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Basic notation and concepts

ZF– the Zermelo-Fraenkel system of axioms.
CC(fin)– the product of an arbitrary non-empty countable
family of non-empty finite sets is non-empty.
2J = {0, 1}J–Cantor cube.
CB(X )– the compact bornology of a topological space X (i.e.
the collection of all subsets of compact sets in X ).

Definition
The bornology CB(X ) is quasi-metrizable if X admits a
compatible quasi-metric d such that CB(X ) is the collection of
all d-bounded sets where a set A ⊆ X is called d-bounded if
A = ∅ or there exist x ∈ X and a real number r > 0 such that

A ⊆ Bd (x , r) = {y ∈ X : d(x , y) < r}.



The main theorem

The following conditions are all equivalent in every model for ZF:

(i) There exist metrizable Cantor cubes that are non-compact.
(ii) There exists a metrizable Cantor cube such that its compact

bornology is not quasi-metrizable.
(iii) CC(fin) fails.

Corollary
In Cohen’s Second Model (model M7 in: P. Howard and J. E.
Rubin, “Consequences of the Axiom of Choice”, Math. Surveys and
Monographs 59, Amer. Math. Soc., Providence (RI) 1998), there
exist metrizable Cantor cubes that are non-compact. The compact
bornologies of such Cantor cubes are not quasi-metrizable.



A basic (quasi)-metrization theorem for products

Notation: If ρ is a (quasi)-metric on X , then τ(ρ) is the topology
on X induced by ρ.

Theorem (Wajch, 2015)
Suppose that J is a countable union of non-empty finite sets. Let
{(Xj , τj) : j ∈ J} be a collection of (quasi)-metrizable spaces.
Suppose that there exists a collection {dj : j ∈ J} of
(quasi)-metrics such that τj = τ(dj) for each j ∈ J . Then it holds
true in ZF that the product

∏
j∈J(Xj , τj) is (quasi)-metrizable.

Corollary (Wajch, 2015)
It holds true in ZF that the Cantor cube 2J is metrizable if and
only if J is a countable union of finite sets.



Non-compact metrizable Cantor cubes

Assumption: (Xn)n∈ω is a sequence of non-empty finite discrete
spaces.

Theorem (A)
If either
(A.1)

∏
n∈ω Xn is non-compact

or
(A.2)

∏
n∈ω Xn = ∅,

then the Cantor cube 2
S

n∈ω(Xn×{n}) is non-compact.



Proof to Theorem (A)
(A.1) Suppose that

∏
n∈ω Xn is non-compact. For each n ∈ ω and

each x ∈ Xn, let fn : Xn → 2xn be defined by: [fn(x)](y) = 1 if
x = y , while [fn(x)](y) = 0 if y ∈ Xn \ {x}. Let

f =
∏
n∈ω

fn :
∏
n∈ω

Xn →
∏
n∈ω

2Xn .

Then f is a homeomorphic embedding and Y = f (
∏

n∈ω Xn) is
closed in

∏
n∈ω 2Xn . Now, it suffices to notice that

∏
n∈ω 2Xn and

2
S

n∈ω(Xn×{n}) are homeomorphic.

(A.2) Suppose that
∏

n∈ω Xn = ∅. Take an element ∞ /∈
⋃

n∈ω Xn
and, for each n ∈ ω, put Yn = Xn ∪ {∞} with its discrete
topology. Then

∏
n∈ω Yn is non-compact. It follows from (A.1) that

2
S

n∈ω(Yn×{n}) is non-compact. Notice that 2
S

n∈ω(Yn×{n}) is
homeomorphic with [2

S
n∈ω(Xn×{n})]× 2ω . Knowing that 2ω is

compact and that finite products of compact spaces are compact,
we deduce that 2

S
n∈ω(Xn×{n}) is non-compact.



Compact bornologies of metrizable Cantor cubes
Assumption: Let J be an uncountable set which is a countable
union of pairwise disjont finite sets.

Theorem (B)
The Cantor cube 2J is both metrizable and non-compact, while
the bornology CB(2J) is not quasi-metrizable.

Proof.
I have already shown that 2J is both metrizable and non-compact.
Suppose that CB(2J) is quasi-metrizable. This, together with a
theorem of Piękosz and Wajch, published in our co-authored
article “Quasi-metrizability of bornological biuniverses in ZF” (J.
Convex Analysis 22 (2015)), implies that there exists a non-empty
open set V ∈ CB(2J). There is a finite set K ⊆ J such that 2J\K

is homeomorphic with a compact subspace of V . By Theorem (A),
the Cantor cube 2J\K is non-compact. The contradiction obtained
shows that CB(2J) cannot be quasi-metrizable.



An additional remark on not second-countable
metrizable Cantor cubes

Let k be a fixed positive integer. Suppose that (Xn)n∈ω is a
sequence of non-empty sets such that the set J =

⋃
n∈ω Xn is

uncountable and each Xn has at most k elements. Then 2J is
non-compact. Of course, 2J is metrizable and not
second-countable.

Corollary
Let k ∈ ω \ 1. It holds true in ZF that, up to a homeomorphism,
2ω is the unique compact Cantor cube 2J such that J is an infinite
set which is a countable union of sets such that each of the sets
has at most k-elements.



Questions

(I) If, in a model M for ZF, a set J is both uncountable and a
countable union of finite sets, must the Cantor cube 2J be
non-compact in M?

(II) Is it possible to find easily a model M for ZF such that
CC(n) holds in M for each n ∈ ω \ 1 and, simultaneously,
CC(fin) fails in M?



Thank you for your attention very much!

Special thanks to Kyriakos Keremedis for his helpful
discussion with me through ResearchGate.


	
	
	
	
	
	
	
	

