Metrizable Cantor cubes that fail to be compact in some models for ZF

Eliza Wajch

Siedlce University of Natural Sciences and Humanities Siedlce, Poland

> Toposym, Prague July 25–29, 2016

Basic notation and concepts

ZF– the Zermelo-Fraenkel system of axioms.

CC(*fin*)– the product of an arbitrary non-empty countable family of non-empty finite sets is non-empty.

 $2^{J} = \{0, 1\}^{J}$ -Cantor cube.

CB(X) – the compact bornology of a topological space X (i.e. the collection of all subsets of compact sets in X).

Definition

The bornology CB(X) is quasi-metrizable if X admits a compatible quasi-metric d such that CB(X) is the collection of all d-bounded sets where a set $A \subseteq X$ is called d-bounded if $A = \emptyset$ or there exist $x \in X$ and a real number r > 0 such that

$$A \subseteq B_d(x,r) = \{y \in X : d(x,y) < r\}.$$

The main theorem

The following conditions are all equivalent in every model for **ZF**:

- (i) There exist metrizable Cantor cubes that are non-compact.
- (ii) There exists a metrizable Cantor cube such that its compact bornology is not quasi-metrizable.
- (iiii) **CC**(*fin*) fails.

Corollary

In Cohen's Second Model (model M7 in: P. Howard and J. E. Rubin, "Consequences of the Axiom of Choice", Math. Surveys and Monographs 59, Amer. Math. Soc., Providence (RI) 1998), there exist metrizable Cantor cubes that are non-compact. The compact bornologies of such Cantor cubes are not quasi-metrizable. A basic (quasi)-metrization theorem for products

Notation: If ρ is a (quasi)-metric on X, then $\tau(\rho)$ is the topology on X induced by ρ .

Theorem (Wajch, 2015)

Suppose that J is a countable union of non-empty finite sets. Let $\{(X_j, \tau_j) : j \in J\}$ be a collection of (quasi)-metrizable spaces. Suppose that there exists a collection $\{d_j : j \in J\}$ of (quasi)-metrics such that $\tau_j = \tau(d_j)$ for each $j \in J$. Then it holds true in **ZF** that the product $\prod_{i \in J} (X_j, \tau_j)$ is (quasi)-metrizable.

Corollary (Wajch, 2015)

It holds true in **ZF** that the Cantor cube 2^J is metrizable if and only if J is a countable union of finite sets.

Non-compact metrizable Cantor cubes

Assumption: $(X_n)_{n \in \omega}$ is a sequence of non-empty finite discrete spaces.

Theorem (A) If either (A.1) $\prod_{n \in \omega} X_n$ is non-compact or (A.2) $\prod_{n \in \omega} X_n = \emptyset$, then the Cantor cube $2^{\bigcup_{n \in \omega} (X_n \times \{n\})}$ is non-compact.

Proof to Theorem (A)

(A.1) Suppose that $\prod_{n \in \omega} X_n$ is non-compact. For each $n \in \omega$ and each $x \in X_n$, let $f_n : X_n \to 2^{x_n}$ be defined by: $[f_n(x)](y) = 1$ if x = y, while $[f_n(x)](y) = 0$ if $y \in X_n \setminus \{x\}$. Let

$$f = \prod_{n \in \omega} f_n : \prod_{n \in \omega} X_n \to \prod_{n \in \omega} 2^{X_n}.$$

Then *f* is a homeomorphic embedding and $Y = f(\prod_{n \in \omega} X_n)$ is closed in $\prod_{n \in \omega} 2^{X_n}$. Now, it suffices to notice that $\prod_{n \in \omega} 2^{X_n}$ and $2^{\bigcup_{n \in \omega} (X_n \times \{n\})}$ are homeomorphic.

(A.2) Suppose that $\prod_{n \in \omega} X_n = \emptyset$. Take an element $\infty \notin \bigcup_{n \in \omega} X_n$ and, for each $n \in \omega$, put $Y_n = X_n \cup \{\infty\}$ with its discrete topology. Then $\prod_{n \in \omega} Y_n$ is non-compact. It follows from (A.1) that $2\bigcup_{n \in \omega} (Y_n \times \{n\})$ is non-compact. Notice that $2\bigcup_{n \in \omega} (Y_n \times \{n\})$ is homeomorphic with $[2\bigcup_{n \in \omega} (X_n \times \{n\})] \times 2^{\omega}$. Knowing that 2^{ω} is compact and that finite products of compact spaces are compact, we deduce that $2\bigcup_{n \in \omega} (X_n \times \{n\})$ is non-compact.

Compact bornologies of metrizable Cantor cubes

Assumption: Let *J* be an uncountable set which is a countable union of pairwise disjont finite sets.

Theorem (B)

The Cantor cube 2^J is both metrizable and non-compact, while the bornology **CB** (2^J) is not quasi-metrizable.

Proof.

I have already shown that 2^J is both metrizable and non-compact. Suppose that $CB(2^J)$ is quasi-metrizable. This, together with a theorem of Piękosz and Wajch, published in our co-authored article "Quasi-metrizability of bornological biuniverses in ZF" (J. Convex Analysis 22 (2015)), implies that there exists a non-empty open set $V \in CB(2^J)$. There is a finite set $K \subseteq J$ such that $2^{J\setminus K}$ is homeomorphic with a compact subspace of V. By Theorem (A), the Cantor cube $2^{J\setminus K}$ is non-compact. The contradiction obtained shows that $CB(2^J)$ cannot be quasi-metrizable.

An additional remark on not second-countable metrizable Cantor cubes

Let *k* be a fixed positive integer. Suppose that $(X_n)_{n \in \omega}$ is a sequence of non-empty sets such that the set $J = \bigcup_{n \in \omega} X_n$ is uncountable and each X_n has at most *k* elements. Then 2^J is non-compact. Of course, 2^J is metrizable and not second-countable.

Corollary

Let $k \in \omega \setminus 1$. It holds true in **ZF** that, up to a homeomorphism, 2^{ω} is the unique compact Cantor cube 2^{J} such that J is an infinite set which is a countable union of sets such that each of the sets has at most k-elements.

Questions

- If, in a model M for ZF, a set J is both uncountable and a countable union of finite sets, must the Cantor cube 2^J be non-compact in M?
- (II) Is it possible to find easily a model M for ZF such that CC(n) holds in M for each $n \in \omega \setminus 1$ and, simultaneously, CC(fin) fails in M?

Thank you for your attention very much!

Special thanks to Kyriakos Keremedis for his helpful discussion with me through ResearchGate.