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• X regular: w(X) ≤ 2d(X ).

• X Hausdorff: w(X) ≤ 222d(X )

. Sharp (Kunen - Juhász)
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pinning down number of a space X:

pd(X)=min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

⋆ pd(X) ≤ d(X).

• T. Banakh, A. Ravsky: e−(X), foredensity ;

• Aurichi, Bella: dNA(X),



First results

• U is a NEA on X iff U : X → τX s.t. a ∈ U(a) for all a ∈ X

• P ⊂ X pins down a nea U iff P ∩ U(a) 6= ∅ for all a ∈ X

• pd(X)= min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

• pd(X) ≤ d(X).



First results

• U is a NEA on X iff U : X → τX s.t. a ∈ U(a) for all a ∈ X

• P ⊂ X pins down a nea U iff P ∩ U(a) 6= ∅ for all a ∈ X

• pd(X)= min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

• pd(X) ≤ d(X).

Theorem (T. Banakh, A. Ravsky)

• If X is T2, |X | < ℵω, then pd(X) = d(X).

• If 22cf(κ)

> κ > cf(κ), then there is a T2 space X with

pd(X) < d(X).



First results

• U is a NEA on X iff U : X → τX s.t. a ∈ U(a) for all a ∈ X

• P ⊂ X pins down a nea U iff P ∩ U(a) 6= ∅ for all a ∈ X

• pd(X)= min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

• pd(X) ≤ d(X).

Theorem (T. Banakh, A. Ravsky)

• If X is T2, |X | < ℵω, then pd(X) = d(X).

• If 22cf(κ)

> κ > cf(κ), then there is a T2 space X with

pd(X) < d(X).

A topological space X is a pd-example iff pd(X) < d(X).



First results

• U is a NEA on X iff U : X → τX s.t. a ∈ U(a) for all a ∈ X

• P ⊂ X pins down a nea U iff P ∩ U(a) 6= ∅ for all a ∈ X

• pd(X)= min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

• pd(X) ≤ d(X).

Theorem (T. Banakh, A. Ravsky)

• If X is T2, |X | < ℵω, then pd(X) = d(X).

• If 22cf(κ)

> κ > cf(κ), then there is a T2 space X with

pd(X) < d(X).

A topological space X is a pd-example iff pd(X) < d(X).

Questions

• Regular pd-example?

• ZFC pd-example?
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• U is a NEA on X iff U : X → τX s.t. a ∈ U(a) for all a ∈ X

• P ⊂ X pins down a nea U iff P ∩ U(a) 6= ∅ for all a ∈ X

• pd(X) = min{κ : ∀U ∈ NEA(X) ∃A ∈
[

X
]κ

(A pins down U)}

Theorem (I. Juhász, L.S., Z. Szentmiklóssy)

T.F.A.E:

(1) 2κ < κ+ω for each cardinal κ,

(2) pd(X) = d(X) for each T2 space X,

(3) pd(X) = d(X) for each 0-dimensional T2 space X.
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∆(X) = min{|U| : ∅ 6= U ⊂open X}.
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We prove:

If 2ω > ωω then there is a 0-dimensional space X with pd(X) = ω and

|X | = ∆(X) = d(X) = ωω.
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Some observations

If pd(X) < d(X), then ∃Y ⊂open X s.t. pd(Y ) < d(Y ) and ∆(Y ) = |Y |.

First pd-examples:

pd(X) = cf(|X |) < d(X) = ∆(X) = |X |.

Questions

• Can d(X) be a regular cardinal?

• Can |X | be a regular cardinal?

Modified construction:

pd(X) = cf(|X |) <d(X) = cf(d(X))< ∆(X) = |X |
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• µ > cf(µ)

• S(µ) = {a ∈ [µ ∩Reg]cf(µ) : sup a = µ}

• U(a) = {D : D is an ultrafilter on a,D ∩ Jbd [a] = ∅}.

• pp(µ)= sup{cf(
∏

a/D) : a ∈ S(µ),D ∈ U(a))}

Shelah’s Strong Hypothesis:

pp(µ) = µ+ for all singular cardinal µ.
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Theorem (I. Juhász, L.S., Z. Szentmiklóssy)

The following three statements are equiconsistent:

(i) There is a singular cardinal λ with pp(λ) > λ+, i.e. Shelah’s
Strong Hypothesis fails;

(ii) there is a 0-dimensional Hausdorff space X such that
|X | = ∆(X) is a regular cardinal and pd(X) < d(X);

(iii) there is a topological space X such that |X | = ∆(X) is a regular
cardinal and pd(X) < d(X).

No equivalence:
Con(failure of SSH + the limit cardinals are strong limit)
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Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy )

T:F.A.E:

(1) 2κ < κ+ω for each cardinal κ,

(2) pd(X) = d(X) for each T2 space X,

(3) pd(X) = d(X) for each 0-dimensional T2 space X.

(4) pd(X) = d(X) for all connected, locally connected regular spaces.

(5) pd(X) = d(X) for all Abelian topological groups.

What about connected Tychonoff spaces?

Theorem (JvMSSz)

It is consistent that

• there is a 0-dimensional space X with pd(X) < d(X)

• pd(X) = d(X) for all connected Tychonoff spaces.
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A connected, locally connected Tychonoff pd-example

If X is a connected, Tychonoff space then |X | ≥ 2ω.

Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)

T:F.A.E:

(1) There is a singular cardinal µ ≥ 2ω which is not a strong limit
cardinal.

(2) There is a neat, connected, locally connected Tychonoff space X
with singular ∆(X) = |X | and pd(X) < d(X).

(3) There is a neat, pathwise connected, locally pathwise connected

Tychonoff Abelian topological group X with singular ∆(X) = |X |
and pd(X) < d(X).
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0-dimensional pd-example

connected T3 pd-example

connected, locally connected
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group pd-example

locally pathwise connected
T3.5 group pd-example

(1) (2)

(3)

(4)
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• Assume that X is a T3 pd-example.

• Ciesielski and Wojciechowsk: there is a separable connected T3

space P of size ω1

• Fix p ∈ P. The underlying set of Z is

(

X × (P \ {p})
)

∪ {∞}.

• Topology on X × (P \ {p}) in Z is the product topology.

A basic neighborhood of ∞ has the form

(

X × (U \ {p})
)

∪ {∞},

where U is any neighborhood of p in P.

• Theorem: Z is connected T3, d(X) = d(Z ) and pd(X) = pd(Z ).
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• de Groot introduced the superextension of X denoted by λX

• L is linked system if any two of its members meet.

•
λX = {L : L is a maximal linked family of

of closed subsets of X . }

• For A ⊂ X let

A+ = {M ∈ λX : (∃M ∈ M)(M ⊂ A)}.

• closed subbase of λX :
{A+ : A is closed in X}

• λf X= {L ∈ λX : ∃M ∈ [X ]<ω (∀L ∈ L) L ∩ M ∈ L}

• Verbeek: X is connected =⇒ λf X is connected and locally
connected

• JvMSSz: d(X) = d(λf X) and pd(X) = pd(λf X)
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If X is a T3.5-space, then F (X) and A(X) denote the free topological

group and the free abelian topological group on X .

F (X) is a topological group containing (a homeomorphic copy of) X
such that

1. X generates F (X) algebraically,

2. every continuous function f : X → H, where H is any topological

group, can be extended to a continuous homomorphism
f̄ : F (X) → H.

Similarly for A(X).
The existence of these groups was proved by Markov.

Theorem (JvMSSz)

Let X be a T3.5-space. Then

d(X) = d(F (X)) = d(A(X)).

If X is neat, then so are A(X) and F (X), and

pd(X) = pd(A(X)) = pd(F (X)).
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• Hartman Mycielski construction

• Let (G, ·, e) be a Tychonoff topological group.

G• =
{

f ∈ [0,1)G :

for some sequence 0 = a0 < a1 < · · · < an = 1

f is constant on [ak , ak+1) for every k = 0, . . . , n−1
}

.

• Define ∗ on G• by (f ∗ g)(x) = f (x) · g(x) for all f , g ∈ G• and

x ∈ [0, 1).

• (G•, ∗, e•) is a group, where e•(r) = e for each r ∈ [0, 1).

• G embeds into G• via x 7→ x•, where x•(r) = x for every

r ∈ [0, 1).

• For e ∈ V ∈ τG and ε > 0, put

O(V , ε) = {f ∈ G• : λ({r ∈ [0, 1) : f (r) 6∈ V})} < ε}

• The O(V , ε) are the neighborhoods of the element e• of G• that

generate the topology.
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Properties of Hartman Mycielski extension G•

Theorem
G• is a topological group and is pathwise connected and locally

pathwise connected.

d(G•) ≤ d(G).

Theorem (JvMSSz)

• d(G) = d(G•).

• If G is neat, and |G| ≥ 2ω, then G• is neat and pd(G•) = pd(G).
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Positive results

Theorem

If X is compact then pd(X) = d(X).

Question (JSSz)

• What about (regular) Lindelöf spaces?

• What about (regular) countably compact spaces?

Theorem (Juhász,van Mill, S, Szentmiklóssy)

It is consistent that pd(X) < d(X) for some hereditarily Lindelöf
regular space X.

Theorem (Juhász, Shelah)

For any singular cardinal µ it is consistent that there is a hereditarily
Lindelöf regular space X such that d(X) = µ.

Fact: pd(X) = cf (µ).

Problem
Is it consistent that there is a hereditarily Lindelöf regular space X
such that d(X) = 2ω > cf (2ω)?
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Estimate d(X) using pd(X)

Theorem (JSSz)

d(X) ≤ 2pd(X ).

Sharp?

Theorem (JSSz)

d(X) < 2pd(X ).

Sharp?

Yes.

It is consistent that 2pd(X ) is as large as you wish and d(X)+ = 2pd(X ).
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Inequalities

• Pospisil: |X | ≤ 22d(X )

for T2 spaces

• w(x) ≤ 2d(x) for T3 spaces

Theorem (JSSz)

|X | ≤ 22pd(X )

for T2 spaces.

Theorem (JSSz)

If |X | = ∆(X), then

• either pd(X) = d(X) and |X | ≤ 22pd(X )

, or

• pd(X) < d(X) and |X | < 2pd(X ).

Problem

Does w(x) ≤ 2pd(x) hold for regular spaces?
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