The Bolzano property and the cube-like complexes

Przemysław Tkacz and Marian Turzański

Cardnial Stefan Wyszyński University Warsaw, Poland

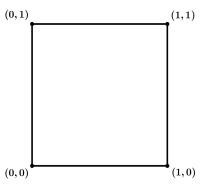
Theorem (Bolzano 1817)

If a continuous $f:[a,b] \rightarrow R$ and

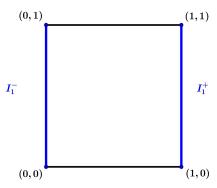
$$f(a) \cdot f(b) \leq 0$$
,

then there is $c \in [a, b]$ such that f(c) = 0.

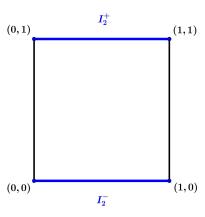
$$I_i^-$$
: = { $x \in I^n$: $x(i) = 0$ }, I_i^+ : = { $x \in I^n$: $x(i) = 1$ }



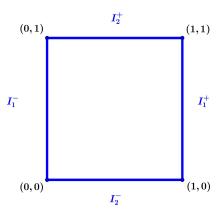
$$I_i^-$$
: = { $x \in I^n$: $x(i) = 0$ }, I_i^+ : = { $x \in I^n$: $x(i) = 1$ }



$$I_i^-$$
: = { $x \in I^n$: $x(i) = 0$ }, I_i^+ : = { $x \in I^n$: $x(i) = 1$ }



$$I_i^-$$
: = { $x \in I^n$: $x(i) = 0$ }, I_i^+ : = { $x \in I^n$: $x(i) = 1$ }



The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If a continuous

$$f = (f_1, f_2, \dots, f_n) : I^n \to \mathbb{R}^n,$$
 $f_i(I_i^-) \subset (-\infty, 0], \qquad f_i(I_i^+) \subset [0, \infty),$
there is a $\subset I^n$ such that $f(s) = (0, 0)$

then there is $c \in I^n$ such that $f(c) = (0, 0, \dots, 0)$.

The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If a continuous

$$f=(f_1,f_2,\ldots,f_n):I^n o\mathbb{R}^n,$$
 $f_i(I_i^-)\subset (-\infty,0], \qquad f_i(I_i^+)\subset [0,\infty),$ then there is $c\in I^n$ such that $f(c)=(0,0,\ldots,0).$

Theorem (Miranda 1940)

The Poincaré theorem is equivalent to the Brouwer fixed point theorem.

Definition (Kulpa 1994)

The topological space X has the n-dimensional Bolzano property if there exists a family $\{(A_i, B_i) : i = 1, \ldots, n\}$ of pairs of non-empty disjoint closed subsets such that for every continuous

$$f = (f_1, \ldots, f_n) : X \to \mathbb{R}^n,$$

for each i < n

$$f_i(A_i) \subset (-\infty, 0]$$
, and $f_i(B_i) \subset [0, \infty)$,

there exists $c \in X$ such that f(c) = 0.

$$\{(A_i,B_i): i=1,\ldots,n\}$$
: an n-dimensional boundary system.

Definition (Bolzano property)

The topological space X has the n-dimensional Bolzano property if there exists a family $\{(A_i, B_i) : i = 1, \ldots, n\}$ of pairs of disjoint closed subsets such that for every family $\{(H_i^-, H_i^+) : i = 1, \ldots, n\}$ of closed sets such that for each i < n

$$A_i \subset H_i^-, B_i \subset H_i^+$$
 and $H_i^- \cup H_i^+ = X$

we have

$$\bigcap \{H_i^- \cap H_i^+ : i = 1, \dots, n\} \neq \emptyset.$$

Theorem

If X has the n-dimensional Bolzano property. Then X has the Kulpa's n-dimensional Bolzano property.

Theorem

If X has the n-dimensional Bolzano property. Then X has the Kulpa's n-dimensional Bolzano property.

Theorem

If X is a normal and has the Kulpa's n-dimensional Bolzano property. Than X has the n-dimensional Bolzano property.

Properties

Theorem

Let $\{(A_i,B_i): i=1,...,n\}$ be the n-dimensional boundary system in T_5 space X. Then for each $i_0\in\{1,\ldots,n\}$ A_{i_0},B_{i_0} have an (n-1)-dimensional Bolzano property. Moreover the families

$$\{(A_{i_0}\cap A_i,A_{i_0}\cap B_i): i\neq i_0\}, \{(B_{i_0}\cap A_i,B_{i_0}\cap B_i): i\neq i_0\}$$

are an (n-1)-dimensional boundary systems in A_{i_0} , B_{i_0} respectively.

Properties

Theorem

Let $\{(A_i, B_i) : i = 1, ..., n\}$ be the n-dimensional boundary system in T_5 space X. Then for each $i_0 \in \{1, ..., n\}$ A_{i_0}, B_{i_0} have an (n-1)-dimensional Bolzano property.

Moreover the families

$$\{(A_{i_0}\cap A_i,A_{i_0}\cap B_i): i\neq i_0\}, \{(B_{i_0}\cap A_i,B_{i_0}\cap B_i): i\neq i_0\}$$

are an (n-1)-dimensional boundary systems in A_{i_0} , B_{i_0} respectively.

Corollary

Let $I_1, I_2 \subset \{1, \dots, n\}$, $I_1 \cap I_2 = \emptyset$. Then the subspace

$$\bigcap_{i\in I_1}A_i\cap\bigcap_{i\in I_2}B_i$$

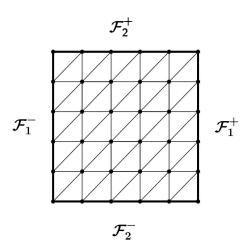
has an $(n - (card(I_1) + card(I_2)))$ -dimensional Bolzano property.

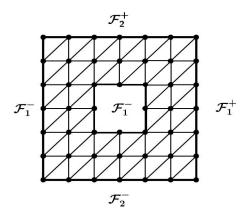
Let A be a finite set.

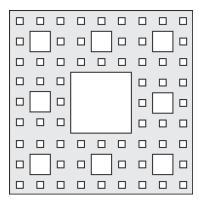
Definition

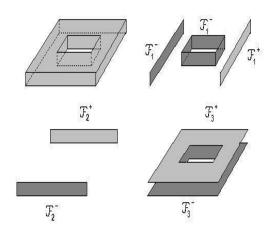
All complexes consisting of a single vertex are 0-cube-like (\mathcal{K}^0). The complex \mathcal{K}^n generated by the family $\mathcal{S} \subset P_{n+1}(A)$ is said to be an *n-cube-like complex* if:

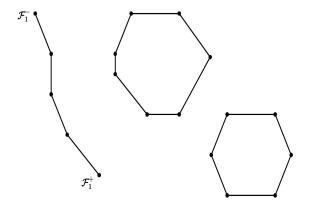
- (A) for every (n-1)-face $T \in \mathcal{K}^n \setminus \partial \mathcal{K}^n$ there exists exactly two n-simplexes $S, S' \in \mathcal{K}^n$ such that $S \cap S' = T$.
- (B) there exists a sequence of n pairs of subcomplexes $\mathcal{F}_i^-, \mathcal{F}_i^+$ called *i-th opposite faces* such that:
 - (B_1) $\partial \mathcal{K}^n = \bigcup_{i=1}^n \mathcal{F}_i^- \cup \mathcal{F}_i^+,$
 - (B_2) $\mathcal{F}_i^- \cap \mathcal{F}_i^+ = \emptyset$ for $i \in \{1, ..., n\}$,
 - (B₃) for each $i_0 \in \{1,...,n\}$ and each $\epsilon \in \{-,+\}$, $\mathcal{F}_{i_0}^{\epsilon}$ is an (n-1)-cube-like complex such that its opposite faces have a form $\mathcal{F}_{i_0}^{\epsilon} \cap \mathcal{F}_i^-, \mathcal{F}_{i_0}^{\epsilon} \cap \mathcal{F}_i^+$ for $i \neq i_0$.











Theorem

Let (\bar{K}, \bar{K}) be an n-cube-like polyhedron in R^m . Then \bar{K} has an n-dimensional Bolzano property.

Theorem (PT and Turzański 2008)

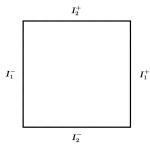
For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.

Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

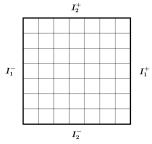
$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.



Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

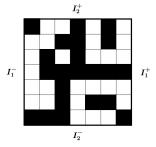
$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.



Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

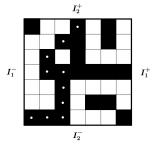
$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.



Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.



Theorem (PT and Turzański 2008)

For an arbitrary decomposition of n-dimensional cube I^n onto k^n cubes and an arbitrary coloring function $F: T(k) \to \{1,...n\}$ for some natural number $i \in \{1,...n\}$ there exists an i-th colored chain $P_1,...,P_r$ such that

$$P_1 \cap I_i^+ \neq \emptyset$$
 and $P_r \cap I_i^- \neq \emptyset$.

Theorem (Topological version)

Let $\{U_i: i=1,\cdots,n\}$ be an open covering of I^n . Then for some $i\in\{1,...n\}$ there exists continuum $W\subset U_i$ such that

$$W \cap I_i^- \neq \emptyset \neq W \cap I_i^+$$
.

Theorem (PT and Turzański)

The following statements are equivalent:

- 1. Theorem(on the existence of a chain)
- 2. The Poincaré theorem
- 3. The Brouwer Fixed Point theorem.

Theorem (Michalik, P T, Turzański 2015)

Let \mathcal{K}^n be an n-cube-like complex. Then for every map $\phi\colon |\mathcal{K}^n| \to \{1,...,n\}$ there exist $i\in \{1,...,n\}$ and i-th colored chain $\{s_1,...,s_m\}\subset |\mathcal{K}^n|$ such that

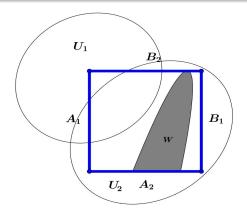
$$s_1 \in \mathcal{F}_i^-$$
 and $s_m \in \mathcal{F}_i^+$.

(The sequence $\{s_1,...,s_m\}\subset |\mathcal{K}^n|$ is a *chain* if for each $i\in\{1,...,m-1\}$ we have $\{s_i,s_{i+1}\}\in \mathcal{K}^n$.)

Characterization of the Bolzano property

Theorem

Let X be a locally connected space. A family $\{(A_i, B_i) : i = 1, ..., n\}$ of pairs of disjoint closed subsets is an n-dimensional boundary system iff for each open covering $\{U_i\}_{i=1}^n$ for some $i \le n$ there exists a connected set $W \subset U_i$ such that $W \cap A_i \ne \emptyset \ne W \cap B_i$.



The inverse system

Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where:

- (i) $\forall \sigma \in \Sigma \ X_{\sigma}$ is a compact space with *n*-dimensional boundary system $\{(A_i^{\sigma}, B_i^{\sigma}) : i = 1, ..., n\}.$
- (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_{i}^{\sigma}) = A_{i}^{\rho}, \ \pi_{\rho}^{\sigma}(B_{i}^{\sigma}) = B_{i}^{\rho}.$

The inverse system

Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where:

- (i) $\forall \sigma \in \Sigma \ X_{\sigma}$ is a compact space with n-dimensional boundary system $\{(A_i^{\sigma}, B_i^{\sigma}) : i = 1, ..., n\}$.
- (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_{i}^{\sigma}) = A_{i}^{\rho}, \ \pi_{\rho}^{\sigma}(B_{i}^{\sigma}) = B_{i}^{\rho}.$

Theorem,

The space $X = \varprojlim \{X_\sigma, \pi_\rho^\sigma, \Sigma\}$ has n-dimensional Bolzano property.

The inverse system

Let us consider the inverse system $\{X_{\sigma}, \pi_{\rho}^{\sigma}, \Sigma\}$ where:

- (i) $\forall \sigma \in \Sigma \ X_{\sigma}$ is a compact space with *n*-dimensional boundary system $\{(A_i^{\sigma}, B_i^{\sigma}) : i = 1, ..., n\}.$
- (ii) $\forall \sigma, \rho \in \Sigma, \rho \leq \sigma$ the map $\pi_{\rho}^{\sigma}: X_{\sigma} \to X_{\rho}$ is a surjection such that $\pi_{\rho}^{\sigma}(A_{i}^{\sigma}) = A_{i}^{\rho}, \ \pi_{\rho}^{\sigma}(B_{i}^{\sigma}) = B_{i}^{\rho}.$

Theorem

The space $X = \varprojlim \{X_\sigma, \pi_\rho^\sigma, \Sigma\}$ has n-dimensional Bolzano property.

Corollary

Pseudo-arc has the Bolzano property.

The Bolzano property and the dimension

Theorem (on Partitions)

Let X be a normal space. $dim X \ge n$ iff there exists a family $\{(A_i,B_i): i=1,\ldots,n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i: i=1,\ldots,n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^n L_i \neq \emptyset.$$

The Bolzano property and the dimension

Theorem (on Partitions)

Let X be a normal space. $dim X \ge n$ iff there exists a family $\{(A_i, B_i) : i = 1, \ldots, n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i : i = 1, \ldots, n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^n L_i \neq \emptyset.$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $dim X \ge n$.

The Bolzano property and the dimension

Theorem (on Partitions)

Let X be a normal space. $dim X \ge n$ iff there exists a family $\{(A_i, B_i) : i = 1, \ldots, n\}$ of pairs of non-empty disjoint closed subsets such that for every family $\{L_i : i = 1, \ldots, n\}$ where L_i is a partition between A_i and B_i we have

$$\bigcap_{i=1}^n L_i \neq \emptyset.$$

Theorem

If a normal space X has n-dimensional Bolzano property. Then $dim X \ge n$.

Theorem

If $X \times [0,1]$ is a normal space X and $dim X \ge n$. Then X has an n-dimensional Bolzano property.

Problem

Is there a gap between the Bolzano property and the dimension of X?