Base Tree Phenomenological Horizons

Peter Vojtas

Charles University Prague

now Dept. Software Engineering (logic programming, Datalog, database, web information extraction, user/customer preference acquisition/learning)

In my first life, upon a time, in the wonderland of set-theoretic topology...

Thanks to

- PhD advisor1 Petr Vopenka the man who was my role model phenomenology seminar
- PhD advisor2 Bohuslav Balcar a man who was my mathematical teacher, introduced me to problems, techniques, Prague traditions and contacts abroad
- Lev Bukovsky his seminar in Kosice was my safe heaven, hideout in uncertain times ...
- All my colleagues, students, coauthors, ...
- Charles University study of theoretical cybernetics whole time in Kosice lectured Turing machines, recursive functions, logic programming, ... this gave me later foundation and starting point to my second life activities

Outline of this talk

- Sources and Components motivations, tracks
 - from Balcar Pelant Simon Baire like approach on one side and
 - from Fichtengolz slow/faster converge/diverge series on the other
- How did it evolve (pure topology (co-absoluteness) series)
- The (ℓ^1, \leq^*) $(c_0^+ \setminus \ell^1, \geq^*)$ horizon and $(\bigcap \ell^{1+1/k}) \setminus \ell^1$ plateau
- $\text{RO}(c_0^+ \setminus l^1, \geq^*)$ and $\text{RO}(\wp(\omega) /_{fin}, \subseteq^*)$ can be isomorphic
- But need not always in ZFC (Fuchino, Mildenberger, Shelah, V)
- Problems, hypothesis
- Horizon, pass, sensing infinity, infinitesimals, ideological, cultural, technological, ... horizons

Motivations

- [BPS] B. Balcar, J. Pelant, P. Simon. The space of ultrafilters on N covered by nowhere dense sets. Fund. Math. 110 (1980), 11-24
- G. M. Fichtenholz, The course of differential and integral calculus, Fizmatgiz, Moscow, 1959 (Russian) $\sum_{n=k}^{\infty} a_n = o(\sum_{n=k}^{\infty} b_n), k \to \infty$
- N. N. Kholshchevnikova, Unsolvability of several questions of convergence of series and sequences, Mat. Z. 34 (1983), 711-718 (Russian 1981)
- Toposym 1986 Set-theoretic characteristic versus gaps in convergence of series and P(ω)/fin
- BELASOVA, J.—EWERT, J.—SALAT, T. : On the effectiveness of tests for the absolute convergence of infinite series, Bull. Math. Soc. Sci. Math. R.S. Roumanie (N. S.) 33 (1989), 3-8.

How did it evolve ...

Topology – more general – are spaces co-absolute or not? From [BPS] ...

- Broverman-Weiss 82, Wiliams 82, vanMill-Wiliams 83, ...
- 89 Dow tree π -bases $\beta N \setminus N$
- Dordal, Laver, van Douwen, ...
- 98 Shelah-Spinas
- 98 Dow RO(β R\R) \neq RO(β N\N) very similar to our approach
- 2015 Balcar-Doucha-Hrusak BTP

From analysis, asymptotics, ... series, sequences, $\omega^* \setminus Q$,

- 85 Coplakova-V Q-points, 94 ctd., Toposym 96
- 92 V. A note on the effectiveness of tests for the absolute conv. div. of infinite series (Belasova-Ewert-Salat)
- 93 MAx RO($c_0^+ \ \ell^1$, \geq^*)=RO(β N\N)
- 95 Krajci-V same for finite partitions
- 99 FMSV RO($c_0^+ \setminus \ell^1, \geq^*$) \neq RO(β N\N), like 98 Dow, only to keep $\Sigma a_n = \infty$...

Baire's theorem is about our ability to climb a horizon (speed, distance (method)) – surprise in ω^* - similar to collapsing algebra Coll(\mathfrak{h} , 2^{ω})

- Matrix $\Theta \subseteq \wp$ (Open(P))
- Shattering matrix
- Refining matrix
- Base matrix
- Definition [BPS]. Let P be a dense in itself topological space. Define
 κ(P) = min{|Θ|: Θ is a shattering matrix for P}

Shift of notation $\kappa(P,\tau) \rightarrow \mathfrak{h}(P,<)$

- The *height* of a partial order (P,≤), 𝔥(P) shortly, is the minimal cardinality of a system of open dense subsets of P such that the intersection of the system is not dense.
- An equivalent definition involves maximal antichains: $\mathfrak{h}(P)$ is equal to the minimal cardinality of a system of maximal antichains from *P* that do not have a common refinement.

• One sided horizon...

B. Balcar, J. Pelant, P. Simon. The space of ultrafilters on N covered by nowhere dense sets. Fund. Math. 110 (1980), 11-24
 B. Balcar, M. Doucha, and M. Hrusak, Base tree property, Order 32 (2015), no. 1, 69–81
 Vojtas. Base Tree Phenomenological Horizons

Perception: a (two sided) horizon between convergent and divergent series

- Comparison tests
- What is stronger under eventual dominance a_n <* b_n (≤* resp.)?
 - Divergence: $a_n < b_n$ is stronger
 - Convergence: $a_n <^* b_n$ is stronger
- (l^1 , \leq *) directed upwards (stronger)
- (c₀⁺ \ l¹, ≥*) Boolean-like (topology-like) downwards (stronger)
- $(c_0^+ \setminus l^1, \ge^*)$ is **not** separative: 1/2n < 1/nbut **there is no** $a_n \in c_0^+ \setminus l^1$, $a_n <^* 1/n$, s.t.

 $\text{min(a}_n, 1/2n) \in \ell^1$

$\mathbf{c_0^+}: a_n \ge 0$, $\lim a_n = 0$, $\Sigma a_n = +\infty$ or $\Sigma a_n < +\infty$

- Eventual dominance a_n <* b_n decides only topologically small sets (horizon is topologically large?)
- (ℓ¹, ≤*) directed upwards, 𝔥(ℓ¹, ≤*)
 ZFC sensitive
- $(c_0^+ \setminus l^1, \ge^*)$ Boolean downwards $t(c_0^+ \setminus l^1, \ge^*)$ ZFC sensitive
- There is an (ω_1, ω_1^*) gap (narrow path)
- There is base tree (**broad way**)

c₀⁺ horizon

- Eventual dominance $a_n < b_n$
- (l^1 , \leq *) directed upwards, $\mathfrak{b}(l^1$, \leq *)
- $(c_0^+ \setminus l^1, \geq^*)$ Boolean downwards
- (ω_1, ω_1^*) gap (narrow path), base tree (broad way)
- Plateau $\left(\bigcap \ell^{1+1/k} \right) \setminus \ell^1$ on pass ...
- Explicit language of analysis is countable
- Set-theoretic topology can handle this phenomenon

Various $\mathfrak{h}(P)$ formulations

The following are equivalent with $\kappa < \mathfrak{h}(P)$

(≈ a separative quotient)

(1) RO((P, \leq)/ \approx) is κ -distributive.

(2) The intersection of κ open dense subsets of (P, \leq) that are closed under \approx is dense in (P, \leq).

(2') The intersection of κ open dense subsets of (P, \leq)/ \approx is dense in (P, \leq)/ \approx

(3) Every family of maximal κ antichains in P has a refinement.

(3') Every family of maximal κ antichains in P/ \approx has a refinement.

(4) Forcing with $(P, \leq)/\approx$ does not add a new function from κ to ordinals.

(5) In the following game $G(P,\kappa)$ the player INC does not have a winning strategy.

The game G(P, κ) is played in κ rounds, and the two players INC and COM choose p_{α}^{INC} , p_{α}^{COM} in the α th round such that for all $\alpha < \beta^{\alpha} < \kappa$,

 $p_{\alpha}{}^{\text{INC}} \geq p_{\alpha}{}^{\text{COM}} \geq p_{\beta}{}^{\text{INC}} \geq p_{\beta}{}^{\text{COM}}$.

In the end, player INC wins iff the sequence of moves does not have a lower bound in P or if at some round he/she has no legal move.

S. Fuchino, H. Mildenberger, S. Shelah, and P. Vojtas, On absolutely divergent series, Fund. Math. 160 (1999), no. 3, 255–268

$\mathfrak{h}(P)$ – we will use (2)

The following are equivalent with $\kappa < \mathfrak{h}(P)$

(\approx a separative quotient)

(1) RO((P, \leq)/ \approx) is κ -distributive.

(2) The intersection of κ open dense subsets of (P, \leq) that are closed under \approx is dense in (P, \leq).

(2') The intersection of κ open dense subsets of (P, \leq)/ \approx is dense in (P, \leq)/ \approx

(3) Every family of maximal κ antichains in P has a refinement.

(3') Every family of maximal κ antichains in P/ \approx has a refinement.

(4) Forcing with $(P, \leq)/\approx$ does not add a new function from κ to ordinals.

(5) In the following game $G(P,\kappa)$ the player INC does not have a winning strategy.

The game G(P, κ) is played in κ rounds, and the two players INC and COM choose p_{α}^{INC} , p_{α}^{COM} in the α th round such that for all $\alpha < \beta^{\alpha} < \kappa$,

$$p_{\alpha}^{\text{INC}} \ge p_{\alpha}^{\text{COM}} \ge p_{\beta}^{\text{INC}} \ge p_{\beta}^{\text{COM}}$$

In the end, player INC wins iff the sequence of moves does not have a lower bound in P or if at some round he/she has no legal move.

S. Fuchino, H. Mildenberger, S. Shelah, and P. Vojtas, On absolutely divergent series, Fund. Math. 160 (1999), no. 3, 255–268

Are Base Tree Phenomenological Horizon always (cBa) isomorph?

- Balcar-Doucha-Hrusak Base Tree Property - BTP
- $\ln \ell^1 a_n \trianglelefteq^* b_n \text{ iff } \frac{\sum a_{n+1}}{\sum a_n} \le^* \frac{\sum b_{n+1}}{\sum b_n}$ is Boolean upwards and BTP, $\mathfrak{t}(\trianglelefteq^*)$
- $(c_0^+ \setminus l^1, \geq^*)$ Boolean downwards BTP
- Under CH are all cBA isomorph are they always? PV, PAMS 117,1 (1993, Toposym 1991)
- Presented 1990 to S. Shelah, last correction at **TOPOSYM 96**, Fund.Math. 1999

 $\mathsf{Con}(\,\mathfrak{h}(\mathsf{c}_0^{+}\setminus\ell^1,\geq^*)<\mathfrak{h}(\,\wp(\omega)\,/_{\mathsf{fin}},\subseteq^*)\,)$

S. Fuchino, H. Mildenberger, S. Shelah, and P. Vojtas, On absolutely divergent series, Fund. Math. 160 (1999), no. 3, 255–268

Construction very similar to Dow98 only problem is to keep $\Sigma a_n = \infty$

• In any extension obtained by the \aleph_2 -stage countable support iteration of Mathias forcing over a model of CH, the complete Boolean algebra generated by the **separative** quotient of absolutely divergent series under eventual dominance is not isomorphic to the completion of $\wp(\omega) /_{fin}$

Suppose that $\overline{b} \in (c_0 \setminus \ell^1)^{V[G]}$. There is some $\delta < \omega_2$ such that $\overline{b} \in V[G_{\delta}]$. We choose a family $\langle D_{\nu} \mid \nu \in \omega_1 \rangle \in V[G]$ such that $\langle D_{\nu} \mid \nu \in \omega_1 \rangle$ is an enumeration of

(4.1)
$$\left\{ \left\{ \overline{a} \in (c_0 \setminus \ell^1)^{V[G]} \mid \sum_{l \in H} a_l < \infty \text{ or } \sum_{l \in \omega \setminus H} a_l < \infty \right\} \mid H \in ([\omega]^{\omega})^{V[G_{\delta}]} \right\} = \mathcal{D}_H$$

Claim. Intersection of D_v is not dense below b in V[G].

S. Fuchino, H. Mildenberger, S. Shelah, and P. Vojtas, On absolutely divergent series, Fund. Math. 160 (1999), no. 3, 255–268

Toposym 2016

S. Fuchino, H. Mildenberger, S. Shelah, P. Vojtas, *On absolutely divergent series*, Fund. Math. **160** (1999), no. 3, 255–268

- Proof by contradiction
- Assume $\mathsf{D}_{_{\!\rm V}}$ is dense below b (in V[G])
- Let $c \leq^* b$, $c \in \bigcap D_{\nu}$ in V[G]
- Working in $V[G_{\delta}]$
- There is a name c' for c in $V[G_{\delta}]$
- Using $b \in V[G_{\delta}]$, define m_i^{b} ...
- Discretized name c'' for c in each [m', m''] ...

Shelah: Let's go to casino ...

- Discretized name for c'' in each [m', m'']
- Laver property name c* for c in a narrow pipe in each y_i
- w_i = $\left\{ d \in y_i : \sum_{l=m_i}^{m_{i+1}} d_l > 1/_{i^2} \right\}$ here we care about divergence, Dow98 need not to
- $e \in y_i \rightarrow (\exists^{\infty} i)(e | [m_i, m_i^{+1}) \in w_i)$
- flip a fair coin to divide $[m', m''] = \mathbf{u_0} \cup \mathbf{u_1}$, (Alon-Spencer-Erdös trick) estimate chance that a $d \in w_i$, h=0,1

$$\frac{1}{3} \le \frac{\sum \{d_l \mid l \in u_h\}}{\sum \{d_l \mid l \in [m', m'')\}} \le \frac{2}{3}$$

It is nonzero (large product, narrow pipe, ... + some more conditions on m_i)

J' is the bad guy

With a real parameter in $V[G_{\delta}]$ (namely $\langle u_{0,i} \mid i \in \omega \setminus \{0\}\rangle$) we define the set

$$J = \{ \overline{d} \in (c_0 \setminus \ell^1)^{V[G]} \mid \exists h \in \{0, 1\} \; \forall^{\infty} i \in \omega \setminus \{0\} \; (\overline{d} \upharpoonright u_{h,i} \equiv 0) \}.$$

J' is one of D_H

 $J \text{ is obviously open in } (c_0 \setminus \ell^1, \leq^*).$ The closure of J under \approx is $(4.15) \qquad J' = \{\overline{d} \mid \exists \overline{d'} \in J \; \forall \overline{e} \leq^* \overline{d} \; (\overline{e} \not\perp \overline{d'})\}$ $= \{\overline{d} \mid \exists h \; \Big(\sum_{i \in \omega \setminus \{0\}} \sum_{l \in u_{h,i}} d_l < \infty\Big)\}.$ • and $\mathbf{c}^* \notin \mathbf{J'}$

• Problem. Does ZFC decide $\mathfrak{h}(c_0^+ \setminus \ell^1, \leq^*) \leq \mathfrak{h}(\mathfrak{S}(\omega) /_{fin}, \subseteq^*)$?

Problems, hypothesis

- Dow 98 RO(R*) has a certain two dimensionality we say a many valued object of investigation – Conjecture:
 - $\mathfrak{h}(\mathsf{R}^*) \leq \mathfrak{h}(\mathsf{N}^* \times \mathsf{N}^*)$
 - $\mathfrak{h}(\mathsf{R}^*) \leq \mathfrak{h}(\mathsf{R}^* \times \mathsf{R}^*)$
- We can repeat this by asking $\mathfrak{h}(c_0^+ \setminus \ell^1, \geq^*) \leq \mathfrak{h}(N^* \times N^*)$? Rephrasing Balcar-Hrusak: Is $\mathfrak{h}(c_0^+ \setminus \ell^1, \geq^*) \leq \min(\mathfrak{h}, \operatorname{add}(\mathfrak{M}))$?
- Is it ZFC consistent $RO(l^1, \trianglelefteq^*) \ncong RO(\wp(\omega)/_{fin}, \subseteq^*)$? (Shelah: "dirty computing" ...)
- (with S. Krajci) \mathbb{P} = {partitions P \subseteq [ω]^{< ω} of ω s.t. limsup p_n = + ∞ }, another model of approaching infinity

 $P \Subset Q \text{ if } (\forall p \in P) (\exists ! q \in Q)(p \subseteq q)$

(\mathbb{P} , \Subset) has BTP, hence under CH isomorphic to all BTP structures **Problem**. Is Con(\mathfrak{h} (\mathbb{P} , \Subset) < \mathfrak{h} (\wp (ω) /_{fin}, \subseteq *))? Probably not, it is not a many valued structure

S. Krajči; P. Vojtáš. On the Boolean structure generated by Q-points of ω* Acta Univ. Carolin. Math.Phys. 36,2 (1995) 33--38

Problems, hypothesis ctd.

- Fichtengolz like horizon $\sum_{n=k}^{\infty} a_n = o(\sum_{n=k}^{\infty} b_n)$, $k \to \infty$, both in $c_0^+ \setminus l^1$ and l^1
- Flaskova / Blobner ZFC ⊢ (∃U ∈ ω^{*})(∀1-1 f : N → N)(∃U ∈ U)(f[U] ∈ J(1/n)), i.e. there is a point behind the horizon (Analogy of covering non Q points, these can be called "harmonic points (exist in ZFC)", Gryzlov in ZFC Asymp.density 0-points)
- What are interesting horizon in ω^{*}? In Katetov ordering? Rudin-Frolik order? Each point U ∈ ω^{*} is a t-point, order witnesses of t-pointedness by ⊆, ... more examples in Balcar – Doucha – Hrusak in Order 2015 Base tree property
- Many horizons between small/big, slow/fast (ideal/filter), asymptotic create horizons (e.g. polynomial/exponential, degrees of computability, P/NP,)
- Horizons one/two sided Baire/natural two valued/many valued narrow/broad
- Is there a border between (l^1, \leq^*) and $(c_0^+ \setminus l^1, \geq^*)$? <u>Hyperreals is there a</u> <u>"boundary" between convergent and divergent series</u>?

Horizon, pass, sensing infinity, infinitesimals,... ideological, cultural, technological, ... horizons

Railway sleepers, last railway sleeper before horizon? Do rails continue behind horizon? Telescope sees further/details.

Blue ridge mountains. What is on the other side? Is there anything?

Approaching a horizon – speed, distance (method)

Narrow path / climb the hill / consistency? Pass at the horizon connects worlds.

Broad way ... Can we meet in the pass? How fast am I climbing

Philosophical/mathematical horizons

- Edmund Husserl
 - phenomenon of horizons
- H. Jerome Keisler
- infinitesimals, extension / transfer axiom,
- Petr Vopěnka
 - -semisets, prolongation axiom
- Topological boundary, other mathematical horizons ...

Real world horizons (Platonist, Aristotelian, physics, phenomenologist, constructivist, ...)

- Are all (nontrivial, mathematical) horizons -
 - Either directed
 - Like (ω^ω, ≤*)? How many types of such horizons are there? Is there some **spectral theorem**?
 - or trivial, countable, ...
 - Or Boolean/topological
 - either $(c_0^+ \setminus l^1, \leq^*)$ like (many valued)?
 - or ($\wp(\omega) /_{fin}, \subseteq^*$) like (two valued)?

Black Hole in space and Point of singularity

- one/both sided? Baire/natural? two valued/many valued? narrow/broad? other?
- Physics A cosmological *horizon* is a measure of the distance from which one could possibly **retrieve information (Google horizon)** - Particle horizon, Hubble horizon, Event horizon, Future horizon, optical horizon, neutrino horizon, gravitational wave horizon, ...

Real world horizons ctd.

- Google horizon, AI, (spiritual) ecology, sustainable...
- The ultimate event horizon/pass (Vopěnka is behind, some of us approaching closer/faster some slower...)

 Cultural horizon, beyond human (man, woman) comprehension (sensing colors), horizons in history – Silk road horizons ...

Thank you!

Questions? Comments?

Hated set-theory? Not at all, just pivoted to human behavior experiments ... computer science is about human users

Plato's nature of mathematics

Nature of physics – all particles of same sort behave same

Nature of humans (are not particles)

- Behavior
- Recommendation
- Challenge
- Model
- Method prototype
- Data
- Metrics

. 2015 started to attend B. Balcar's seminar

- Experiments
- contribution

DOHNELC

"I'm not leaving you. I'm pivoting to another man."

again

Google Scholar A many valued world with Scot Automatic Tarski lattice continu	t <mark>t topol</mark> uitv	ogy	Algorithms for user dependent integration of ranked distributed information P Gurský, R Lencses, P Vojtáš na	29	2005
Title 1–20 Fuzzy logic programming P Vojtáš Fuzzy sets and systems 124 (3), 361-370	Cited by nective 226	Year S 2001	Induction of fuzzy and annotated logic programs T Horváth, P Vojtáš International Conference on Inductive Logic Programming, 260-274	27	2006
Multi-adjoint logic programming with continous semantics J Medina, M Ojeda-Aciego, P Vojtáš International Conference on Logic Programming and Nonmonotonic Reasoning	154	2001	A data model for flexible querying J Pokorný, P Vojtáš East European Conference on Advances in Databases and Information Systems	27	2001
Similarity-based unification : a multi-adjoint approach J Medina, M Ojeda-Aciego, P Vojtáš Fuzzy sets and systems 146 (1), 43-62	152	2004	UPRE: User preference based search system P Gursky, T Horvath, R Novotny, V Vanekova, P Vojtas Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM International Conference on	25 *	2006
Soundness and completeness of non-classical extended SLD-resolution P Vojtás, L Paulík International Workshop on Extensions of Logic Programming, 289-301	74	1996	Fuzzy querying: Issues and perspectives J Kacprzyk, G Pasi, P Vojtáš, S Zadrożny Kybernetika 36 (6), [605]-616	25	2000
A procedural semantics for multi-adjoint logic programming J Medina, M Ojeda-Aciego, P Vojtáš Portuguese Conference on Artificial Intelligence, 290-297	71	2001	A completeness theorem for multi-adjoint logic programming J Medina, M Ojeda-Aciego, P Vojtás Fuzzy Systems, 2001. The 10th IEEE International Conference on 2, 1031-1034	23	2001
Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis P Vojtas Freie Universität Berlin. Fachbereich Mathematik	56	1991	A system recommending top-k objects for multiple users preferences A Eckhardt, J Pokorny, P Vojtas 2007 IEEE International Fuzzy Systems Conference, 1-6	21	2007
A comparison of fuzzy and annotated logic programming S Krajči, R Lencses, P Vojtáš Fuzzy Sets and Systems 144 (1), 173-192	55	2004	PHASES: A user profile learning approach for web search A Eckhardt, T Horváth, P Vojtás Web Intelligence, IEEE/WIC/ACM International Conference on, 780-783	20	2007
Refinement properties and extensions of filters in Boolean algebras B Balcar, P Simon, P Vojtáš Transactions of the American Mathematical Society 267 (1), 265-283	46	1981	Refining systems on Boolean algebras B Balcar, P Vojtás Set Theory and Hierarchy Theory V, 45-58	12	1977
Towards biresiduated multi-adjoint logic programming J Medina, M Ojeda-Aciego, A Valverde, P Vojtáš Current Topics in Artificial Intelligence, 608-617	39	2004	Set-theoretic characteristics of summability of sequences and convergence of series	11	1987
Almost disjoint refinement of families of subsets of <i>N</i> B Balcar, P Vojtáš Proceedings of the American Mathematical Society 79 (3), 465-470	38	1980	D n absolutely divergent series S Fuchino, H Mildenberger, S Shelah, P Vojtas arXiv preprint math/9903114	10	1999
Ordinal classification with monotonicity constraints T Horváth, P Vojtáš Industrial Conference on Data Mining, 217-225	33	2006	D ependences between definitions of finiteness . Spišiak, P Vojtáš Czechoslovak Mathematical Journal 38 (3), 389-397	10	1988

My personal Toposym history – towards "second life"

- **1974** Theoretical Cybernetics, **1976-80** PhD study under supervision of B. Balcar, **1978 -91** lecturing logic programming, Turing Machines,
- Toposym 1981 A transfinite Boolean game and a generalization of Kripke's embedding theorem.
 - Martial law Poland December 13, **1981** to July 22, 1983
- Toposym 1986 Set-theoretic characteristic versus gaps in convergence of series and $P(\omega)/fin$.
 - 17.11.1989 political changes in Czechoslovakia, 1990-91 AvHumbold fellow meeting S. Shelah in Halle G. Cantor set theory seminar presented the problem of isomorphism of RO(divSeries) and RO(P(ω)/fin), cooperation with S. Fuchino on subject, 1991 Ramat Gan winter school on Set theory
- Toposym 1991 Boolean isomorphism between partial orderings of convergent and divergent series and infinite subsets of N
 - 1992-98 Extension of computer science (PhD) studies UPJS, 1995 Logic Colloquium Haifa, 1995 Scientific activities in Computer Science – first paper P. Vojtas, L. Paulik: Logic Programming in RPL and RQL. SOFSEM 1995
- Toposym 1996 On ultrafilters on ω^* .
 - **Toposym 1996** Last meeting with **Saharon Shelah** on subject, continuation with **H. Mildenberger,** published **1999** as FMShV:593, Continuing in Computer Science users' preference learning