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Infinite dimensional Ramsey theory

Theorem (Silver, 1970)
If A ⊆ [N]∞ is analytic and X ∈ [N]∞, then there is a Y ∈ [X]∞ such that
either [Y]∞ ∩ A = ∅ or [Y]∞ ⊆ A.

Here, [X]∞ is the set of all infinite subsets of X.
This result was the culmination of work of Ramsey, Nash-Williams,
Galvin, and Prikry.
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Infinite dimensional Ramsey theory

With more assumptions, we can go well beyond the analytic sets:

Theorem (Shelah & Woodin, 1990)
Assume ∃ supercompact κ. If A ⊆ [N]∞ is in L(R) and X ∈ [N]∞, then
there is a Y ∈ [X]∞ such that either [Y]∞ ∩ A = ∅ or [Y]∞ ⊆ A.
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Local Ramsey theory

Theorem (Silver, 1970 (Shelah & Woodin, 1990))
(Assume ∃ supercompact κ.) If A ⊆ [N]∞ is analytic (in L(R)) and
X ∈ [N]∞, then there is a Y ∈ [X]∞ such that either [Y]∞ ∩ A = ∅ or
[Y]∞ ⊆ A.

Local Ramsey theory concerns “localizing” the witness Y above.
That is, finding families H ⊆ [N]∞ such that, provided the given X is in
H, Y can also be found in H.
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Local Ramsey theory (cont’d)

Definition
H ⊆ [N]∞ is a coideal if it is the complement of a (non-trivial)
ideal. Equivalently, it is a non-empty family such that

I X ∈ H and X ⊆∗ Y =⇒ Y ∈ H,
I X,Y ∈ [N]∞ with X ∪ Y ∈ H =⇒ X ∈ H or Y ∈ H.

A coideal H ⊆ [N]∞ is selective (or a happy family) if whenever
X0 ⊇ X1 ⊇ · · · are in H, there is an X ∈ H such that X/n ⊆ Xn for
all n ∈ X.

Examples (of selective coideals)
[N]∞

U a selective (or sufficiently generic) ultrafilter
[N]∞ \ I where I is the ideal generated by an infinite a.d. family
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Local Ramsey theory (cont’d)

Theorem (Mathias, 1977 (Todorcevic, 1997))
(Assume ∃ supercompact κ.) Let H ⊆ [N]∞ be a selective coideal. If
A ⊆ [N]∞ is analytic (in L(R)), then for any X ∈ H, there is a Y ∈ H � X
such that either [Y]∞ ∩ A = ∅ or [Y]∞ ⊆ A.

Corollary
Assume ∃ supercompact κ. A filter G is L(R)-generic for ([N]∞,⊆∗) if
and only if G is selective.

Selective ultrafilters are said to have “complete combinatorics”
(cf. work of Blass, LaFlamme, Dobrinen)
An “abstract” version has recently been developed for topological
Ramsey spaces (Di Prisco, Mijares, & Nieto, 2015).
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Block sequences in vector spaces
Let B be a Banach space with normalized Schauder basis (en), and
E = spanF(en), for F a countable subfield of R (or C) so that the norm
on E takes values in F.

Definition

Given any vector x in B, its support (with respect to (en)) is
supp(x) = {k : x =

∑
n anen ⇒ ak 6= 0}. Write x < y if

max(supp(x)) < min(supp(y)).
If supp(x) is finite, then x is a block vector.
A block sequence (with respect to (en)) is a sequence of vectors
(xn) such that x0 < x1 < x2 < · · · .
For X and Y block sequences, if X is block with respect to Y, write
X � Y. Equivalently (for block sequences), span(X) ⊆ span(Y).
Let bb∞(B) be the space of infinite normalized block sequences in
B, a Polish subspace of BN. Similarly for bb∞(E).
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Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

A “pigeonhole principle”: If A ⊆ E, there is an X ∈ bb∞(E) all of whose
∞-dimensional (block) subspaces are contained in one of A or Ac.

Example
This is false. Let A be vectors whose first coefficient, with respect to
the basis (en), is positive. There is no X with the above property.

Similar counterexamples can be found which are invariant under
scalar multiplication.
For general Banach spaces B, there is no pigeonhole principle
even “up to ε” for block sequences, with the (essentially) unique
exception of c0 (Gowers, 1992).
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Games with block vectors

Definition
For Y ∈ bb∞(E),

G[Y] denotes the Gowers game below Y: Players I and II alternate
with I going first.

I I plays Yk � Y,
I II responds with a vector yk ∈ spanF(Yk) such that yk < yk+1.

F[Y] denotes the infinite asymptotic game below Y: Players I and II
alternate with I going first

I I plays nk ∈ N,
I II responds with a vector yk ∈ spanF(Y) such that nk < yk < yk+1.

In both games, the outcome is the block sequence (yk).

For Y ∈ bb∞(B), the games are defined similarly, with II playing
block vectors. We denote these games G∗[Y] and F∗[Y].
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Gowers’ dichotomy

Theorem (Gowers, 1996)
Whenever A ⊆ bb∞(B) is analytic, X ∈ bb∞(B), and ∆ = (δn) > 0, then
there is a Y � X such that either

every Z � Y is in Ac, or
II has a strategy in G∗[Y] for playing into A∆.

A∆ = {(zn) ∈ bb∞(B) : ∃(z′n) ∈ A∀n(‖zn − z′n‖ < δn)} is the
∆-expansion of A.
Assuming ∃ supercompact κ, this can be extended to sets A in
L(R) (Lopez-Abad, 2005).
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Rosendal’s dichotomy

In the discrete setting, we have the following exact result:

Theorem (Rosendal, 2010)
Whenever A ⊆ bb∞(E) is analytic and X ∈ bb∞(E), there is a Y � X
such that either

I has a strategy in F[Y] for playing into Ac, or
II has a strategy in G[Y] for playing into A.

This can be used to prove Gowers’ dichotomy, with minimal use of
∆-expansions.
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Local forms?

Motivating question: Are there local forms of Gowers’ and
Rosendal’s dichotomies?

Possible obstacles:
What is a “coideal” of block sequences?
Coideals on N witness the pigeonhole principle. There is no
pigeonhole principle here...
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Families of block sequences

Definition
By a family H ⊆ bb∞(E), we mean a non-empty set which is
upwards closed with respect to �∗.

A family H ⊆ bb∞(E) has the (p)-property if whenever
X0 � X1 � · · · in H, there is an X ∈ H such that X �∗ Xn for all n.
A family H ⊆ bb∞(E) is full if whenever D ⊆ E and X ∈ H is such
that for all Y ∈ H � X, there is Z � Y with 〈Z〉 ⊆ D, then there is
Z ∈ H � X with 〈Z〉 ⊆ D.

A full family with the (p)-property is a (p+)-family.

Fullness says that H witnesses the pigeonhole principle wherever
it holds “H-frequently” below an element of H.
(p+)-filters can be obtained by forcing with (bb∞(E),�∗), or built
under CH or MA. Their existence is independent of ZFC.
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A local Rosendal dichotomy

Theorem (S.)
Let H ⊆ bb∞(E) be a (p+)-family. Then, whenever A ⊆ bb∞(E) is
analytic and X ∈ H, there is a Y ∈ H � X such that either

I has a strategy for playing F[Y] into Ac, or
II has a strategy for playing G[Y] into A.

The proof closely follows Rosendal’s, using “combinatorial forcing”
to obtain the result for open sets.
Fullness is necessary; it is implied by the theorem for clopen sets.
A caveat: the second conclusion of the theorem does not appear
sufficient to determine whether H � X meets A.
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A local Rosendal dichotomy (cont’d)

The last concern is addressed with the following:

Definition
A family H ⊆ bb∞(E) is strategic if whenever X ∈ H and α is a strategy
for II in G[X], then there is an outcome of α in H.

Strategies for II are (a priori) complicated objects, however the set
of outcomes can be refined to a �-dense closed set, using a
lemma of Ferenczi & Rosendal.
Strategic (p+)-filters can be obtained similarly as (p+)-filters.
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Extending to L(R)

Theorem (S.)
Assume ∃ supercompact κ. Let H ⊆ bb∞(E) be a strategic (p+)-family.
Then, whenever A ⊆ bb∞(E) is in L(R) and X ∈ H, there is a
Y ∈ H � X such that either

I has a strategy for playing F[Y] into Ac, or
II has a strategy for playing G[Y] into A.

Corollary (S.)
Assume ∃ supercompact κ. A filter G ⊆ bb∞(E) is L(R)-generic for
(bb∞(E),�∗) if and only if it is a strategic (p+)-filter.

The theorem is proved first for filters, using a Mathias-like forcing,
and generalized by forcing with a given strategic (p+)-family to
add a strategic (p+)-filter without adding reals.
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A local Gowers dichotomy

Theorem (S.)
(Assume ∃ supercompact κ.) Let H ⊆ bb∞(B) be a spread (strategic)
(p∗)-family which is invariant under small perturbations. Then,
whenever A ⊆ bb∞(E) is analytic (in L(R)), X ∈ H and ∆ > 0, there is
a Y ∈ H � X such that either

every Z � Y is in Ac, or
II has a strategy in G∗[Y] for playing into A∆.

(p)-families in bb∞(B) are defined as before, and ∗ denotes an
approximate form of fullness.
A family H is spread if each X ∈ H has a further Y ∈ H � X whose
supports are “spread out”. Resembles a “(q)-property”.
A family is invariant under small perturbations if there is some
∆ > 0 so that H∆ = H.
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Since the local Gowers dichotomy is approximate, the corresponding
L(R)-genericity result should be for a poset of block subspaces
“modulo small perturbations”. There are many options, we give one.
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Projections in the Calkin algebra

Let H be a Hilbert space, with orthonormal basis (en).

The Calkin algebra is the quotient C(H) = B(H)/K(H), where K(H) is
the ideal of compact operators.

Let P(C(H)) be the set of projections (those p with p2 = p∗ = p) in C(H).

P(C(H)) can be identified with the set of closed subspaces in H
modulo compact perturbations, and inherits a natural ordering ≤.

Fact
If ∆ > 0 is summable, then a ∆-perturbation is a compact
perturbation.
The (images of) block projections are ≤-dense in
P(C(H))+ = P(C(H)) \ {0}.

Iian Smythe (Cornell) A local Ramsey theory July 26, 2016 20 / 23



Projections in the Calkin algebra

Let H be a Hilbert space, with orthonormal basis (en).

The Calkin algebra is the quotient C(H) = B(H)/K(H), where K(H) is
the ideal of compact operators.

Let P(C(H)) be the set of projections (those p with p2 = p∗ = p) in C(H).

P(C(H)) can be identified with the set of closed subspaces in H
modulo compact perturbations, and inherits a natural ordering ≤.

Fact
If ∆ > 0 is summable, then a ∆-perturbation is a compact
perturbation.
The (images of) block projections are ≤-dense in
P(C(H))+ = P(C(H)) \ {0}.

Iian Smythe (Cornell) A local Ramsey theory July 26, 2016 20 / 23



Projections in the Calkin algebra

Theorem (S.)
(Assume ∃ supercompact κ.) A filter G ⊆ P(C(H))+ is L(R)-generic for
(P(C(H))+,≤) if and only if it is block dense and the corresponding set
of block projections is a strategic (p∗)-family in bb∞(H).

Why study such a notion of forcing?
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Pure states on B(H)

Definition
A state on B(H) is a positive linear functional τ with τ(I) = 1.
A pure state is an extreme point in the (weak*-compact convex)
set of states.

Example
If (en) is an orthonormal basis, and U an ultrafilter on N, then
τU (T) = limn→U 〈Ten, en〉 defines a diagonalizable pure state.

Anderson (1980) conjectured that every pure state on B(H) is
diagonalizable.
(Akemann & Weaver, 2008): (CH) There is a counterexample.
(Farah & Weaver): Forcing with (P(C(H))+,≤) produces a
counterexample. (Uses the theory of quantum filters.)
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Pure states on B(H) (cont’d)

While forcing over L(R) suffices to construct a non-diagonalizable pure
state, and thus our characterization of L(R)-generic filters applies, we
can get away with less (and no large cardinals):

Theorem (S.)
If F is a quantum filter of projections in P(C(H))+ which is block dense
and the corresponding set of block projections is a spread (p∗)-family,
then F yields a non-diagonalizable pure state.

Such families F are easily constructed under CH or MA.
One can show that any F satisfying the hypotheses of the
theorem is a (genuine!) filter, but the existence of such families is
independent of ZFC (Bice, 2011).
The consistency of Anderson’s conjecture remains unresolved.
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