Random elements of large groups: Discrete case

Zoltán Vidnyánszky

Alfréd Rényi Institute of Mathematics

Toposym 2016

joint work with Udayan Darji, Márton Elekes, Kende Kalina, Viktor Kiss

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The random graph, $\mathcal{R} = \langle \mathbb{N}, E_{\mathcal{R}} \rangle$ Edges: for $n, m \in \mathbb{N}$ distinct let $\mathbb{P}((n, m) \in E_{\mathcal{R}}) = \frac{1}{2}$, independently.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The random graph, $\mathcal{R} = \langle \mathbb{N}, E_{\mathcal{R}} \rangle$

Edges: for $n, m \in \mathbb{N}$ distinct let $\mathbb{P}((n, m) \in E_{\mathcal{R}}) = \frac{1}{2}$, independently.

Almost surely we obtain the same graph. Equivalently: for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$.

- If $X, Y \subset \mathcal{R}$ are finite and $f : X \to Y$ is an isomorphism then f extends to an automorphism of \mathcal{R} .
- Every countable graph can be embedded into $(\mathcal{R}, E_{\mathcal{R}})$.

くしゃ 人間 マイボットボット 日 うんの

The random graph, $\mathcal{R} = \langle \mathbb{N}, E_{\mathcal{R}} \rangle$

Edges: for $n, m \in \mathbb{N}$ distinct let $\mathbb{P}((n, m) \in E_{\mathcal{R}}) = \frac{1}{2}$, independently.

Almost surely we obtain the same graph. Equivalently: for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$.

If $X, Y \subset \mathcal{R}$ are finite and $f : X \to Y$ is an isomorphism then f extends to an automorphism of \mathcal{R} .

Every countable graph can be embedded into $(\mathcal{R}, E_{\mathcal{R}})$. $\langle \mathbb{Q}, \langle \rangle$

If $X, Y \subset \mathbb{Q}$ are finite and $f : X \to Y$ is order preserving then f extends to an order preserving $\mathbb{Q} \to \mathbb{Q}$ map.

Every countable linearly ordered set can be order preservingly embedded to \mathbb{Q} .

Automorphism groups and genericity

 S_{∞} is a Polish group with the pointwise convergence topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Automorphism groups and genericity

 S_{∞} is a Polish group with the pointwise convergence topology. We are interested in the automorphism groups of countable structures \iff closed subgroups of S_{∞} .

Definition. A property *P* of elements of Aut(A) is said to *hold* generically if the set $\{f \in Aut(A) : P(f)\}$ is co-meagre.

Definition. If $f, g \in Aut(A)$ we say that f and g are *conjugate*, if there exists an $h \in Aut(A)$ such that $h^{-1}fh = g$.

Note: if $f, g \in Aut(\mathcal{A})$ then

$$\langle \mathcal{A}, f \rangle \cong \langle \mathcal{A}, g \rangle \iff (\exists h \in Aut(\mathcal{A}))(h^{-1}fh = g).$$

Definition. An automorphism is called *generic* if its conjugacy class is co-meagre.

■ "There are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R),

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

■ "There are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- "There are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞.
- (Kuske, Truss) There exist generic elements in $Aut(\mathbb{Q})$ and $Aut(\mathcal{R})$.

- "There are no infinite cycles and there are infinitely many cycles for every finite cycle length" holds generically in S_∞ and Aut(R), in particular, there is a generic element in S_∞.
- (Kuske, Truss) There exist generic elements in $Aut(\mathbb{Q})$ and $Aut(\mathcal{R})$.

Kechris, Rosendal: Characterisation of the existence of generic elements of closed subgroups of S_{∞} .

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists a Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

Definition. A property *P* of elements of Aut(A) is said to *hold* almost surely if the set $\{f \in Aut(A) : P(f)\}$ is co-Haar null.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists a Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

Definition. A property *P* of elements of Aut(A) is said to *hold* almost surely if the set $\{f \in Aut(A) : P(f)\}$ is co-Haar null. **Definition.** $A \subset G$ is called *compact catcher* if for every $K \subset G$ compact there exist $g, h \in G$ so that $gKh \subset A$.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists a Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

Definition. A property *P* of elements of Aut(A) is said to *hold* almost surely if the set $\{f \in Aut(A) : P(f)\}$ is co-Haar null. **Definition.** $A \subset G$ is called *compact catcher* if for every $K \subset G$ compact there exist $g, h \in G$ so that $gKh \subset A$. A is *compact biter* if for every $K \subset G$ compact there exist a U open and $g, h \in G$ so that $U \cap K \neq \emptyset$, and $g(U \cap K)h \subset A$.

Definition. (Christensen) Let (G, \cdot) be a Polish group and $B \subset G$ Borel. We say that *B* is *Haar null* if there exists a Borel probability measure μ on *G* such that for every $g, h \in G$ we have $\mu(gBh) = 0$. An arbitrary set *S* is called Haar null if $S \subset B$ for some Borel Haar null set *B*.

Definition. A property *P* of elements of Aut(A) is said to *hold* almost surely if the set $\{f \in Aut(A) : P(f)\}$ is co-Haar null. **Definition.** $A \subset G$ is called *compact catcher* if for every $K \subset G$ compact there exist $g, h \in G$ so that $gKh \subset A$. A is *compact* biter if for every $K \subset G$ compact there exist a *U* open and $g, h \in G$ so that $U \cap K \neq \emptyset$, and $g(U \cap K)h \subset A$. **Corollary.** If A is compact biter then it is not Haar null.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Therefore, almost all permutations included in the union of countably many conjugacy classes.

Theorem. (Dougherty, Mycielski) Almost all elements of S_{∞} have infinitely many infinite cycles and only finitely many finite cycles.

Therefore, almost all permutations included in the union of countably many conjugacy classes.

Theorem. (Dougherty, Mycielski) All of these classes are Haar positive, in fact, compact biters.

Definition. Let A be a structure, $a \in A$ and $X \subset A$. We say that A has the nice algebraic closure property (NAC) if for every finite $A \subset A$ the $\{b : |\{f(b) : f \in Stab_p(A)\}| < \infty\}$ is finite.

Definition. Let A be a structure, $a \in A$ and $X \subset A$. We say that A has the nice algebraic closure property (NAC) if for every finite $A \subset A$ the $\{b : |\{f(b) : f \in Stab_p(A)\}| < \infty\}$ is finite. **Theorem.** Let A be a countable structure.

 \mathcal{A} has NAC \Leftrightarrow almost every element of $Aut(\mathcal{A})$ has finitely many finite cycles,

Definition. Let A be a structure, $a \in A$ and $X \subset A$. We say that A has the nice algebraic closure property (NAC) if for every finite $A \subset A$ the $\{b : |\{f(b) : f \in Stab_p(A)\}| < \infty\}$ is finite. **Theorem.** Let A be a countable structure.

 ${\cal A}$ has NAC \Leftrightarrow almost every element of $Aut({\cal A})$ has finitely many finite cycles,

 ${\cal A}$ has NAC \Rightarrow almost every element of $Aut({\cal A})$ has infinitely many infinite cycles.

Definition. Let A be a structure, $a \in A$ and $X \subset A$. We say that A has the nice algebraic closure property (NAC) if for every finite $A \subset A$ the $\{b : |\{f(b) : f \in Stab_p(A)\}| < \infty\}$ is finite. **Theorem.** Let A be a countable structure.

 \mathcal{A} has NAC \Leftrightarrow almost every element of $Aut(\mathcal{A})$ has finitely many finite cycles,

 ${\cal A}$ has NAC \Rightarrow almost every element of $Aut({\cal A})$ has infinitely many infinite cycles.

 \mathcal{R}, \mathbb{Q} has NAC, but this is not enough to characterize the positive conjugacy classes of $Aut(\mathcal{R})$, $Aut(\mathbb{Q})$.

Measure and $Aut(\mathbb{Q})$

 $f \in Aut(\mathbb{Q})$ extends to a $\overline{f} \in Homeo^+(\mathbb{R})$. **Definition.** A + *orbital* (- *orbital*) of f is a maximal interval $I \subset \mathbb{R}$ such that for every $x \in I$ we have $\overline{f}(x) > x$ ($\overline{f}(x) < x$). Let $Fix(\overline{f}) = \{x \in \mathbb{R} : \overline{f}(x) = x\}$.

くしゃ 人間 マイボットボット 日 うんの

Measure and $Aut(\mathbb{Q})$

 $f \in Aut(\mathbb{Q})$ extends to a $\overline{f} \in Homeo^+(\mathbb{R})$. **Definition.** A + *orbital* (- *orbital*) of f is a maximal interval $I \subset \mathbb{R}$ such that for every $x \in I$ we have $\overline{f}(x) > x$ ($\overline{f}(x) < x$). Let $Fix(\overline{f}) = \{x \in \mathbb{R} : \overline{f}(x) = x\}$. **Proposition.** $f, g \in Aut(\mathbb{Q})$ are conjugate if and only if there exists an order and rationality preserving isomorphism between $Fix(\overline{f})$ and $Fix(\overline{g})$ so that the corresponding orbitals have the same sign.

Measure and $Aut(\mathbb{Q})$

between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Measure and $Aut(\mathbb{Q})$

Theorem. For almost every element of $Aut(\mathbb{Q})$

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter. In particular, there are c many Haar positive conjugacy classes, and their union is almost everything.

- between every two + orbitals (- orbitals) there is a - orbital (+ orbital) or a rational fixed point
- there are only finitely many rational fixed points.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter. In particular, there are c many Haar positive conjugacy classes, and their union is almost everything.

Definition. Let $v \in R$ and $f \in Aut(\mathcal{R})$. Define $\beta_{f,v} : \mathbb{N}^+ \to \{0,1\}$ as

$$\beta_{f,v}(n) = 1 \iff (v, f^n(v)) \in E_{\mathcal{R}}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition. Let $v \in R$ and $f \in Aut(\mathcal{R})$. Define $\beta_{f,v} : \mathbb{N}^+ \to \{0,1\}$ as

$$\beta_{f,v}(n) = 1 \iff (v, f^n(v)) \in E_{\mathcal{R}}.$$

Proposition. (Truss) Suppose that $f, g \in Aut(\mathcal{R})$ have only one infinite cycle and no finite ones. Then f and g are conjugate if and only if $\beta_{f,v} = \beta_{g,w}$ for some (\iff for every) v, w.

Definition. Let $v \in R$ and $f \in Aut(\mathcal{R})$. Define $\beta_{f,v} : \mathbb{N}^+ \to \{0,1\}$ as

$$\beta_{f,v}(n) = 1 \iff (v, f^n(v)) \in E_{\mathcal{R}}.$$

Proposition. (Truss) Suppose that $f, g \in Aut(\mathcal{R})$ have only one infinite cycle and no finite ones. Then f and g are conjugate if and only if $\beta_{f,v} = \beta_{g,w}$ for some (\iff for every) v, w. Truss' characterisation has an appropriate generalisation to every $f, g \in Aut(\mathcal{R})$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. Let $v \in R$ and $f \in Aut(\mathcal{R})$. Define $\beta_{f,v} : \mathbb{N}^+ \to \{0,1\}$ as

$$\beta_{f,v}(n) = 1 \iff (v, f^n(v)) \in E_{\mathcal{R}}.$$

Proposition. (Truss) Suppose that $f, g \in Aut(\mathcal{R})$ have only one infinite cycle and no finite ones. Then f and g are conjugate if and only if $\beta_{f,v} = \beta_{g,w}$ for some (\iff for every) v, w. Truss' characterisation has an appropriate generalisation to every $f, g \in Aut(\mathcal{R})$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

■ for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

■ for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$ and $v \notin the$ union of cycles generated by $A \cup B$,

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

■ for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$ and $v \notin$ the union of cycles generated by $A \cup B$,

■ there are only finitely many finite cycles.

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

• for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$ and $v \notin the union of cycles generated by <math>A \cup B$,

■ there are only finitely many finite cycles.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter.

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

■ for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$ and $v \notin$ the union of cycles generated by $A \cup B$,

there are only finitely many finite cycles.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter. Again, there are c many Haar positive conjugacy classes, and

their union is almost everything.

Theorem. Almost all elements of $Aut(\mathcal{R})$ have the following properties:

■ for every disjoint, finite $A, B \subset \mathbb{N}$ there exists $v \in \mathbb{N}$ such that $(\forall x \in A)((x, v) \in E_{\mathcal{R}})$ and $(\forall y \in B)((y, v) \notin E_{\mathcal{R}})$ and $v \notin$ the union of cycles generated by $A \cup B$,

there are only finitely many finite cycles.

Theorem. This characterises the positive conjugacy classes, in fact, every positive conjugacy class is compact biter.

Again, there are c many Haar positive conjugacy classes, and their union is almost everything.

Splitting lemma. If $F \subset Aut(\mathcal{R})$ is finite set there exists a vertex v so that for every $f, g \in F$ distinct we have $f(v) \neq g(v)$.

Theorem. (Christensen) If *A* is a conjugacy invariant Haar positive universally measurable set then $A^{-1}A$ contains a neighbourhood of the identity.

Corollary. (Truss) For every $f, g \in Aut(\mathcal{R})$ non-identity elements, g is the product of four conjugates of f.

- 1. How many Haar positive conjugacy classes are there?
- 2. Is the union of the Haar null conjugacy classes Haar null?

Examples

	∪ of Haar null classes is Haar null				
	С	$LC \setminus C$	NLC		
0					
n					
\aleph_0					
c					
	\bigcup of Haar null classes is not Haar null				
	С	$LC \setminus C$	NLC		
0					
n					
\aleph_0					
c					

Examples

	∪ of Haar null classes is Haar null		
	С	$LC \setminus C$	NLC
0	_	_	_
n	\mathbb{Z}_n	HNN	???
\aleph_0	???	\mathbb{Z}	S_{∞}
c	_	_	$Aut(\mathbb{Q}); Aut(\mathcal{R})$
	∪ of Haar null classes is not Haar null		
	С	$LC \setminus C$	NLC
0	2^{ω}	$\mathbb{Z} \times 2^{\omega}$	\mathbb{Z}^{ω}
n	$\mathbb{Z}_n \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	$HNN \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^\omega)$	$\mathbb{Z}_n imes (\mathbb{Z}_2 \ltimes \mathbb{Q}_d^\omega)$
\aleph_0	???	$\mathbb{Z} \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$	$S_{\infty} \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$
c	_	_	$Aut(\mathbb{Q}) \times (\mathbb{Z}_2 \ltimes \mathbb{Z}_3^{\omega})$

Question. Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes?

Open problems

Question. Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes? **Question.** Does there exist a Polish group such that it consistently has κ many Haar positive conjugacy classes with $\aleph_0 < \kappa < \mathfrak{c}$?

Question. Are there natural examples of automorphism groups with given cardinality of Haar positive conjugacy classes? **Question.** Does there exist a Polish group such that it consistently has κ many Haar positive conjugacy classes with $\aleph_0 < \kappa < \mathfrak{c}$?

Problem. Formulate necessary and sufficient model theoretic conditions which characterise the measure theoretic behaviour of the conjugacy classes!

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで