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The random graph, R = 〈N, ER〉
Edges: for n,m ∈ N distinct let P((n,m) ∈ ER) = 1

2 ,
independently.

Almost surely we obtain the same graph. Equivalently:
for every disjoint, finite A,B ⊂ N there exists v ∈ N such that
(∀x ∈ A)((x, v) ∈ ER) and (∀y ∈ B)((y, v) 6∈ ER).

If X,Y ⊂ R are finite and f : X → Y is an isomorphism
then f extends to an automorphism of R.
Every countable graph can be embedded into (R, ER).

〈Q, <〉
If X,Y ⊂ Q are finite and f : X → Y is order preserving then f
extends to an order preserving Q→ Q map.
Every countable linearly ordered set can be order preservingly
embedded to Q.
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Automorphism groups and genericity

S∞ is a Polish group with the pointwise convergence topology.

We are interested in the automorphism groups of countable
structures ⇐⇒ closed subgroups of S∞.
Definition. A property P of elements of Aut(A) is said to hold
generically if the set {f ∈ Aut(A) : P (f)} is co-meagre.
Definition. If f, g ∈ Aut(A) we say that f and g are conjugate,
if there exists an h ∈ Aut(A) such that h−1fh = g.
Note: if f, g ∈ Aut(A) then

〈A, f〉 ∼= 〈A, g〉 ⇐⇒ (∃h ∈ Aut(A))(h−1fh = g).

Definition. An automorphism is called generic if its conjugacy
class is co-meagre.



Automorphism groups and genericity

S∞ is a Polish group with the pointwise convergence topology.
We are interested in the automorphism groups of countable
structures ⇐⇒ closed subgroups of S∞.
Definition. A property P of elements of Aut(A) is said to hold
generically if the set {f ∈ Aut(A) : P (f)} is co-meagre.
Definition. If f, g ∈ Aut(A) we say that f and g are conjugate,
if there exists an h ∈ Aut(A) such that h−1fh = g.
Note: if f, g ∈ Aut(A) then

〈A, f〉 ∼= 〈A, g〉 ⇐⇒ (∃h ∈ Aut(A))(h−1fh = g).

Definition. An automorphism is called generic if its conjugacy
class is co-meagre.



Conjugacy classes

“There are no infinite cycles and there are infinitely many
cycles for every finite cycle length” holds generically in S∞
and Aut(R),

in particular, there is a generic element in S∞.
(Kuske, Truss) There exist generic elements in Aut(Q) and
Aut(R).

Kechris, Rosendal: Characterisation of the existence of generic
elements of closed subgroups of S∞.
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Measure

Definition. (Christensen) Let (G, ·) be a Polish group and
B ⊂ G Borel. We say that B is Haar null if there exists a Borel
probability measure µ on G such that for every g, h ∈ G we
have µ(gBh) = 0. An arbitrary set S is called Haar null if S ⊂ B
for some Borel Haar null set B.
Definition. A property P of elements of Aut(A) is said to hold
almost surely if the set {f ∈ Aut(A) : P (f)} is co-Haar null.

Definition. A ⊂ G is called compact catcher if for every K ⊂ G
compact there exist g, h ∈ G so that gKh ⊂ A. A is compact
biter if for every K ⊂ G compact there exist a U open and
g, h ∈ G so that U ∩K 6= ∅, and g(U ∩K)h ⊂ A.
Corollary. If A is compact biter then it is not Haar null.
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Measure in S∞

Theorem. (Dougherty, Mycielski) Almost all elements of S∞
have infinitely many infinite cycles and only finitely many finite
cycles.

Therefore, almost all permutations included in the union of
countably many conjugacy classes.
Theorem. (Dougherty, Mycielski) All of these classes are Haar
positive, in fact, compact biters.
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Measure and countable structures

Definition. Let A be a structure, a ∈ A and X ⊂ A. We say
that A has the nice algebraic closure property (NAC) if for every
finite A ⊂ A the {b : |{f(b) : f ∈ Stabp(A)}| <∞} is finite.

Theorem. Let A be a countable structure.
A has NAC⇔ almost every element of Aut(A) has finitely
many finite cycles,
A has NAC⇒ almost every element of Aut(A) has infinitely
many infinite cycles.
R,Q has NAC, but this is not enough to characterize the
positive conjugacy classes of Aut(R), Aut(Q).
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Measure and Aut(Q)

f ∈ Aut(Q) extends to a f̄ ∈ Homeo+(R).
Definition. A + orbital (− orbital) of f is a maximal interval
I ⊂ R such that for every x ∈ I we have f̄(x) > x (f̄(x) < x).
Let Fix(f̄) = {x ∈ R : f̄(x) = x}.

Proposition. f, g ∈ Aut(Q) are conjugate if and only if there
exists an order and rationality preserving isomorphism between
Fix(f̄) and Fix(ḡ) so that the corresponding orbitals have the
same sign.
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Measure and Aut(Q)

Theorem. For almost every element of Aut(Q)
between every two + orbitals (− orbitals) there is
a − orbital (+ orbital) or a rational fixed point

there are only finitely many rational fixed points.
Theorem. This characterises the positive conjugacy classes, in
fact, every positive conjugacy class is compact biter.
In particular, there are c many Haar positive conjugacy classes,
and their union is almost everything.
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Measure and Aut(R)

Definition. Let v ∈ R and f ∈ Aut(R). Define
βf,v : N+ → {0, 1} as

βf,v(n) = 1 ⇐⇒ (v, fn(v)) ∈ ER.

Proposition. (Truss) Suppose that f, g ∈ Aut(R) have only one
infinite cycle and no finite ones. Then f and g are conjugate if
and only if βf,v = βg,w for some (⇐⇒ for every) v, w.
Truss’ characterisation has an appropriate generalisation to
every f, g ∈ Aut(R).
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Measure and Aut(R)

Theorem. Almost all elements of Aut(R) have the following
properties:

for every disjoint, finite A,B ⊂ N there exists v ∈ N such
that (∀x ∈ A)((x, v) ∈ ER) and (∀y ∈ B)((y, v) 6∈ ER)

and
v 6∈ the union of cycles generated by A ∪B,
there are only finitely many finite cycles.

Theorem. This characterises the positive conjugacy classes, in
fact, every positive conjugacy class is compact biter.
Again, there are c many Haar positive conjugacy classes, and
their union is almost everything.
Splitting lemma. If F ⊂ Aut(R) is finite set there exists a
vertex v so that for every f, g ∈ F distinct we have f(v) 6= g(v).
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Measure and Aut(R)

Theorem. (Christensen) If A is a conjugacy invariant Haar
positive universally measurable set then A−1A contains a
neighbourhood of the identity.
Corollary. (Truss) For every f, g ∈ Aut(R) non-identity
elements, g is the product of four conjugates of f .



Questions

1. How many Haar positive conjugacy classes are there?

2. Is the union of the Haar null conjugacy classes Haar null?
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Open problems

Question. Are there natural examples of automorphism groups
with given cardinality of Haar positive conjugacy classes?

Question. Does there exist a Polish group such that it
consistently has κ many Haar positive conjugacy classes with
ℵ0 < κ < c?
Problem. Formulate necessary and sufficient model theoretic
conditions which characterise the measure theoretic behaviour
of the conjugacy classes!
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Thank you for your attention!


