.

$\forall q \in \mathbb{S} \exists r \leq q \, \forall t \in 2^{\omega} \, |([r] + t) \cap X'| < \mathfrak{c}.$

Lemma

Let $X \subseteq 2^{\omega}$, and let $D \subseteq S$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*.

Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., X is **not** s_0 -shiftable).

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

Main Lemma (more complicated, but not stronger!)

Assume \mathfrak{c} is singular. Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$.

Then there is $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $\mu < \mathfrak{c}$ such that X' is $\leq \mu$ -trans- s_0 .

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}-\mathfrak{trans}-\mathfrak{s}_0$.

$$\forall q \in \mathbb{S} \exists r \leq q \, \forall t \in 2^{\omega} \left| ([r] + t) \cap X' \right| < \mathfrak{c}.$$

Lemma

Let $X \subseteq 2^{\omega}$, and let $D \subseteq \mathbb{S}$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*. Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., *X* is not s_0 -shiftable).

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in \mathfrak{s}_0$ with $X + Y = 2^{\omega}$.

Main Lemma (more complicated, but not stronger!)

Assume \mathfrak{c} is singular. Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$.

Then there is $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $\mu < \mathfrak{c}$ such that X' is $\leq \mu$ -trans- s_0 .

(日) (同) (三) (三)

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}-\mathfrak{trans}-\mathfrak{s}_0$.

$$\forall q \in \mathbb{S} \exists r \leq q \, \forall t \in 2^{\omega} \, |([r] + t) \cap X'| < \mathfrak{c}.$$

Lemma

Let $X \subseteq 2^{\omega}$, and let $D \subseteq \mathbb{S}$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*. Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., *X* is not s_0 -shiftable).

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in s_0$ with $X + Y = 2^{\omega}$.

Main Lemma (more complicated, but not stronger!)

Assume \mathfrak{c} is singular. Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$.

Then there is $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $\mu < \mathfrak{c}$ such that X' is $\leq \mu$ -trans- s_0 .

< ロト < 同ト < ヨト < ヨト

Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there exists an $X' \subseteq X$ with $|X'| = \mathfrak{c}$ such that X' is $\langle \mathfrak{c}-\mathfrak{trans}-\mathfrak{s}_0$.

$$\forall q \in \mathbb{S} \exists r \leq q \, \forall t \in 2^{\omega} \left| ([r] + t) \cap X' \right| < \mathfrak{c}.$$

Lemma

Let $X \subseteq 2^{\omega}$, and let $D \subseteq \mathbb{S}$ be a dense and translation-invariant set of Sacks trees with the property that any less than *c* many (of its bodies) do not cover *X*. Then there is a $Y \in s_0$ such that $X + Y = 2^{\omega}$ (i.e., *X* is not s_0 -shiftable).

(ZFC) Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$. Then there is a $Y \in s_0$ with $X + Y = 2^{\omega}$.

Main Lemma (more complicated, but not stronger!)

Assume \mathfrak{c} is singular. Let $X \subseteq 2^{\omega}$ with $|X| = \mathfrak{c}$.

Then there is $X' \subseteq X$ with $|X'| = \mathfrak{c}$ and $\mu < \mathfrak{c}$ such that X' is $\leq \mu$ -trans- s_0 .

< ロ > < 同 > < 三 > < 三

Definition

 $Z \subseteq G$ is skew if for all $x, y, z, w \in Z$ with $x \neq y, z \neq w$, and $\{x, y\} \neq \{z, w\}$, we have $x - y \neq z - w$.

Proposition

Assume $Z\subseteq G$ is skew and $t\in G$ with t
eq 0. Then $|Z\cap (Z+t)|\leq 2$.

Proposition

Being skew is translation-invariant.

Lemma

The skew perfect sets are **dense** in the perfect sets, i.e., for each perfect set $P \subseteq G$ there is a skew perfect set $Q \subseteq P$.

(日) (周) (三) (三)

Definition

 $Z \subseteq G$ is skew if for all $x, y, z, w \in Z$ with $x \neq y, z \neq w$, and $\{x, y\} \neq \{z, w\}$, we have $x - y \neq z - w$.

Proposition

Assume $Z \subseteq G$ is skew and $t \in G$ with $t \neq 0$. Then $|Z \cap (Z + t)| \leq 2$.

Proposition

Being skew is translation-invariant.

Lemma

The skew perfect sets are **dense** in the perfect sets, i.e., for each perfect set $P \subseteq G$ there is a skew perfect set $Q \subseteq P$.

イロト イポト イヨト イヨト

Definition

 $Z \subseteq G$ is skew if for all $x, y, z, w \in Z$ with $x \neq y, z \neq w$, and $\{x, y\} \neq \{z, w\}$, we have $x - y \neq z - w$.

Proposition

Assume $Z \subseteq G$ is skew and $t \in G$ with $t \neq 0$. Then $|Z \cap (Z + t)| \leq 2$.

Proposition

Being skew is translation-invariant.

Lemma

The skew perfect sets are **dense** in the perfect sets, i.e., for each perfect set $P \subseteq G$ there is a skew perfect set $Q \subseteq P$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Definition

 $Z \subseteq G$ is skew if for all $x, y, z, w \in Z$ with $x \neq y, z \neq w$, and $\{x, y\} \neq \{z, w\}$, we have $x - y \neq z - w$.

Proposition

Assume $Z \subseteq G$ is skew and $t \in G$ with $t \neq 0$. Then $|Z \cap (Z + t)| \leq 2$.

Proposition

Being skew is translation-invariant.

Lemma

The skew perfect sets are dense in the perfect sets,

i.e., for each perfect set $P \subseteq G$ there is a skew perfect set $Q \subseteq P$.

Wolfgang Wohofsky (Universität Hamburg)

No so-shiftable sets

TOPOSYM 2016 17 / 21

(日) (同) (三) (三)

shortly before previous TOPOSYM: 2011 Winter School in Hejnice

イロト イヨト イヨト イヨト

shortly before previous TOPOSYM: 2011 Winter School in Hejnice

イロト イヨト イヨト

shortly before previous TOPOSYM: 2011 Winter School in Hejnice

shortly before previous TOPOSYM: 2011 Winter School in Hejnice