Productively (and non-productively) Menger spaces

Piotr Szewczak

Cardinal Stefan Wyszyński University, Poland, and Bar-Ilan University, Israel joint work with Boaz Tsaban

Toposym 2016

Supported by National Science Center Poland UMO-2014/12/T/ST1/00627

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$$
\mathcal{F}_{1} \subseteq \mathcal{O}_{1}
$$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$
$\mathcal{F}_{3} \subseteq \mathcal{O}_{3}$

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

Menger \Rightarrow Lindelöf

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$$
\sigma \text {-compact } \Rightarrow \text { Menger } \Rightarrow \text { Lindelöf }
$$

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

σ-compact \Rightarrow Menger \Rightarrow Lindelöf
Aurichi: Every Menger space is D

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

$$
\mathcal{F}_{3} \subseteq \mathcal{O}_{3}
$$

$$
\sigma \text {-compact } \Rightarrow \text { Menger } \Rightarrow \text { Lindelöf }
$$

Aurichi: Every Menger space is D
Chodunsky, Repovš, Zdomskyy: Mengers property characterizes filters whose Mathias forcing notion does not add dominating functions

The Menger property

Menger's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \ldots$ covers X

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

σ-compact \Rightarrow Menger \Rightarrow Lindelöf
Aurichi: Every Menger space is D
Chodunsky, Repovš, Zdomskyy: Mengers property characterizes filters whose Mathias forcing notion does not add dominating functions

Tsaban: The most general class for which a general form of Hindmans Finite Sums Theorem holds

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}:$ increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{y \in Y} x \leq^{*} y$

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in[\mathbb{N}] \infty} \exists_{y \in Y} x \leq^{*} y$
- d: minimal cardinality of a dominating set

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in[\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^{*} y$
- d: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is nondominating

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in[\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^{*} y$
- d: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is nondominating

- A Lindelöf X with $|X|<\mathfrak{d}$ is Menger

Menger meets combinatorics

$[\mathbb{N}]^{\infty}$: infinite subsets of \mathbb{N}
$[\mathbb{N}]^{\infty} \ni x=\{x(1), x(2), \ldots\}$: increasing enumeration, $[\mathbb{N}]^{\infty} \subseteq \mathbb{N}^{\mathbb{N}}$

- $x \leq y$ if $x(n) \leq y(n)$ for all n
- $x \leq^{*} d$ if $x(n) \leq y(n)$ for almost all n
- Y is dominating if $\forall_{x \in[\mathbb{N}]^{\infty}} \exists_{y \in Y} x \leq^{*} y$
- d: minimal cardinality of a dominating set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Menger \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is nondominating

- A Lindelöf X with $|X|<\mathfrak{d}$ is Menger
- A dominating $X \subseteq[\mathbb{N}]^{\infty}$ is not Menger

Products of Menger spaces

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger
Sets of reals

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger
Sets of reals
Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger
Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$:
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger
Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$:
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger
Problem (sets of reals)
Find the minimal hypotheses that Menger's property is not productive

Products of Menger spaces

Todorčević (ZFC):
There is a Menger set whose square is not Menger

Sets of reals

Just, Miller, Scheepers, Szeptycki (CH):
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger
Scheepers, Tsaban $(\operatorname{cov}(\mathcal{M})=\operatorname{cof}(\mathcal{M}))$:
There is a Menger $M \subseteq \mathbb{R}$ whose square $M \times M$ is not Menger
Problem (sets of reals)
Find the minimal hypotheses that Menger's property is not productive
$\mathrm{P}(\mathbb{N}) \approx\{0,1\}^{\omega}$: the Cantor space
$\mathrm{P}(\mathbb{N})=[\mathbb{N}]^{\infty} \cup$ Fin

\mathfrak{d}-unbounded sets

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded if }|A| \geq \mathfrak{d} \text { and } \forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}
$$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$
$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

Fin
A

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$
$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded } \Rightarrow A \cup \text { Fin is Menger }
$$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded } \Rightarrow A \cup \text { Fin is Menger }
$$

- Fin $\subseteq \bigcup_{n} O_{n}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded } \Rightarrow A \cup \text { Fin is Menger }
$$

- Fin $\subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

- $\operatorname{Fin} \subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

- $\operatorname{Fin} \subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

- $\operatorname{Fin} \subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$
- $\left|A \backslash \bigcup_{n} O_{n}\right|<\mathfrak{d}$

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

- $\operatorname{Fin} \subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$
- $\left|A \backslash \bigcup_{n} O_{n}\right|<\mathfrak{d} \Rightarrow A \backslash \bigcup_{n} O_{n}$ is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded $\Rightarrow A \cup$ Fin is Menger

- Fin $\subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$
- $\left|A \backslash \bigcup_{n} O_{n}\right|<\mathfrak{d} \Rightarrow A \backslash \bigcup_{n} O_{n}$ is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded } \Rightarrow A \cup \text { Fin is Menger }
$$

- Fin $\subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$
- $\left|A \backslash \bigcup_{n} O_{n}\right|<\mathfrak{d} \Rightarrow A \backslash \bigcup_{n} O_{n}$ is Menger

\mathfrak{d}-unbounded sets

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded } \Rightarrow A \cup \text { Fin is Menger }
$$

- $\operatorname{Fin} \subseteq \bigcup_{n} O_{n}$
- $\mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \subseteq[\mathbb{N}]^{\infty}$ is compact, $\exists_{\mathbf{c} \in[\mathbb{N}]^{\infty}} \mathrm{P}(\mathbb{N}) \backslash \bigcup_{n} O_{n} \leq \mathbf{c}$
- $\left|A \backslash \bigcup_{n} O_{n}\right|<\mathfrak{d} \Rightarrow A \backslash \bigcup_{n} O_{n}$ is Menger
- $A \cup$ Fin is Menger

Main results

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded if }|A| \geq \mathfrak{d} \text { and } \forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}
$$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Main results

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded if }|A| \geq \mathfrak{d} \text { and } \forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}
$$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Corollary

$$
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Corollary

$$
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\exists \operatorname{cf}(\mathfrak{d})$-unbounded $X \subseteq[\mathbb{N}]^{\infty},|X|=\operatorname{cf}(\mathfrak{d})$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Corollary

$$
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\exists \operatorname{cf}(\mathfrak{d})$-unbounded $X \subseteq[\mathbb{N}]^{\infty},|X|=\operatorname{cf}(\mathfrak{d})$
- $|X|=\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow X$ is Menger

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Corollary

$$
\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\exists \operatorname{cf}(\mathfrak{d})$-unbounded $X \subseteq[\mathbb{N}]^{\infty},|X|=\operatorname{cf}(\mathfrak{d})$
- $|X|=\operatorname{cf}(\mathfrak{d})<\mathfrak{d} \Rightarrow X$ is Menger
- \exists Menger $Y \subseteq[\mathbb{N}]^{\infty}, X \times Y$ is not Menger

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

$\mathrm{P}(\mathbb{N})$
Fin
$[\mathbb{N}]^{\infty}, \infty$
cFin

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$

$\mathrm{P}(\mathbb{N})$
Fin
$[\mathbb{N}]^{\infty, \infty}$
cFin

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger

$\mathrm{P}(\mathbb{N})$
Fin
$[\mathbb{N}]^{\infty, \infty}$
cFin

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger
- $\tau: \mathrm{P}(\mathbb{N}) \rightarrow \mathrm{P}(\mathbb{N}), \tau(a)=a^{c}=a \oplus \mathbb{N}$

$\mathrm{P}(\mathbb{N})$
Fin
$[\mathbb{N}]^{\infty, \infty}$
cFin

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger
- $\tau: \mathrm{P}(\mathbb{N}) \rightarrow \mathrm{P}(\mathbb{N}), \tau(a)=a^{c}=a \oplus \mathbb{N}$
- $X=\tau[A \cup$ Fin $]=\left\{a^{c}: a \in A\right\} \cup c$ Fin $\subseteq[\mathbb{N}]^{\infty}$

$\mathrm{P}(\mathbb{N})$
Fin
$[\mathbb{N}]^{\infty, \infty}$
cFin

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger
- $\tau: \mathrm{P}(\mathbb{N}) \rightarrow \mathrm{P}(\mathbb{N}), \tau(a)=a^{c}=a \oplus \mathbb{N}$
- $X=\tau[A \cup$ Fin $]=\left\{a^{c}: a \in A\right\} \cup c F i n \subseteq[\mathbb{N}]^{\infty}$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger
- $\tau: \mathrm{P}(\mathbb{N}) \rightarrow \mathrm{P}(\mathbb{N}), \tau(a)=a^{c}=a \oplus \mathbb{N}$
- $X=\tau[A \cup$ Fin $]=\left\{a^{c}: a \in A\right\} \cup c$ Fin $\subseteq[\mathbb{N}]^{\infty}$
- \mathfrak{d}-unbounded $\left\{a^{c}: a \in A\right\} \subseteq X$

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}]^{\infty}}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow \exists$ bi- \mathfrak{d}-unbounded $A \subseteq[\mathbb{N}]^{\infty, \infty}$
- $A \cup$ Fin is Menger
- $\tau: \mathrm{P}(\mathbb{N}) \rightarrow \mathrm{P}(\mathbb{N}), \tau(a)=a^{c}=a \oplus \mathbb{N}$
- $X=\tau[A \cup$ Fin $]=\left\{a^{c}: a \in A\right\} \cup c F i n \subseteq[\mathbb{N}]^{\infty}$
- \mathfrak{d}-unbounded $\left\{a^{c}: a \in A\right\} \subseteq X$
- \exists Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
\boldsymbol{X}							

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary
 $$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
\boldsymbol{X}	$\boldsymbol{?}$						

Main results

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$ $A \subseteq[\mathbb{N}]^{\infty, \infty}$ is bi- \mathfrak{d}-unbounded if A and $\left\{a^{c}: a \in A\right\}$ are \mathfrak{d}-unbounded \mathfrak{r} : \min card of $A \subseteq[\mathbb{N}]^{\infty}$, there is no $r \in[\mathbb{N}]^{\infty}$ s.t. for all $a \in A$ $r \cap a$ and $r \backslash a$ are infinite

Corollary

$$
\mathfrak{d} \leq \mathfrak{r} \Rightarrow \exists \text { Menger } X, Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y \text { is not Menger }
$$

Productivity of Menger

MA	Cohen	Random	Sacks	Hechler	Laver	Mathias	Miller
\boldsymbol{X}	$\sqrt{ } ?$						

Theorem? (Zdomskyy)

In the Miller model Menger is productive

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

\mathcal{O}_{1}

\mathcal{O}_{3}

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

$$
\mathcal{F}_{1} \subseteq \mathcal{O}_{1}
$$

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

Hurewicz \Rightarrow Menger

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

σ-compact \Rightarrow Hurewicz \Rightarrow Menger

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

σ-compact \Rightarrow Hurewicz \Rightarrow Menger
Aurichi, Tall $\left(\mathfrak{d}=\aleph_{1}\right)$: metrizable productively Lindelöf \Rightarrow Hurewicz

The Hurewicz property

Hurewicz's property: for every sequence of open covers $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots$ of X there are finite $\mathcal{F}_{1} \subseteq \mathcal{O}_{1}, \mathcal{F}_{2} \subseteq \mathcal{O}_{2}, \ldots$ such that for each $x \in X$, the set $\left\{n \in \mathbb{N}: x \notin \bigcup \mathcal{F}_{n}\right\}$ is finite

$\mathcal{F}_{1} \subseteq \mathcal{O}_{1}$

$\mathcal{F}_{2} \subseteq \mathcal{O}_{2}$

σ-compact \Rightarrow Hurewicz \Rightarrow Menger
Aurichi, Tall $\left(\mathfrak{d}=\aleph_{1}\right)$: metrizable productively Lindelöf \Rightarrow Hurewicz Sz (ZFC): separable productively paracompact \Rightarrow Hurewicz

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not z^{*} y$

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not \mathbb{Z}^{*} y$
- Y is bounded if $\exists_{c \in[\mathbb{N}]} \forall_{y \in Y} y \leq{ }^{*} c$

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not \mathbb{Z}^{*} y$
- Y is bounded if $\exists_{c \in[\mathbb{N}] \infty} \forall_{y \in Y} y \leq^{*} c$
- \mathfrak{b} : minimal cardinality of an unbounded set

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not \mathbb{Z}^{*} y$
- Y is bounded if $\exists_{c \in[\mathbb{N}]} \forall_{y \in Y} y \leq{ }^{*} c$
- \mathfrak{b} : minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is unbounded

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not \mathbb{Z}^{*} y$
- Y is bounded if $\exists_{c \in[\mathbb{N}]} \forall_{y \in Y} y \leq{ }^{*} c$
- \mathfrak{b} : minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is unbounded

Hurewicz meets combinatorics

- $x \leq^{*} y$ if $x(n) \leq y(n)$ for almost all n
- $y \leq^{\infty} x$ if $x \not \mathbb{Z}^{*} y$
- Y is bounded if $\exists_{c \in[\mathbb{N}]} \forall_{y \in Y} y \leq{ }^{*} c$
- \mathfrak{b} : minimal cardinality of an unbounded set

Theorem (Hurewicz)

Assume that X is Lindelöf and zero-dimensional
X is Hurewicz \Leftrightarrow continuous image of X into $[\mathbb{N}]^{\infty}$ is unbounded

- A Lindelöf X with $|X|<\mathfrak{b}$ is Hurewicz
- An unbounded $X \subseteq[\mathbb{N}]^{\infty}$ is not Hurewicz

Main theorem again

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

Main theorem again

$$
A \subseteq[\mathbb{N}]^{\infty} \text { is } \mathfrak{d} \text {-unbounded if }|A| \geq \mathfrak{d} \text { and } \forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}
$$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

$$
Y=A \cup \text { Fin, } A \text { is } \mathfrak{d} \text {-unbounded }
$$

Main theorem again

$A \subseteq[\mathbb{N}]^{\infty}$ is \mathfrak{d}-unbounded if $|A| \geq \mathfrak{d}$ and $\forall_{\mathbf{c} \in[\mathbb{N}] \infty}|\{a \in A: a \leq \mathbf{c}\}|<\mathfrak{d}$

Theorem (Sz, Tsaban)

If $X \subseteq[\mathbb{N}]^{\infty}$ contains a \mathfrak{d}-unbounded set or a $\operatorname{cf}(\mathfrak{d})$-unbounded set, then there is a Menger $Y \subseteq \mathrm{P}(\mathbb{N}), X \times Y$ is not Menger

$$
Y=A \cup \text { Fin, } A \text { is } \mathfrak{d} \text {-unbounded }
$$

Tsaban, Zdomskyy:
H is Hurewicz and hereditarily Lindelöf $\Rightarrow H \times Y$ is Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d}-unbounded $\left\{y_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq Y$

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d}-unbounded $\left\{y_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq Y$
- \exists Menger $M \subseteq \mathrm{P}(\mathbb{N}), Y \times M$ not Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{\boldsymbol{s}_{\alpha}: \alpha<\mathfrak{b}\right\}, \boldsymbol{s}_{\beta} \leq^{*} \boldsymbol{s}_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d}-unbounded $\left\{y_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq Y$
- \exists Menger $M \subseteq \mathrm{P}(\mathbb{N}), Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M,(X \times H) \times M$ not Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{\boldsymbol{s}_{\alpha}: \alpha<\mathfrak{b}\right\}, \boldsymbol{s}_{\beta} \leq^{*} \boldsymbol{s}_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d}-unbounded $\left\{y_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq Y$
- \exists Menger $M \subseteq \mathrm{P}(\mathbb{N}), Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M,(X \times H) \times M$ not Menger
- $H \times M$ is Menger, $X \times(H \times M)$ is Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger
Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

- Asm X prod Menger, $X \times H$ not Hurewicz
- $X \times H \rightarrow Y \subseteq[\mathbb{N}]^{\infty}$ unbounded
- $(\mathfrak{b}=\mathfrak{d})$
\exists dominating $\left\{s_{\alpha}: \alpha<\mathfrak{b}\right\}, s_{\beta} \leq^{*} s_{\alpha}, \beta \leq \alpha$
- $s_{\alpha} \leq^{\infty} y_{\alpha} \in Y$
- \mathfrak{d}-unbounded $\left\{y_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq Y$
- \exists Menger $M \subseteq \mathrm{P}(\mathbb{N}), Y \times M$ not Menger
- $(X \times H) \times M \rightarrow Y \times M,(X \times H) \times M$ not Menger
- $H \times M$ is Menger, $X \times(H \times M)$ is Menger

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

What about general spaces?

Productivity of Menger and Hurewicz

X is productively Menger if for each Menger $M, X \times M$ is Menger

Theorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces productively Menger \Rightarrow productively Hurewicz

What about general spaces?

Miller, Tsaban, Zdomskyy $\left(\mathfrak{d}=\aleph_{1}\right)$:
metrizable productively Lindelöf \Rightarrow productively Hurewicz metrizable productively Lindelöf \Rightarrow productively Menger

Productivity of Menger and Hurewicz

 X is productively Menger if for each Menger $M, X \times M$ is MengerTheorem (Sz, Tsaban) $\mathfrak{b}=\mathfrak{d}$, hereditarily Lindelöf spaces
productively Menger \Rightarrow productively Hurewicz

What about general spaces?

Miller, Tsaban, Zdomskyy $\left(\mathfrak{d}=\aleph_{1}\right)$:
metrizable productively Lindelöf \Rightarrow productively Hurewicz metrizable productively Lindelöf \Rightarrow productively Menger

Theorem (Sz, Tsaban) $\mathfrak{d}=\aleph_{1}$, general spaces productively Lindelöf \Rightarrow productively Menger \Rightarrow productively Hurewicz

Open problems

Sets of reals

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

- $(\mathfrak{b}=\mathfrak{d})$ productively Menger \neq productively Hurewicz?

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

- $(\mathfrak{b}=\mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

- $(\mathfrak{b}=\mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

- $X \subseteq \mathbb{R},|X|<\mathfrak{b} \Rightarrow X \times$ Hurewicz is Lindelöf?

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

- $(\mathfrak{b}=\mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

- $X \subseteq \mathbb{R},|X|<\mathfrak{b} \Rightarrow X \times$ Hurewicz is Lindelöf?
- $\left(\mathfrak{d}=\aleph_{1}\right)$ productively Menger \neq productively Hurewicz

Open problems

Sets of reals

- $\mathfrak{d} \leq \mathfrak{r} \Leftrightarrow$ Menger is not productive?
- Any Lusin set is not productively Menger?

Hereditarily Lindelöf spaces

- $(\mathfrak{b}=\mathfrak{d})$ productively Menger \neq productively Hurewicz?

General spaces

- $X \subseteq \mathbb{R},|X|<\mathfrak{b} \Rightarrow X \times$ Hurewicz is Lindelöf?
- $\left(\mathfrak{d}=\aleph_{1}\right)$ productively Menger \neq productively Hurewicz
- Any Sierpiński set is not productively Hurewicz? is not productively Menger? under CH?

