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Introduction

Joint work with Santi Spadaro.

We begin with famous and influential question of Alexandroff and
Urysohn:

Question (Alexandroff-Urysohn, 1923)

Is the cardinality of every compact, T2, first countable space
bound by the continuum?

and the celebrated solution by Arhangel’skii,

Theorem (Arhangel’skii, 1969)

For any T2 space X , |X | ≤ 2χ(X )L(X )
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Generalizations of Arhangel’skii’s inequality

The subsequent research activity on cardinal inequalities
generalizing Arhangel’skii’s inequality spans several decades

Theorems

(Arhangel’skii-Šapirovskii) If X is T2, |X | ≤ 2ψ(X )t(X )L(X )

(Bell-Ginsburg-Woods) If X is normal then |X | ≤ 2χ(X )wL(X )

And many others...
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Examples and problems

Examples ( Shelah, Gorelic, Dow, Usuba)

There are consistent examples of Lindelöf spaces with points Gδ
with |X | = 2ℵ1 > 2ℵ0 .

Problems

(Arhangel’skii-Shelah-Gorelic) If X is Lindelöf T2, and points
are Gδ is |X | ≤ 2ℵ1?

Is it consistent that |X | ≤ 2L(X )ψ(X )? for T2 spaces?

If X is Lindelöf, T1 and first countable is |X | ≤ 2ℵ0?

MAIN THEME: Weaken the Lindelöf and character assumptions
and possibly strengthen the separation axioms to obtain bounds on
|X |.
What can still be said about the class of compact T2 spaces?
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and possibly strengthen the separation axioms to obtain bounds on
|X |.
What can still be said about the class of compact T2 spaces?
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Compact spaces in the Gδ topology

Two questions attributed to Arhangel’skii concern compacta and
are natural generalizations of Alexandroff-Urysohn question:

Questions (Arhangel’skii, 1970; Juhasz?)

If X is compact T2 and Xδ is X with the Gδ topology, is it
true that every open covering of Xδ has a subfamily of power
2ω whose union is dense in Xδ?

I.e., if X is compact and T2, is the weak Lindelöf degree of Xδ
bound by the continuum?

If X is compact and T2, is the Lindelöf degree of Xδ bound by
the continuum?

REMARK:
If X has countable pseudo-character, then Xδ is discrete.
Hence |X | = wL(X ) = L(X ).
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bound by the continuum?

If X is compact and T2, is the Lindelöf degree of Xδ bound by
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Lindelöf degree of Xδ and incompactness of ωκ

The second question attributed to Arhangel’skii was resolved in the
negative sometime ago:

Theorem (Mycielski, 1964)

For every κ below the first inaccessible, e(ωκ) = κ

Corollary

The Gδ topology on (ω + 1)κ has Lindelof degree κ (for κ < the
first inaccessible).

Other related results:

Theorem (Gorelic, 1996)

For κ below the first measurable, e(ω2κ) = κ
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Partial positive results

Assume X is compact T2.

L(Xδ) ≤ 2ℵ0 assuming

X is LOTS (Williams-Fleischman, 1977)

X is countably tight (Pytkeev, 1983)

wL(Xδ) ≤ 2ℵ0 assuming

X is ccc (Juhasz, 1972)

Game theoretic property generalizing the ccc (Spadaro).
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Large Lindelöf degree of Xδ

Theorem (Mycielski)

The Lindelöf degree of κκ
+

(wrt the product topology) is κ+.

Corollary

The Lindelöf degree of [0, 1]c
+

in the Gδ topology is c+.

Gδ-topology on [0, 1]c
+ ⊇ Product topology on (D([0, 1]))c

+
.

Remark X = [0, 1]c
+

is ccc. So, by Juhasz’s result, the weak
Lindelöf degree of Xδ is continuum.

Paul J. Szeptycki Lindelöf number of compacta under the Gδ topology
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Large Lindelöf degree of Xδ

Let’s prove Mycielski’s Theorem

Theorem

The Lindelöf degree of κκ
+

(wrt the product topology) is κ+.

Proof. For s a finite partial function from κ+ → κ,

[s] = {f ∈ κκ+ : s ⊆ f }

Let
U = {[s] : s is not 1-1 on its domain}

U is an open cover of κκ
+

For any V ⊆ U of size ≤ κ, V ⊆ Uα = {[s] : dom(s) ⊆ α}

Hence does not cover any f such that f � α is 1-1.
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Large weak Lindelöf degree of Xδ

Example

There is a compact K ⊆ (2ω)c
+

such that wL(Kδ) = c+

Remarks

The cover witnessing large weak Lindelöf degree is the same
as before

U = {[s] : s is not 1-1} and Uα = {[s] ∈ U : dom(s) ⊆ α}

K is constructed as an inverse limit

K = lim
←
{Kα : α < c+}

such that
Kα ⊆ (2ω)α, and
For all α,

(
Kα+1 \

⋃
Uα
)
6= ∅
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Example

There is a compact K ⊆ (2ω)c
+

such that wL(Kδ) = c+

Remarks

The cover witnessing large weak Lindelöf degree is the same
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Questions

Is there a bound for the weak Lindelöf number?

Question

Is wL(Xδ) ≤ c+ for X compact T2?

Remark: If there is compact space that can be partitioned in κ
many Gδ sets, then there is a compact space X such that
wL(Xδ) = κ+.

Theorem (Arhangel’skii)

A compact T2 space cannot be partitioned into more than c many
closed Gδ sets.

Question

Is there a compact T2 space that is partitionable into more than
continuum many Gδ sets?

Is there a bound for the size of such
partitions?
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Question

Is wL(Xδ) ≤ c+ for X compact T2?

Remark: If there is compact space that can be partitioned in κ
many Gδ sets, then there is a compact space X such that
wL(Xδ) = κ+.

Theorem (Arhangel’skii)

A compact T2 space cannot be partitioned into more than c many
closed Gδ sets.

Question

Is there a compact T2 space that is partitionable into more than
continuum many Gδ sets?

Is there a bound for the size of such
partitions?
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Questions

Can our example be made homogeneous?

Question

Is there a homogeneous compact T2 space X such that
wL(Xδ) > c?

Remark: Our example has cellularity c+.

Problem (van Douwen)

Do all compact homogeneous spaces have cellularity bound by c?
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THANK YOU!
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