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Motivation

At the Summer Topology Conference at Staten Island (2014), W.
Sconyers and N. Howes claimed to have a proof that every normal
linearly Lindelöf space is Lindelöf.

This would solve a well known problem first raised in 1968, and
would be a major accomplishment:

Is every normal, linearly Lindelöf space Lindelöf?
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linearly Lindelöf spaces

Definitions: A space X is called Lindelöf provided every open cover
U of X has a countable subcover.

A space X is called linearly Lindelöf provided every open cover U
of X which is linearly ordered by ⊆ has a countable subcover.

There exists completely regular linearly Lindelöf not Lindelöf
spaces. Thus the question raised in 1968:
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linearly Lindelöf Problem

The problem is one of 17 problems discussed by Mary Ellen Rudin
in her article“Some Conjectures,” in Open Problems in Topology,
J. van Mill and G.M. Reed, eds., Elsevier, North-Holland 1990, 184
-193.

Rudin Conjecture: There is a counterexample, i.e., There exists a
normal linearly Lindleöf space that is not Lindelöf.

Sconyers -Howes Claim: There is no counterexample, i.e., Every
normal linearly Lindleöf space is Lindelöf.
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Withdrawn

At the Summer Topology Conference in Galway (2015) I presented
an example that exposed a gap in their proof, and last March,
Sconyers told me he agreed there was a gap and:

They have withdrawn their claim.

Thus the problem is still open

Is every normal, linearly Lindelöf
space Lindelöf?
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Goal of this talk

The Scoyers-Howes approach to the problem has some interesting
aspects in the theory of convergence arising from the strategy in
their “proof.”

In this talk, I will discuss these aspects, give a simple example that
witnesses the gap of their “proof,” and discuss my theorem which
summarized the entire situation.

We review the definitions.
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Recall Basic definitions: partial order, linear order, well
order

(D,≤) is called a

partial ordered set : if ≤ satisfies the transitive property: x ≤ y
and y ≤ z imply x ≤ z .

linearly (totally) ordered set : If ≤ satisfies the additional property
that for all x , y ∈ D either x < y or x = y or y < x (trichotomy).

well order: If ≤ satisfies the additional property: for every
non-empty set E ⊂ D, there exists y ∈ E such that for all
x ∈ E , y ≤ x (y is call the smallest member of E ).
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Recall Basic definitions, nets and transfinite sequences

(D,≤) is called a

directed set: If ≤ is a partial order and every finite set of elements
has an upper bound (i.e., for x , y ∈ D there exists z ∈ D such that
x , y ≤ z)

A net is a function f : D → X from a directed set (D,≤) into a
topological space X .

A transfinite sequence is a net whose domain is a well-ordered set.

In this terminology, ordinary sequences f : ω → X are (transfinite)
sequences (where ω denotes the set of natural numbers).
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The Ordering Lemma

The Ordering Lemma is a version of the Axiom of Choice
popularized by Norman Howes in his book: “Modern Analysis and
Topology,” Springer Verlag, New York 1995.

The following
statement is from a preprint by Sconyers and Howes.

Lemma (Ordering Lemma)

For any partially order set (D,≤) there exists a cofinal C ⊂ D and
a well-order � on C such that � is compatible with ≤ in the sense
that if c0, c1 ∈ C and c0 ≤ c1, then c0 � c1.

C is cofinal in D means for every d ∈ D there exists c ∈ C such
that d ≤ c.
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The Ordering Lemma and Companions

Definition

Let (D,≤) be a partially ordered set, and (C ,�) a well ordered
set. We say that (C ,�) is a companion of (D,≤) provided C ⊂ D
is cofinal in (D,≤), and the well order � on C is compatible with
the partial order ≤ on C :

As above, this means if c0, c1 ∈ C and
c0 ≤ c1, then c0 � c1.

With this definition the Ordering Lemma can be stated simply as

Ordering Lemma: Every partially ordered set has a companion.
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Converging and clustering of nets

We recall the well known theory of convergence of J. L. Kelley.

Let (X , T ) be a topological space. A net f : (D,≤)→ X is said to
converge to a point x ∈ X provided for every neighborhood U of
x , there exists d ∈ D such that f (d ′) ∈ U for all d ′ ≥ d . In other
words,

↑ d = {d ′ ∈ D : d ′ ≥ d} ⊂ f −1(U)

or f −1(U) contains a final subset (↑d) of D (sometimes called the
cone over d).

A net f is said to cluster at x ∈ X (or x is a cluster point of f )
provided for every neighborhood U of x in X and for every d ∈ D
there exists d ′ ≥ d such that f (d ′) ∈ U, (in other words, f −1(U) is
cofinal in (D,≤)).
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Main Topic

Given a net f : (D,≤)→ X , and a companion (C ,�) of (D,≤),
there is the automatically the associated a transfinite sequence

f �C : (C ,�)→ X

We call such a transfinite sequence a companion (transfinite)
sequence associated with the net f .



Main Topic

QUESTION: What is the relation between convergenc (respectively
cluster) of a (companion) transfinite sequence f �C : (C �)→ X
and convergent (respectively cluster) of the given net f ?

This question has two interesting positive results (one of which is
due to Howes):

Lemma

If either the net f or the companion transfinite sequence f � C
converges to a point x, then the other one clusters at x.

Examples show that there are no other implications in general.
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Main Topic

In particular, it is possible for a companion sequence f � C to have
a cluster point but the net f to have no cluster point.



Converging versus clustering of transfinite sequences

Translating from the previous definitions:

A transfinite sequence f : κ→ X converges to x ∈ X means: for
every neighborhood U of x , f −1(U) is final segment of κ.

A transfinite sequence f : κ→ X clusters to x ∈ X means: for
every neighborhood U of x , f −1(U) is a cofinal subset of κ
(unbounded in κ).
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Garrett Birkhoff (1911-1996)

As is well known for a space X , a set A ⊂ X and a point
p ∈ cl(A) \A , there is a net f : D → A into A that converges to x .

However
Garrett Birkhoff in a paper in 1937 in the Annals of Mathematics
gave an example of a space X a set A ⊂ X and a point
p ∈ cl(A) \A such that no transfinite sequence in A converges to p.
(An easier example can be constructed usng the Tychonoff plank.)

Birkhoff wrote
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Garrett Birkhoff

“This shows that even unlimited use of transfinite sequences leads
one to situations inconsistent with our usual topological ideas.”

It seem possible that this pronouncement from such a well know
mathematician discouraged further research on transfinite
sequences. Birkhoff’s statement is correct for convergence of
transfinite sequences but not correct regarding clustering of
transfinite sequences, because “unlimited use of transfinite
sequences” would include clustering of transfinite sequences.

In any case, during the next 25 years there were essentially no
publications dealing with the theory of convergence of transfinite
sequences.
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Garrett Birkhoff vs Howes

Theorem (Howes)

If x ∈ cl(A) \ A then there exist a transfinite sequence in A that
clusters at x.

Proof. From the usual (Kelley) theory of convergence, there is a
net f : (D,≤)→ X such that f map into A and converges to x .

By the Ordering Lemma, there is a companion (C ,�) of (D,≤).
By the mentioned result, since f converges to x , the companion
sequence f �C clusters at x . Since companion sequences are
transfinite sequences, the result is proved.

So let us prove mentioned result.
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Garrett Birkhoff vs Howes

We prove: if a net f : (D,≤)→ X converges to x in X and (C ,�)
is a companion of (D,≤) then the companion sequence f �C
clusters at x .

Proof: Let U be a neighborhood of x in X . Since the net f
converges to x , f −1(U) is a final subset of D, i.e., there exists
d ∈ D such that

↑d = {d ′ ∈ D : d ′ ≥ d} ⊂ f −1(U)

It follows that (f �C )−1(U) is cofinal in (C ,�) because otherwise
(f �C )−1(U) is bounded in (C ,�); say (f �C )−1(U) ⊂ [0, c0]
where [0, c0] denotes an initial segment in (C ,�).
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Garrett Birkhoff vs Howes

It follows that (f �C )−1(U) is cofinal in (C ,�) because otherwise
(f �C )−1(U) is bounded in (C ,�); say (f �C )−1(U) ⊂ [0, c0)
where [0, c0) denotes an initial segment in (C ,�).

But by “directed set” there exists c1 ∈ C such that c1 > d , c0; so
c0 < c1 implies (by compatibility of the orders) that c0 ≺ c1, hence
c1 /∈ [0, c0); hence c1 /∈ f −1(U) which contradicts that c1 ≥ d .
Contradiction. Thus the companion sequence (f �C ) has x as a
cluster point. �



Main Question

If a companion transfinite sequence f � C has a cluster point, does
the net f have a cluster point?

The answer is “NO” in general, and this is the gap in the “proof”
by Sconyers and Howes.



Example

Let λ be an infinite cardinal number and put (D,≤) = (λ× λ,≤)
where ≤ is the product order on λ× λ: (α, β) ≤ (ξ, µ) iff α ≤ ξ
and β ≤ µ.

Let � denote the lexicographic order on λ× λ (i.e.,
(α, β) <lex (γ, δ) iff α < γ or α = γ and β < δ). It is known (in
other terminology) that (D,�) is a companion of (D,≤). This is
an example where C = D.



Example of the Gap

On the set X = (λ× λ) ∪ {∞}, define a topology in which all the
points in λ× λ are isolated and neighborhoods of ∞ have the form

Uα = {(β, 0) : α < β < λ} ∪ {∞}

Define a net f : D → X by f (d) = d for all d ∈ D. Then
f � C = f clusters at ∞ since the set λ× {0} is cofinal in the
lexicographic order, but f has no cluster point since λ× {0} is not
cofinal in the product order. This completes the proof of the
Example.
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Example of the Gap

Basic neighborhood of ∞ in the space X = D ∪ {∞}
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Example of the Gap

We note that (D,≤) has another companion, the well ordered
subset C ′ = {(α, α) : α < λ} with � the restriction of ≤ to C ′.
Then for any net f : D → X , because � is ≤, f � C ′ is a subnet of
f , hence if f � C ′ clusters in X , then also f clusters in X .



Example of the Gap

Thus different choices of companion of a directed set (D,≤) can
give different answers to the question:

For a net f : (D,≤)→ X , if f �C clusters at x , does also f
cluster at x?



Summary Theorem

Theorem

(1) If (D,≤) has a well ordered cofinal subset C then use C as the
companion and the partial order ≤ restricted to C as the well
order, and get that f � C is a subnet of f , hence, if f � C clusters
at x ∈ X , then the net f clusters at x.

(2) If (D,≤) does not have a well ordered cofinal subset then there
exist a companion (C ,�) of (D,≤) and a net f : D → X such
that the companion sequence f � C has a cluster point, but the net
f does not have a cluster point.
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