Projective Fraïssé limits and homogeneity for tuples of points of the pseudoarc

Sławomir Solecki

University of Illinois at Urbana–Champaign Research supported by NSF grant DMS-1266189

July 2016

《曰》 《圖》 《臣》 《臣》

200

Outline of Topics

1 The pseudoarc and projective Fraïssé limits

2 Partial homogeneity of the pre-pseudoarc

3 Transfer theorem and homogeneity of the pseudoarc

The pseudoarc and projective Fraïssé limits

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

July 2016 3 / 40

< ロト < 同ト < ヨト < ヨ

900

Fix a relational language.

 \mathcal{F} a family of **finite structures** taken with **embeddings**.

Sar

Fix a relational language.

 ${\mathcal F}$ a family of finite structures taken with embeddings.

 \mathcal{F} is a Fraïssé family if it has Joint Embedding Property and Amalgamation Property:

Fix a relational language.

 ${\mathcal F}$ a family of finite structures taken with embeddings.

 \mathcal{F} is a Fraïssé family if it has Joint Embedding Property and Amalgamation Property:

• • = • • = •

Fix a relational language.

 ${\mathcal F}$ a family of finite structures taken with embeddings.

 \mathcal{F} is a Fraïssé family if it has Joint Embedding Property and Amalgamation Property:

Fix a relational language.

 ${\mathcal F}$ a family of finite structures taken with embeddings.

 \mathcal{F} is a Fraïssé family if it has Joint Embedding Property and Amalgamation Property:

Fraïssé: Countable Fraïssé families have unique **countable limit structures**.

990

- 1. The random graph
- $\mathcal{R}=$ the family of finite graphs
- ${\mathcal R}$ is a Fraïssé family.

The random graph is the Fraïssé limit of \mathcal{R} .

- 1. The random graph
- $\mathcal{R}=$ the family of finite graphs
- ${\mathcal R}$ is a Fraïssé family.

The random graph is the Fraissé limit of \mathcal{R} .

- 2. The rational Urysohn space
- $\ensuremath{\mathcal{U}} =$ the family of finite metric spaces with rational distances
- ${\mathcal U}$ is a Fraïssé family.

The Fraïssé limit of \mathcal{U} is the **rational Urysohn space** \mathbb{U}_0 .

- 1. The random graph
- $\mathcal{R}=$ the family of finite graphs
- ${\mathcal R}$ is a Fraïssé family.

The random graph is the Fraissé limit of \mathcal{R} .

- 2. The rational Urysohn space
- $\mathcal{U}=$ the family of finite metric spaces with rational distances
- ${\mathcal U}$ is a Fraïssé family.

The Fraïssé limit of \mathcal{U} is the **rational Urysohn space** \mathbb{U}_0 .

The metric completion $\mathbb U$ of $\mathbb U_0$ is the Urysohn space, the unique universal separable, complete metric space that is ultrahomogeneous with respect to finite subspaces.

Aim: By analogy with the above approach, develop a logic/combinatorics-based point of view to:

- find canonical/combinatorial models for some topological spaces, for example, the pseudoarc, the Menger compacta, the Brouwer curve etc.;
- find a unified approach to topological homogeneity results for these spaces.

There will be three important objects:

990

<ロト <回ト < 回ト < 回ト

There will be three important objects:

the pseudoarc P = a certain compact, connected, second countable space

the pre-pseudoarc \mathbb{P} = the Cantor set and a certain compact equivalence relation R on it with $\mathbb{P}/R = P$ and with a certain relationship to a family of finite structures

the augmented pre-pseudoarc $\mathbb{P}_{\textit{RU}} = \mathbb{P}$ with additional structure

Sac

The pseudoarc

Э July 2016 8 / 40

990

<ロト <回ト < 回ト < 回ト

 $\mathcal{K}([0,1]^2) = \text{compact subsets of } [0,1]^2$ with the Vietoris topology $\mathcal{K}([0,1]^2)$ is compact

Sac

 $\mathcal{K}([0,1]^2) = \text{compact subsets of } [0,1]^2$ with the Vietoris topology $\mathcal{K}([0,1]^2)$ is compact

- C = all connected sets in $\mathcal{K}([0,1]^2)$
- \mathcal{C} is compact

Sac

 $\mathcal{K}([0,1]^2)=$ compact subsets of $[0,1]^2$ with the Vietoris topology $\mathcal{K}([0,1]^2)$ is compact

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

Bing: There exists a (unique up to homeomorphism) $P \in C$ such that $\{P' \in C : P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

 $\mathcal{K}([0,1]^2)=$ compact subsets of $[0,1]^2$ with the Vietoris topology $\mathcal{K}([0,1]^2)$ is compact

 $\mathcal{C}=\mathsf{all}$ connected sets in $\mathcal{K}([0,1]^2)$

 $\ensuremath{\mathcal{C}}$ is compact

Bing: There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This *P* is called the **pseudoarc**.

イロト 不得 トイヨト イヨト 二日

 $\mathcal{K}([0,1]^{\mathbb{N}}) =$ compact subsets of $[0,1]^{\mathbb{N}}$ with the Vietoris topology $\mathcal{K}([0,1]^{\mathbb{N}})$ is compact

 $\mathcal{C} = \mathsf{all}$ connected sets in $\mathcal{K}([0,1]^\mathbb{N})$

 $\ensuremath{\mathcal{C}}$ is compact

Bing: There exists a (unique up to homeomorphism) $P \in \mathcal{C}$ such that

 $\{P' \in \mathcal{C} \colon P' \text{ homeomorphic to } P\}$

is a dense G_{δ} in C.

This P is called the **pseudoarc**.

イロト 不得 トイヨト イヨト 二日

Continuum = compact and connected

999

<ロト <回ト < 回ト < 回ト

Continuum = compact and connected

The pseudoarc is a **hereditarily indecomposable** continuum, that is, if $C_1, C_2 \subseteq P$ are continua with $C_1 \cap C_2 \neq \emptyset$, then $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.

Sac

Projective Fraïssé limits

3 July 2016 11 / 40

590

Fix a relational language.

 \mathcal{F} a family of **finite structures** taken with **epimorphisms** between structures in \mathcal{F} .

Sar

Fix a relational language.

 ${\cal F}$ a family of **finite structures** taken with **epimorphisms** between structures in ${\cal F}.$

 \mathcal{F} is called a **projective Fraïssé family** if it has **Joint Epimorphism Property** and **Projective Amalgamation Property**.

M is a **topological structure for** \mathcal{F} if

590

M is a topological structure for ${\mathcal F}$ if

- M is a compact, 0-dimensional, second countable space,
- each relation symbol is interpreted as a closed relation on M,
- each continuous function $M \to X$, with X finite, factors through an epimorphism $M \to A$ for some $A \in \mathcal{F}$.

・ロッ ・雪 ・ ・ ヨッ

Irwin–S.: There is a unique topological structure \mathbb{F} for \mathcal{F} such that

Sar

- $\mbox{Irwin-S.}:$ There is a unique topological structure ${\mathbb F}$ for ${\mathcal F}$ such that
 - for each $A \in \mathcal{F}$ there is an epimorphism $\mathbb{F} \to A$ (projective universality) and

 $\mbox{Irwin-S.}:$ There is a unique topological structure ${\mathbb F}$ for ${\mathcal F}$ such that

- for each $A \in \mathcal{F}$ there is an epimorphism $\mathbb{F} \to A$ (projective universality) and
- for each $A \in \mathcal{F}$ and epimorphisms $f : \mathbb{F} \to A$ and $g : \mathbb{F} \to A$, there is an automorphism $\phi : \mathbb{F} \to \mathbb{F}$ with $f \circ \phi = g$ (projective ultrahomogeneity).

Sac

Connection with the pseudoarc

Sac

<ロト <回ト < 回ト < 回ト

Fix a language consisting of a binary relation symbol R.

A finite R-structure = finite, linear, reflexive graphs with graph relation R

Sar

Fix a language consisting of a binary relation symbol R.

A finite R-structure = finite, linear, reflexive graphs with graph relation R

Irwin-S.: The family of finite R-structures is a projective Fraïssé family.

Let \mathbb{P} be the projective Fraïssé limit of finite *R*-structures with relation $R^{\mathbb{P}}$.
Let \mathbb{P} be the projective Fraïssé limit of finite *R*-structures with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Let \mathbb{P} be the projective Fraïssé limit of finite *R*-structures with relation $R^{\mathbb{P}}$. $R^{\mathbb{P}}$ is a compact equivalence relation on \mathbb{P} , whose equivalence classes have at most 2 elements each.

Irwin–S.: $\mathbb{P}/R^{\mathbb{P}}$ is the pseudoarc.

Homogeneity?

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

3 July 2016 18 / 40

900

<ロト <回ト < 回ト < 回ト

We get projective homogeneity of the pseudoarc almost automatically.

Sac

We get projective homogeneity of the pseudoarc almost automatically.

What about homogeneity?

Bing: The pseudoarc is homogeneous, that is, for any $x, y \in P$, there exists $f \in \text{Homeo}(P)$ such that f(x) = y.

ヘロト 人間ト 人団ト 人団ト

We get projective homogeneity of the pseudoarc almost automatically.

What about homogeneity?

Bing: The pseudoarc is homogeneous, that is, for any $x, y \in P$, there exists $f \in \text{Homeo}(P)$ such that f(x) = y. Appropriate homogeneity for tuples holds as well.

Partial homogeneity of the pre-pseudoarc

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

イロト イロト イヨト イ

Partial homogeneity of \mathbb{P}

Э July 2016 21 / 40

990

Types

999

< □ ト < □ ト < 三 ト < 三 ト - 三 .</p>

Types

A set $K \subseteq \mathbb{P}$ is called an *R*-substructure if it is compact, non-empty, and for each finite *R*-structure *A* and each epi $f : \mathbb{P} \to A$, f[K] is an interval.

Sac

For $p \in \mathbb{P}$, let

$$\operatorname{Tp}^{p} = \{ K \colon K \text{ a substructure and } p \in R(K) \}$$

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

Ξ July 2016 23 / 40

900

For $p \in \mathbb{P}$, let

$$\operatorname{Tp}^{p} = \{K \colon K \text{ a substructure and } p \in R(K)\}$$

and

$$\operatorname{tp}^{p} = \{ K \colon K \in \operatorname{Tp}^{p} \text{ and } K = R(K) \}.$$

Ξ July 2016 23 / 40

900

For $p \in \mathbb{P}$, let

$$\operatorname{Tp}^{p} = \{K \colon K \text{ a substructure and } p \in R(K)\}$$

and

$$\operatorname{tp}^{p} = \{ K \colon K \in \operatorname{Tp}^{p} \text{ and } K = R(K) \}.$$

Note that

$$\operatorname{tp}^{p} \subsetneq \operatorname{Tp}^{p}$$
.

Ξ July 2016 23 / 40

590

<ロト <回ト < 回ト < 回ト

Let $f : \mathbb{P} \to X$ be continuous, with X finite. So f is a projective tuple.

Sac

Let $f : \mathbb{P} \to X$ be continuous, with X finite. So f is a projective tuple. Let

$$\operatorname{tp}^{\mathrm{p}}(f) = \{f[K] \colon K \in \operatorname{tp}^{p}\} \text{ and } \operatorname{Tp}^{\mathrm{p}}(f) = \{f[K] \colon K \in \operatorname{Tp}^{p}\}.$$

3 July 2016 24 / 40

Sac

<ロト <回ト < 回ト < 回ト

Minimal types and independence

900

<ロト <回ト < 回ト < 回ト

Minimal types and independence

 $p \in \mathbb{P}$ has minimal types if for each continuous $f : \mathbb{P} \to X$ with X finite

 $\operatorname{tp^p}(f) = \operatorname{Tp^p}(f).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

 $p, q \in \mathbb{P}$ are **independent** if p and q do not both belong to a *proper* R-substructure of \mathbb{P} .

 $p, q \in \mathbb{P}$ are **independent** if p and q do not both belong to a *proper* R-substructure of \mathbb{P} .

There is a reformulation in terms of types.

 $p, q \in \mathbb{P}$ are **independent** if p and q do not both belong to a *proper* R-substructure of \mathbb{P} .

There is a reformulation in terms of types.

A tuple of points is called **independent** if every two of its elements are.

Main theorem for partial homogeneity of $\ensuremath{\mathbb{P}}$

990

Main theorem for partial homogeneity of $\ensuremath{\mathbb{P}}$

Theorem (S.-Tsankov)

Let $p_1,\ldots,p_n\in\mathbb{P}$ be independent and p_i have minimal types, for each i, and

let $q_1, \ldots, q_n \in \mathbb{P}$ be independent and q_i have minimal types, for each i,

イロト イポト イヨト

Main theorem for partial homogeneity of $\ensuremath{\mathbb{P}}$

Theorem (S.-Tsankov)

Let $p_1,\ldots,p_n\in\mathbb{P}$ be independent and p_i have minimal types, for each i, and

let $q_1, \ldots, q_n \in \mathbb{P}$ be independent and q_i have minimal types, for each i, then there exists an automorphism $\phi \colon \mathbb{P} \to \mathbb{P}$ such that $\phi(p_i) = q_i$.

イロト イポト イヨト

Augmented *R*-structures as a projective Fraïssé family

∃ ≥ < ∃</p>

Chains

999

Chains

X finite set

U is a **chain** if U is a maximal family of subsets of X linearly ordered by inclusion.

Sac

Chains

X finite set

U is a **chain** if U is a maximal family of subsets of X linearly ordered by inclusion.

If U is a chain on X and $f: X \to Y$ is a surjection, then

 $f(U) = \{f[I] \colon I \in U\}$

is also a chain.

▲ ■ ▶ ■ の Q C July 2016 29 / 40

Side-observation

 $p \in \mathbb{P}$ has minimal types if and only if, for each continuous $f : \mathbb{P} \to X$ with X finite, $\operatorname{Tp}^{p}(f)$ is a chain.

Sar

Ξ July 2016 31 / 40

990

<ロト <回ト < 回ト < 回ト

Fix n.

Add

$$U_1,\ldots,U_n$$

to the language consisting of R.

990

Fix n.

Add

$$U_1,\ldots,U_n$$

to the language consisting of R.

A **finite** RU-structure is a finite structure A in the new language such that

(i) (A, R^A) is an *R*-structure;

Fix n.

Add

$$U_1,\ldots,U_n$$

to the language consisting of R.

A **finite** RU-**structure** is a finite structure A in the new language such that

- (i) (A, R^A) is an *R*-structure;
- (ii) U_i^A is a chain of intervals in A, for all $1 \le i \le n$.

Let A and B be RU-structures. Then $f: B \rightarrow A$ is an RU-epimorphism if it is an *R*-epimorphism and

$$f(U_i^B) = U_i^A$$
 for each *i*.

Sar

Projective Fraïssé family

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples 900

<ロト <回ト < 回ト < 回ト

Projective Fraïssé family

Theorem (S.–Tsankov)

The family of finite RU-structures with RU-epimorphisms forms a projective Fraïssé family.

Projective Fraïssé family

Theorem (S.–Tsankov)

The family of finite RU-structures with RU-epimorphisms forms a projective Fraissé family.

The proof uses a combinatorial chessboard theorem due to Steinhaus.
Generic tuples and their characterization

Sar

-

イロト イロト イヨト イ

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples 999

<ロト <回ト < 回ト < 回ト

Let

 \mathbb{P}_{RU}

be the projective Fraïssé limit of finite RU-structures.

Sac

Let

PRI

be the projective Fraïssé limit of finite *RU*-structures.

 \mathbb{P}_{RU} is equipped with

— an interpretation of R, which gives \mathbb{P} ;

Sac

Let

\mathbb{P}_{RU}

be the projective Fraïssé limit of finite RU-structures.

 \mathbb{P}_{RU} is equipped with

- an interpretation of R, which gives \mathbb{P} ;
- natural interpretations $U_i^{\mathbb{P}_{RU}}$ of U_i , for which there exists a unique tuple of points $(p_1^{RU}, \ldots, p_n^{RU})$ such that

$$\{p_i^{RU}\}\in U_i^{\mathbb{P}_{RU}}.$$

イロト 不得下 イヨト イヨト 二日

Let

\mathbb{P}_{RU}

be the projective Fraïssé limit of finite RU-structures.

 \mathbb{P}_{RU} is equipped with

- an interpretation of R, which gives \mathbb{P} ;
- natural interpretations $U_i^{\mathbb{P}_{RU}}$ of U_i , for which there exists a unique tuple of points $(p_1^{RU}, \ldots, p_n^{RU})$ such that

$$\{p_i^{RU}\}\in U_i^{\mathbb{P}_{RU}}.$$

The tuple $(p_1^{RU}, \ldots, p_n^{RU})$ is called **generic**.

・ロット 4 回 > 4 日 > - - モー くりくろ

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

Э July 2016 36 / 40

990

<ロト <回ト < 回ト < 回ト

Theorem (S.–Tsankov)

Let $p_1, \ldots, p_n \in \mathbb{P}$. The tuple (p_1, \ldots, p_n) is generic if and only if it is independent and each p_i has minimal types, for $1 \le i \le n$.

Sar

イロト イロト イヨト イヨト 二日

Theorem (S.–Tsankov)

Let $p_1, \ldots, p_n \in \mathbb{P}$. The tuple (p_1, \ldots, p_n) is generic if and only if it is independent and each p_i has minimal types, for $1 \le i \le n$.

The **proof** uses the **extension property** and a combinatorial theorem on representing *R*-epimorphisms as products of "simple" *R*-epimorphisms, due to Young and Oversteegen–Tymchatyn.

Theorem (S.–Tsankov)

Let $p_1, \ldots, p_n \in \mathbb{P}$. The tuple (p_1, \ldots, p_n) is generic if and only if it is independent and each p_i has minimal types, for $1 \le i \le n$.

The **proof** uses the **extension property** and a combinatorial theorem on representing *R*-epimorphisms as products of "simple" *R*-epimorphisms, due to Young and Oversteegen–Tymchatyn.

Side-observation

$$U_i^{\mathbb{P}_{RU}} = \mathrm{Tp}^{p_i}.$$

Transfer theorem and homogeneity of the pseudoarc

Sławomir Solecki (University of Illinois) Fraïssé limits and homogeneity for tuples

July 2016 37 / 40

∃ >

Sac

Theorem (S.–Tsankov)

Let $y_1, \ldots, y_n \in P$ be in general position. There exist $x_1, \ldots, x_n \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to P$ such that

Theorem (S.–Tsankov)

Let $y_1, \ldots, y_n \in P$ be in general position. There exist $x_1, \ldots, x_n \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to P$ such that

(i) $x_i = p_i/R^{\mathbb{P}}$ for some $p_i \in \mathbb{P}$ with (p_1, \ldots, p_n) independent and each p_i having minimal types, for $1 \le i \le n$;

イロト イロト イヨト イヨト 三日

Theorem (S.–Tsankov)

Let $y_1, \ldots, y_n \in P$ be in general position. There exist $x_1, \ldots, x_n \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to P$ such that

(i) $x_i = p_i/R^{\mathbb{P}}$ for some $p_i \in \mathbb{P}$ with (p_1, \ldots, p_n) independent and each p_i having minimal types, for $1 \le i \le n$;

(ii)
$$\phi(x_i) = y_i$$
, for $1 \le i \le n$.

イロト 不得下 イヨト イヨト 二日

Theorem (S.–Tsankov)

Let $y_1, \ldots, y_n \in P$ be in general position. There exist $x_1, \ldots, x_n \in \mathbb{P}/R^{\mathbb{P}}$ and a homeomorphism $\phi \colon \mathbb{P}/R^{\mathbb{P}} \to P$ such that

(i) $x_i = p_i/R^{\mathbb{P}}$ for some $p_i \in \mathbb{P}$ with (p_1, \ldots, p_n) independent and each p_i having minimal types, for $1 \le i \le n$;

(ii)
$$\phi(x_i) = y_i$$
, for $1 \le i \le n$.

The **proof** is purely combinatorial.

Corollary (Bing)

Let $y_1, \ldots, y_n \in P$ be in general position, and let $z_1, \ldots, z_n \in P$ be in general position.

Sac

Corollary (Bing)

Let $y_1, \ldots, y_n \in P$ be in general position, and let $z_1, \ldots, z_n \in P$ be in general position. There exists a homeomorphism of P mapping y_i to z_i for each $1 \le i \le n$.

Sac

The Menger curve μ_1

