Chaos in hyperspaces of nonautonomous discrete systems

Hugo Villanueva Méndez Joint work with Iván Sánchez and Manuel Sanchis

Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas México

Twelfth Symposium on General Topology and its Relations to Modern Analysis and Algebra 2016

Given a topological space X, let $f_n : X \to X$ be a continuous function for each positive integer n. Denote by f_{∞} the sequence (f_1, f_2, \ldots) . We say that the pair (X, f_{∞}) is the nonautonomous discrete dynamical system (NDS, for short) in which the orbit of a point $x \in X$ under f_{∞} is defined as the set

$$\operatorname{orb}(x, f_{\infty}) = \{x, f_1(x), f_1^2(x), \dots, f_1^n(x), \dots\},\$$

where

$$f_1^n := f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1,$$

for each positive integer n.

In particular, when f_{∞} is the constant sequence (f, f, \dots, f, \dots) , the pair (X, f_{∞}) is the usual (autonomous) discrete dynamical system given by the continuous function f on X and it will denoted by (X, f).

4 **A b** 4 **b** 6 4

Given a topological space X, let $f_n : X \to X$ be a continuous function for each positive integer *n*. Denote by f_{∞} the sequence (f_1, f_2, \ldots) . We say that the pair (X, f_{∞}) is the *nonautonomous discrete dynamical system* (NDS, for short) in which the *orbit of a point* $x \in X$ under f_{∞} is defined as the set

$$\operatorname{orb}(x, f_{\infty}) = \{x, f_1(x), f_1^2(x), \dots, f_1^n(x), \dots\},\$$

where

$$f_1^n := f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1,$$

for each positive integer n.

In particular, when f_{∞} is the constant sequence (f, f, \dots, f, \dots) , the pair (X, f_{∞}) is the usual (autonomous) discrete dynamical system given by the continuous function f on X and it will denoted by (X, f).

マヨン イラン イラン

Given a topological space X, let $f_n : X \to X$ be a continuous function for each positive integer n. Denote by f_{∞} the sequence (f_1, f_2, \ldots) . We say that the pair (X, f_{∞}) is the nonautonomous discrete dynamical system (NDS, for short) in which the orbit of a point $x \in X$ under f_{∞} is defined as the set

$$\operatorname{orb}(x, f_{\infty}) = \{x, f_1(x), f_1^2(x), \dots, f_1^n(x), \dots\},\$$

where

$$f_1^n := f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1,$$

for each positive integer n.

In particular, when f_{∞} is the constant sequence (f, f, \dots, f, \dots) , the pair (X, f_{∞}) is the usual (autonomous) discrete dynamical system given by the continuous function f on X and it will denoted by (X, f).

э

マヨン イラン イラン

Given a topological space X, let $f_n : X \to X$ be a continuous function for each positive integer n. Denote by f_{∞} the sequence (f_1, f_2, \ldots) . We say that the pair (X, f_{∞}) is the nonautonomous discrete dynamical system (NDS, for short) in which the orbit of a point $x \in X$ under f_{∞} is defined as the set

$$\operatorname{orb}(x, f_{\infty}) = \{x, f_1(x), f_1^2(x), \dots, f_1^n(x), \dots\},\$$

where

$$f_1^n := f_n \circ f_{n-1} \circ \cdots \circ f_2 \circ f_1,$$

for each positive integer n.

In particular, when f_{∞} is the constant sequence $(f, f, \ldots, f, \ldots)$, the pair (X, f_{∞}) is the usual (autonomous) discrete dynamical system given by the continuous function f on X and it will denoted by (X, f).

周 ト イ ヨ ト イ ヨ ト

A NDS (X, f_∞) is

- topologically transitive if for any two non-empty open sets U and V in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$;
- said to satisfy *Banks' condition* if for any three non-empty open sets U, V, W in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$ and $f_1^k(U) \cap W \neq \emptyset$;
- weakly mixing if for any four non-empty open sets U_1, U_2, V_1, V_2 in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \neq \emptyset$, for each $i \in \{1, 2\}$.

A NDS (X, f_∞) is

- topologically transitive if for any two non-empty open sets U and V in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$;
- said to satisfy *Banks' condition* if for any three non-empty open sets U, V, W in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$ and $f_1^k(U) \cap W \neq \emptyset$;
- weakly mixing if for any four non-empty open sets U_1, U_2, V_1, V_2 in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \neq \emptyset$, for each $i \in \{1, 2\}$.

A NDS (X, f_{∞}) is

- topologically transitive if for any two non-empty open sets U and V in X, there exists a positive integer k such that f₁^k(U) ∩ V ≠ Ø;
- said to satisfy *Banks' condition* if for any three non-empty open sets U, V, W in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$ and $f_1^k(U) \cap W \neq \emptyset$;

• weakly mixing if for any four non-empty open sets U_1, U_2, V_1, V_2 in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \neq \emptyset$, for each $i \in \{1, 2\}$.

A NDS (X, f_∞) is

- topologically transitive if for any two non-empty open sets U and V in X, there exists a positive integer k such that f₁^k(U) ∩ V ≠ Ø;
- said to satisfy *Banks' condition* if for any three non-empty open sets U, V, W in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$ and $f_1^k(U) \cap W \neq \emptyset$;
- weakly mixing if for any four non-empty open sets U_1, U_2, V_1, V_2 in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \neq \emptyset$, for each $i \in \{1, 2\}$.

A NDS (X, f_∞) is

- topologically transitive if for any two non-empty open sets U and V in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$;
- said to satisfy *Banks' condition* if for any three non-empty open sets U, V, W in X, there exists a positive integer k such that $f_1^k(U) \cap V \neq \emptyset$ and $f_1^k(U) \cap W \neq \emptyset$;
- weakly mixing if for any four non-empty open sets U_1, U_2, V_1, V_2 in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \neq \emptyset$, for each $i \in \{1, 2\}$.

Let X be a topological space. The symbol $\mathcal{K}(X)$ will denote the hyperspace of all non-empty compact subsets of X endowed with the Vietoris topology.

Induced NDS

Given a continuous function $f : X \to X$, it induces a continuous function on $\mathcal{K}(X)$, $\overline{f} : \mathcal{K}(X) \to \mathcal{K}(X)$ defined by $\overline{f}(K) = f(K)$ for every $K \in \mathcal{K}(X)$. Let (X, f_{∞}) be a NDS and $\overline{f_n}$ the induced continuous function of f_n on $\mathcal{K}(X)$, for each positive integer *n*. Then, the sequence $\overline{f_{\infty}} = (\overline{f_1}, \overline{f_2}, \dots, \overline{f_n}, \dots)$ induces a nonautonomous discrete dynamical system $(\mathcal{K}(X), \overline{f_{\infty}})$. In this case, $\overline{f_1}^n = \overline{f_n} \circ \dots \circ \overline{f_2} \circ \overline{f_1}$.

Let X be a topological space. The symbol $\mathcal{K}(X)$ will denote the hyperspace of all non-empty compact subsets of X endowed with the Vietoris topology.

Induced NDS

Given a continuous function $f : X \to X$, it induces a continuous function on $\mathcal{K}(X)$, $\overline{f} : \mathcal{K}(X) \to \mathcal{K}(X)$ defined by $\overline{f}(\mathcal{K}) = f(\mathcal{K})$ for every $\mathcal{K} \in \mathcal{K}(X)$. Let (X, f_{∞}) be a NDS and $\overline{f_n}$ the induced continuous function of f_n on

 $\mathcal{K}(X)$, for each positive integer *n*. Then, the sequence $\overline{f_{\infty}} = (\overline{f_1}, \overline{f_2}, \dots, \overline{f_n}, \dots)$ induces a nonautonomous discrete dynamical system $(\mathcal{K}(X), \overline{f_{\infty}})$. In this case, $\overline{f_1}^n = \overline{f_n} \circ \dots \circ \overline{f_2} \circ \overline{f_1}$.

Let X be a topological space. The symbol $\mathcal{K}(X)$ will denote the hyperspace of all non-empty compact subsets of X endowed with the Vietoris topology.

Induced NDS

Given a continuous function $f : X \to X$, it induces a continuous function on $\mathcal{K}(X)$, $\overline{f} : \mathcal{K}(X) \to \mathcal{K}(X)$ defined by $\overline{f}(\mathcal{K}) = f(\mathcal{K})$ for every $\mathcal{K} \in \mathcal{K}(X)$. Let (X, f_{∞}) be a NDS and $\overline{f_n}$ the induced continuous function of f_n on $\mathcal{K}(X)$, for each positive integer *n*. Then, the sequence $\overline{f_{\infty}} = (\overline{f_1}, \overline{f_2}, \dots, \overline{f_n}, \dots)$ induces a nonautonomous discrete dynamical system $(\mathcal{K}(X), \overline{f_{\infty}})$. In this case, $\overline{f_1}^n = \overline{f_n} \circ \dots \circ \overline{f_2} \circ \overline{f_1}$.

Let $f: X \to X$ be a continuous function on a topological space X. Then the following conditions are equivalent:

- (1) (X, f) is weakly mixing.
- (2) $(\mathcal{K}(X), \overline{f})$ is weakly mixing.
- (3) $(\mathcal{K}(X), \overline{f})$ is transitive.

Let $f: X \to X$ be a continuous function on a topological space X. Then the following conditions are equivalent:

- (1) (X, f) is weakly mixing.
- (2) $(\mathcal{K}(X), \overline{f})$ is weakly mixing.
- (3) $(\mathcal{K}(X), \overline{f})$ is transitive.

Let $f: X \to X$ be a continuous function on a topological space X. Then the following conditions are equivalent:

- (1) (X, f) is weakly mixing.
- (2) $(\mathcal{K}(X), \overline{f})$ is weakly mixing.

(3) $(\mathcal{K}(X), \overline{f})$ is transitive.

Let $f: X \to X$ be a continuous function on a topological space X. Then the following conditions are equivalent:

- (1) (X, f) is weakly mixing.
- (2) $(\mathcal{K}(X), \overline{f})$ is weakly mixing.
- (3) $(\mathcal{K}(X), \overline{f})$ is transitive.

There is a NDS (\mathbb{I}, f_{∞}) which is weakly mixing, but $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Let

 $F = \{(a, b, c, d) \in \mathbb{Q}^4 : a, b, c, d \in (0, 1), a < b, a \neq c, b \neq d, c \neq d\}.$ Clearly, *F* is countable. We will assign a homeomorphism $f : \mathbb{I} \to \mathbb{I}$ to every element $(a, b, c, d) \in F$ as follows: **Case 1.** If c < d, then *f* is the function whose graphic is determined by the segments [(0,0), (a,c)], [(a,c), (b,d)] and [(b,d), (1,1)].**Case 2.** If c > d, then *f* is the function whose graphic is determined by the segments [(0,1), (a,c)], [(a,c), (b,d)] and [(b,d), (1,0)].

There is a NDS (\mathbb{I}, f_{∞}) which is weakly mixing, but $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Let

$$\begin{split} F &= \{(a,b,c,d) \in \mathbb{Q}^4 : a,b,c,d \in (0,1), a < b, a \neq c, b \neq d, c \neq d\}. \\ \text{Clearly, } F \text{ is countable. We will assign a homeomorphism } f : \mathbb{I} \to \mathbb{I} \text{ to} \\ \text{every element } (a,b,c,d) \in F \text{ as follows:} \end{split}$$

Case 1. If c < d, then f is the function whose graphic is determined by the segments [(0,0), (a,c)], [(a,c), (b,d)] and [(b,d), (1,1)]. **Case 2.** If c > d, then f is the function whose graphic is determined by the segments [(0,1), (a,c)], [(a,c), (b,d)] and [(b,d), (1,0)].

There is a NDS (I, f_{∞}) which is weakly mixing, but $(\mathcal{K}(I), \overline{f_{\infty}})$ is not transitive.

Let

$$\begin{split} F &= \{(a,b,c,d) \in \mathbb{Q}^4 : a,b,c,d \in (0,1), a < b, a \neq c, b \neq d, c \neq d\}.\\ \text{Clearly, } F \text{ is countable. We will assign a homeomorphism } f: \mathbb{I} \to \mathbb{I} \text{ to every element } (a,b,c,d) \in F \text{ as follows:}\\ \textbf{Case 1. If } c < d, \text{ then } f \text{ is the function whose graphic is determined by the segments } [(0,0),(a,c)], [(a,c),(b,d)] \text{ and } [(b,d),(1,1)].\\ \textbf{Case 2. If } c > d, \text{ then } f \text{ is the function whose graphic is determined by the segments } [(0,1),(a,c)], [(a,c),(b,d)] \text{ and } [(b,d),(1,0)]. \end{split}$$

There is a NDS (\mathbb{I}, f_{∞}) which is weakly mixing, but $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Let

 $F = \{(a, b, c, d) \in \mathbb{Q}^4 : a, b, c, d \in (0, 1), a < b, a \neq c, b \neq d, c \neq d\}.$ Clearly, F is countable. We will assign a homeomorphism $f : \mathbb{I} \to \mathbb{I}$ to every element $(a, b, c, d) \in F$ as follows: **Case 1.** If c < d, then f is the function whose graphic is determined by

the segments [(0,0), (a,c)], [(a,c), (b,d)] and [(b,d), (1,1)]. **Case 2.** If c > d, then f is the function whose graphic is determined by

the segments [(0, 1), (a, c)], [(a, c), (b, d)] and [(b, d), (1, 0)].

There is a NDS (\mathbb{I}, f_{∞}) which is weakly mixing, but $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Let

 $F = \{(a, b, c, d) \in \mathbb{Q}^4 : a, b, c, d \in (0, 1), a < b, a \neq c, b \neq d, c \neq d\}.$ Clearly, F is countable. We will assign a homeomorphism $f : \mathbb{I} \to \mathbb{I}$ to every element $(a, b, c, d) \in F$ as follows: **Case 1.** If c < d, then f is the function whose graphic is determined by

the segments [(0,0), (a,c)], [(a,c), (b,d)] and [(b,d), (1,1)]. **Case 2.** If c > d, then f is the function whose graphic is determined by

the segments [(0, 1), (a, c)], [(a, c), (b, d)] and [(b, d), (1, 0)].

 (\mathbb{I}, f_{∞}) is weakly mixing and $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Example

 (\mathbb{I}, f_{∞}) is weakly mixing and $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Example

 (\mathbb{I}, f_{∞}) is weakly mixing and $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Example

 (\mathbb{I}, f_{∞}) is weakly mixing and $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is not transitive.

Example

Theorem

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then (X, f_{∞}) satisfies Banks' condition.

Proposition

If
$$(\mathcal{K}(X), \overline{f_{\infty}})$$
 is transitive, then so is (X, f_{∞}) .

Proposition

If
$$(\mathcal{K}(X), \overline{f_{\infty}})$$
 is weakly mixing, then so is (X, f_{∞}) .

Theorem

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then (X, f_{∞}) satisfies Banks' condition.

Proposition

If
$$(\mathcal{K}(X), \overline{f_{\infty}})$$
 is transitive, then so is (X, f_{∞}) .

Proposition

If
$$(\mathcal{K}(X), \overline{f_{\infty}})$$
 is weakly mixing, then so is (X, f_{∞}) .

Theorem

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then (X, f_{∞}) satisfies Banks' condition.

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then so is (X, f_{∞}) .

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is weakly mixing, then so is (X, f_{∞}) .

Theorem

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then (X, f_{∞}) satisfies Banks' condition.

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is transitive, then so is (X, f_{∞}) .

Proposition

If
$$(\mathcal{K}(X), \overline{f_{\infty}})$$
 is weakly mixing, then so is (X, f_{∞}) .

We say that (X, f_{∞}) is weakly mixing of order $m \ (m \ge 2)$ if for any non-empty open sets $U_1, U_2, ..., U_m, V_1, V_2, ..., V_m$ in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \ne \emptyset$ for each $i \in \{1, 2, ..., m\}$.

Theorem

Suppose that $(\mathcal{K}(X), \overline{f_{\infty}})$ is weakly mixing of order *m*. Then so is (X, f_{∞}) .

Theorem

 (\mathbb{I}, f_{∞}) is weakly mixing of order 3 if and only if $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is weakly mixing of order 3.

We say that (X, f_{∞}) is weakly mixing of order $m \ (m \ge 2)$ if for any non-empty open sets $U_1, U_2, ..., U_m, V_1, V_2, ..., V_m$ in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \ne \emptyset$ for each $i \in \{1, 2, ..., m\}$.

Theorem

Suppose that $(\mathcal{K}(X), \overline{f_{\infty}})$ is weakly mixing of order *m*. Then so is (X, f_{∞}) .

Theorem

 (\mathbb{I}, f_{∞}) is weakly mixing of order 3 if and only if $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is weakly mixing of order 3.

We say that (X, f_{∞}) is weakly mixing of order $m \ (m \ge 2)$ if for any non-empty open sets $U_1, U_2, ..., U_m, V_1, V_2, ..., V_m$ in X, there exists a positive integer k such that $f_1^k(U_i) \cap V_i \ne \emptyset$ for each $i \in \{1, 2, ..., m\}$.

Theorem

Suppose that $(\mathcal{K}(X), \overline{f_{\infty}})$ is weakly mixing of order *m*. Then so is (X, f_{∞}) .

Theorem

 (\mathbb{I}, f_{∞}) is weakly mixing of order 3 if and only if $(\mathcal{K}(\mathbb{I}), \overline{f_{\infty}})$ is weakly mixing of order 3.

Given a NDS (X, f_{∞}) , a point $x \in X$ is *periodic* if $f_1^n(x) = x$ for some positive integer *n*. Let us denote by $Per(f_{\infty})$ the set of periodic points of f_{∞} .

Definition

Let (X, d) be a metric space. We say that (X, f_{∞}) has sensitive dependence on initial conditions if there exists $\delta > 0$ such that for every point x and every open neighborhood U of x, there exist $y \in U$ and $n \in \mathbb{N}$ such that $d(f_1^n(x), f_1^n(y)) \ge \delta$.

Definition

Given a metric space X we say that the NDS (X, f_{∞}) is Devaney chaotic if it is transitive, sensitive and has dense set of periodic points.

Given a NDS (X, f_{∞}) , a point $x \in X$ is *periodic* if $f_1^n(x) = x$ for some positive integer *n*. Let us denote by $Per(f_{\infty})$ the set of periodic points of f_{∞} .

Definition

Let (X, d) be a metric space. We say that (X, f_{∞}) has sensitive dependence on initial conditions if there exists $\delta > 0$ such that for every point x and every open neighborhood U of x, there exist $y \in U$ and $n \in \mathbb{N}$ such that $d(f_1^n(x), f_1^n(y)) \ge \delta$.

Definition

Given a metric space X we say that the NDS (X, f_{∞}) is Devaney chaotic if it is transitive, sensitive and has dense set of periodic points.

Given a NDS (X, f_{∞}) , a point $x \in X$ is *periodic* if $f_1^n(x) = x$ for some positive integer *n*. Let us denote by $Per(f_{\infty})$ the set of periodic points of f_{∞} .

Definition

Let (X, d) be a metric space. We say that (X, f_{∞}) has sensitive dependence on initial conditions if there exists $\delta > 0$ such that for every point x and every open neighborhood U of x, there exist $y \in U$ and $n \in \mathbb{N}$ such that $d(f_1^n(x), f_1^n(y)) \ge \delta$.

Definition

Given a metric space X we say that the NDS (X, f_{∞}) is Devaney chaotic if it is transitive, sensitive and has dense set of periodic points.

Theorem

Let (X, d) be a compact metric space. If $(\mathcal{K}(X), \overline{f_{\infty}})$ has sensitive dependence on initial conditions, then (X, f_{∞}) does.

Example

There is a NDS (I, f_{∞}) which is transitive and has dense set of periodic points, but it does not have sensitive dependence on initial conditions.

Theorem

Let (X, d) be a compact metric space. If $(\mathcal{K}(X), \overline{f_{\infty}})$ has sensitive dependence on initial conditions, then (X, f_{∞}) does.

Example

There is a NDS (I, f_{∞}) which is transitive and has dense set of periodic points, but it does not have sensitive dependence on initial conditions.

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is point transitive, then so is (X, f_{∞}) .

It is known that point transitivity is equivalent to transitivity for autonomous discrete dynamical systems on complete separable metric spaces without isolated points.

Proposition

Suppose that X is a second-countable space with the Baire property. If (X, f_{∞}) is transitive, then it is point transitive.

Example

Results

A NDS (X, f_{∞}) is said to be *point transitive* if there exists $x \in X$ with dense orbit in X.

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is point transitive, then so is (X, f_{∞}) .

It is known that point transitivity is equivalent to transitivity for autonomous discrete dynamical systems on complete separable metric spaces without isolated points.

Proposition

Suppose that X is a second-countable space with the Baire property. If (X, f_{∞}) is transitive, then it is point transitive.

Example

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is point transitive, then so is (X, f_{∞}) .

It is known that point transitivity is equivalent to transitivity for autonomous discrete dynamical systems on complete separable metric spaces without isolated points.

Proposition

Suppose that X is a second-countable space with the Baire property. If (X, f_{∞}) is transitive, then it is point transitive.

Example

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is point transitive, then so is (X, f_{∞}) .

It is known that point transitivity is equivalent to transitivity for autonomous discrete dynamical systems on complete separable metric spaces without isolated points.

Proposition

Suppose that X is a second-countable space with the Baire property. If (X, f_{∞}) is transitive, then it is point transitive.

Example

Proposition

If $(\mathcal{K}(X), \overline{f_{\infty}})$ is point transitive, then so is (X, f_{∞}) .

It is known that point transitivity is equivalent to transitivity for autonomous discrete dynamical systems on complete separable metric spaces without isolated points.

Proposition

Suppose that X is a second-countable space with the Baire property. If (X, f_{∞}) is transitive, then it is point transitive.

Example

M. Vellekoop and R. Berglund showed (1994) that for autonomous discrete dynamical systems on the unit interval ${\rm I\!I}$ to be Devaney chaotic is equivalent to be transitive

Example

There is a transitive NDS (\mathbb{I}, g_{∞}) with sensitive dependence on initial conditions such that the set of periodic points is not dense in \mathbb{I} .

Thank you!

