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Hyperspaces of continua

Definition
Given a topological space X , let fn : X → X be a continuous function for
each positive integer n. Denote by f∞ the sequence (f1, f2, . . .). We say
that the pair (X , f∞) is the nonautonomous discrete dynamical system
(NDS, for short) in which the orbit of a point x ∈ X under f∞ is defined
as the set

orb(x , f∞) = {x , f1(x), f 2
1 (x), . . . , f n

1 (x), . . .},

where
f n
1 := fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1,

for each positive integer n.

In particular, when f∞ is the constant sequence (f , f , . . . , f , . . .), the pair
(X , f∞) is the usual (autonomous) discrete dynamical system given by
the continuous function f on X and it will denoted by (X , f ).
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Definitions

Definition
A NDS (X , f∞) is

topologically transitive if for any two non-empty open sets U and V
in X , there exists a positive integer k such that f k

1 (U) ∩ V 6= ∅;
said to satisfy Banks’ condition if for any three non-empty open sets
U,V ,W in X , there exists a positive integer k such that
f k
1 (U) ∩ V 6= ∅ and f k

1 (U) ∩W 6= ∅;
weakly mixing if for any four non-empty open sets U1,U2,V1,V2 in
X , there exists a positive integer k such that f k

1 (Ui) ∩ Vi 6= ∅, for
each i ∈ {1, 2}.

If (X , f∞) is weakly mixing, then it has Banks’ condition and, this implies
that it is transitive.
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Definitions

Let X be a topological space. The symbol K(X ) will denote the
hyperspace of all non-empty compact subsets of X endowed with the
Vietoris topology.

Induced NDS
Given a continuous function f : X → X , it induces a continuous function
on K(X ), f : K(X )→ K(X ) defined by f (K ) = f (K ) for every
K ∈ K(X ).
Let (X , f∞) be a NDS and fn the induced continuous function of fn on
K(X ), for each positive integer n. Then, the sequence
f∞ = (f1, f2, . . . , fn, . . .) induces a nonautonomous discrete dynamical
system (K(X ), f∞). In this case, f n

1 = fn ◦ · · · ◦ f2 ◦ f1.
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Background

Theorem. (Peris, 2004)
Let f : X → X be a continuous function on a topological space X . Then
the following conditions are equivalent:
(1) (X , f ) is weakly mixing.
(2) (K(X ), f ) is weakly mixing.
(3) (K(X ), f ) is transitive.

(2) implies (3) even in nonautonomous discrete dynamical systems.
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Example

Example

There is a NDS (I, f∞) which is weakly mixing, but (K(I), f∞) is not
transitive.

Let
F = {(a, b, c, d) ∈ Q4 : a, b, c, d ∈ (0, 1), a < b, a 6= c, b 6= d , c 6= d}.
Clearly, F is countable. We will assign a homeomorphism f : I→ I to
every element (a, b, c, d) ∈ F as follows:
Case 1. If c < d , then f is the function whose graphic is determined by
the segments [(0, 0), (a, c)], [(a, c), (b, d)] and [(b, d), (1, 1)].
Case 2. If c > d , then f is the function whose graphic is determined by
the segments [(0, 1), (a, c)], [(a, c), (b, d)] and [(b, d), (1, 0)].
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Example

In both cases f (a) = c and f (b) = d . Let {fn : n ∈ N} be an
enumeration of the functions induced by the elements of F . Consider
f∞ = (f1, f −1

1 , f2, f −1
2 , ..., fn, f −1

n , ...).

(I, f∞) is weakly mixing and (K(I), f∞) is not transitive.

Example

There is a NDS (I, f∞) such that (K(I), f∞) is transitive, but (I, f∞) is
not weakly mixing.
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Results

Banks proved that in autonomous discrete dynamical systems the
property of being weakly mixing is equivalent to satisfy Banks’ condition.

Theorem
If (K(X ), f∞) is transitive, then (X , f∞) satisfies Banks’ condition.

Proposition

If (K(X ), f∞) is transitive, then so is (X , f∞).

Proposition

If (K(X ), f∞) is weakly mixing, then so is (X , f∞).
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Results

Definition
We say that (X , f∞) is weakly mixing of order m (m ≥ 2) if for any
non-empty open sets U1,U2, ...,Um,V1,V2, ...,Vm in X , there exists a
positive integer k such that f k

1 (Ui) ∩ Vi 6= ∅ for each i ∈ {1, 2, ...,m}.

Theorem
Suppose that (K(X ), f∞) is weakly mixing of order m. Then so is (X , f∞).

Theorem
(I, f∞) is weakly mixing of order 3 if and only if (K(I), f∞) is weakly
mixing of order 3.
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On Devaney chaos

Definition
Given a NDS (X , f∞), a point x ∈ X is periodic if f n

1 (x) = x for some
positive integer n. Let us denote by Per(f∞) the set of periodic points of
f∞.

Definition
Let (X , d) be a metric space. We say that (X , f∞) has sensitive
dependence on initial conditions if there exists δ > 0 such that for every
point x and every open neighborhood U of x , there exist y ∈ U and
n ∈ N such that d(f n

1 (x), f n
1 (y)) ≥ δ.

Definition
Given a metric space X we say that the NDS (X , f∞) is Devaney chaotic
if it is transitive, sensitive and has dense set of periodic points.
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Results

Theorem
Let (X , d) be a compact metric space. If (K(X ), f∞) has sensitive
dependence on initial conditions, then (X , f∞) does.

Example
There is a NDS (I, f∞) which is transitive and has dense set of periodic
points, but it does not have sensitive dependence on initial conditions.
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Results

A NDS (X , f∞) is said to be point transitive if there exists x ∈ X with
dense orbit in X .

Proposition

If (K(X ), f∞) is point transitive, then so is (X , f∞).

It is known that point transitivity is equivalent to transitivity for
autonomous discrete dynamical systems on complete separable metric
spaces without isolated points.

Proposition
Suppose that X is a second-countable space with the Baire property. If
(X , f∞) is transitive, then it is point transitive.

Example
There is a NDS (I, g∞) which is point transitive but it is not transitive.
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Results

M. Vellekoop and R. Berglund showed (1994) that for autonomous
discrete dynamical systems on the unit interval I to be Devaney chaotic
is equivalent to be transitive

Example
There is a transitive NDS (I, g∞) with sensitive dependence on initial
conditions such that the set of periodic points is not dense in I.
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Thank you!
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