Minimality of the semidirect product

Menachem Shlossberg (with Michael Megrelishvili & Luie Polev)

Bar-Ilan University, Israel

Twelfth Symposium on General Topology and its Relations to Modern Analysis and Algebra

July 25-29, 2016, Prague

Introduction

- Minimal groups
- Semidirect products

2 Main result

(3) π -uniform topologies

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

< 日 > < 同 > < 三 > < 三 >

Definition

Let G be a Hausdorff topological group.

- G is minimal if it does not admit a strictly coarser Hausdorff group topology (Stephenson, Doïtchinov).
- **(a)** A subgroup $H \leq G$ is essential in G if $H \cap N \neq \{e\}$ for every closed nontrivial normal subgroup N of G.

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

・ロト ・同ト ・ヨト ・ヨト

Definition

Let G be a Hausdorff topological group.

- G is **minimal** if it does not admit a strictly coarser Hausdorff group topology (Stephenson, Doïtchinov).
- ② A subgroup $H \le G$ is essential in G if $H \cap N \ne \{e\}$ for every closed nontrivial normal subgroup N of G.

Minimal groups Semidirect products

・ロト ・同ト ・ヨト ・ヨト

Minimality Criterion (Banaschewski, Stephenson, Prodanov)

Let G be a topological group and H its dense subgroup. Then H is minimal if and only if G is minimal and H is essential in G.

Minimal precompact groups

 \mathbb{Q}/\mathbb{Z} (Stephenson)

2 (\mathbb{Z}, τ_p) (Prodanov)

Minimal groups Semidirect products

Image: A image: A

Minimality Criterion (Banaschewski, Stephenson, Prodanov)

Let G be a topological group and H its dense subgroup. Then H is minimal if and only if G is minimal and H is essential in G.

Minimal precompact groups

• \mathbb{Q}/\mathbb{Z} (Stephenson)

2
$$(\mathbb{Z}, \tau_p)$$
 (Prodanov)

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

< □ > < 同 > < 回 >

-

Theorem (Prodanov, Stoyanov, 1984)

Every minimal abelian group is precompact.

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

- 4 同 🕨 - 4 目 🕨 - 4 目

- $\mathbb{R} > \mathbb{R}_+$ (Dierolf, Schwanengel, 1979).
- ② Every connected semi-simple Lie group with finite center, e.g. SL_n(ℝ) where n > 1 (Remus, Stoyanov, 1991).
- The pointwise topology is the **minimum** Hausdorff group topology on S(X) (Gaughan, 1967).
- Extension of (3) to every subgroup of S(X) containing the permutations of finite support (Banakh, Guran, Protasov, 2012).

 $\begin{array}{c} {\rm Main\ result} \\ \pi\mbox{-uniform\ topologies} \\ {\rm Proving\ the\ main\ result} \end{array}$

Minimal groups Semidirect products

- $\mathbb{R} \times \mathbb{R}_+$ (Dierolf, Schwanengel, 1979).
- ② Every connected semi-simple Lie group with finite center, e.g. SL_n(ℝ) where n > 1 (Remus, Stoyanov, 1991).
- The pointwise topology is the **minimum** Hausdorff group topology on S(X) (Gaughan, 1967).
- Extension of (3) to every subgroup of S(X) containing the permutations of finite support (Banakh, Guran, Protasov, 2012).

Minimal groups Semidirect products

• □ > • □ > • □ > • □ > •

- $\mathbb{R} > \mathbb{R}_+$ (Dierolf, Schwanengel, 1979).
- ② Every connected semi-simple Lie group with finite center, e.g. SL_n(ℝ) where n > 1 (Remus, Stoyanov, 1991).
- The pointwise topology is the **minimum** Hausdorff group topology on S(X) (Gaughan, 1967).
- Extension of (3) to every subgroup of S(X) containing the permutations of finite support (Banakh, Guran, Protasov, 2012).

Minimal groups Semidirect products

< ロト < 同ト < 三ト <

- $\mathbb{R} > \mathbb{R}_+$ (Dierolf, Schwanengel, 1979).
- ② Every connected semi-simple Lie group with finite center, e.g. SL_n(ℝ) where n > 1 (Remus, Stoyanov, 1991).
- The pointwise topology is the **minimum** Hausdorff group topology on S(X) (Gaughan, 1967).
- Extension of (3) to every subgroup of S(X) containing the permutations of finite support (Banakh, Guran, Protasov, 2012).

 $\begin{array}{c} {\rm Main\ result}\\ \pi\mbox{-uniform\ topologies}\\ {\rm Proving\ the\ main\ result} \end{array}$

Minimal groups Semidirect products

- $\operatorname{H}([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- O For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^w) is minimal (Gamarnik, 1991). More generally, H (X) is minimal for every h-homogeneous compact space X (Uspenskij, 2001).
- Let X be the n-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).
- So For every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Minimal groups Semidirect products

- $H([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- O For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^{\u03c6}) is minimal (Gamarnik, 1991). More generally, H(X) is minimal for every *h*-homogeneous compact space X (Uspenskij, 2001).
- Let X be the n-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).
- So For every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Minimal groups Semidirect products

- $H([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^{\u03c6}) is minimal (Gamarnik, 1991). More generally, H(X) is minimal for every *h*-homogeneous compact space X (Uspenskij, 2001).
- Let X be the *n*-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).
- For every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Minimal groups Semidirect products

- $H([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^{\u03c6}) is minimal (Gamarnik, 1991). More generally, H (X) is minimal for every *h*-homogeneous compact space X (Uspenskij, 2001).
- Let X be the *n*-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).
- For every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Minimal groups Semidirect products

Minimality of H(X)

- $H([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^ω) is minimal (Gamarnik, 1991). More generally, H (X) is minimal for every *h*-homogeneous compact space X (Uspenskij, 2001).
- Let X be the n-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).

Sor every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Minimal groups Semidirect products

- $H([0,1]^n)$ is minimal iff n = 1 (Gamarnik, 1991).
- For H [0, 1] and H (S¹), τ_{co} is the minimum Hausdorff group topology (Gartside, Glyn, 2003). This result was extended to some compact connected LOTS (Megrelishvili, Polev, 2015).
- H (2^{\u03c6}) is minimal (Gamarnik, 1991). More generally, H (X) is minimal for every *h*-homogeneous compact space X (Uspenskij, 2001).
- Let X be the *n*-dimensional Menger universal continuum (n > 0). Then H(X) is not minimal (van Mill, 2010).
- For every compact metrizable space X containing an open n-cell, n ≥ 2, H(X) has no minimum Hausdorff group topology. For every compact metrizable space X containing a dense open one-manifold, H(X) has the minimum topology (Chang, Gartside, 2015).

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

< 🗇 > < 🖃 >

Semidirect products

- G > P can be minimal even if G and P are not minimal. For example, $\mathbb{R} > \mathbb{R}_+$ is minimal.
- Or There exists a precompact minimal group G and a two element subgroup P ≤ Aut(G) such that G × P is not minimal.

Main result π -uniform topologies Proving the main result

Minimal groups Semidirect products

・ 同・ ・ ヨ・

Semidirect products

- G > P can be minimal even if G and P are not minimal. For example, $\mathbb{R} > \mathbb{R}_+$ is minimal.
- O There exists a precompact minimal group G and a two element subgroup P ≤ Aut(G) such that G ≻ P is not minimal.

 $\begin{array}{c} {\rm Main\ result} \\ \pi\mbox{-uniform\ topologies} \\ {\rm Proving\ the\ main\ result} \end{array}$

Minimal groups Semidirect products

- *I* is an infinite index set, A_5^I is equipped with the product topology.
- G = {(x_i)_{i∈l} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A^l₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \ge P$ is a dense subgroup of the compact group $A_5^l \ge P$. $G \ge P$ is not essential in $A_5^l \ge P$.
- Indeed, the 2-element group generated by ((z)_{i∈I}, γ_z) is a closed normal subgroup of A^I₅ ≻ P that intersects G ≻ P trivially. By the minimality criterion G ≻ P is not minimal.

Minimal groups Semidirect products

- *I* is an infinite index set, A'_5 is equipped with the product topology.
- G = {(x_i)_{i∈I} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A^I₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \ge P$ is a dense subgroup of the compact group $A_5^l \ge P$. $G \ge P$ is not essential in $A_5^l \ge P$.
- Indeed, the 2-element group generated by ((z)_{i∈I}, γ_z) is a closed normal subgroup of A^I₅ ≻ P that intersects G ≻ P trivially. By the minimality criterion G ≻ P is not minimal.

Minimal groups Semidirect products

- *I* is an infinite index set, A_5^I is equipped with the product topology.
- G = {(x_i)_{i∈I} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A'₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \ge P$ is a dense subgroup of the compact group $A_5^l \ge P$. $G \ge P$ is not essential in $A_5^l \ge P$.
- Indeed, the 2-element group generated by $((z)_{i \in I}, \gamma_z)$ is a closed normal subgroup of $A_5^l \ge P$ that intersects $G \ge P$ trivially. By the minimality criterion $G \ge P$ is not minimal.

Minimal groups Semidirect products

- *I* is an infinite index set, A_5^I is equipped with the product topology.
- G = {(x_i)_{i∈I} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A'₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \ge P$ is a dense subgroup of the compact group $A_5^l \ge P$. $G \ge P$ is not essential in $A_5^l \ge P$.
- Indeed, the 2-element group generated by $((z)_{i \in I}, \gamma_z)$ is a closed normal subgroup of $A_5^I \ge P$ that intersects $G \ge P$ trivially. By the minimality criterion $G \ge P$ is not minimal.

Minimal groups Semidirect products

- *I* is an infinite index set, A_5^I is equipped with the product topology.
- G = {(x_i)_{i∈I} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A'₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \geq P$ is a dense subgroup of the compact group $A_5^l \geq P$. $G \geq P$ is not essential in $A_5^l \geq P$.
- Indeed, the 2-element group generated by ((z)_{i∈I}, γ_z) is a closed normal subgroup of A^I₅ ≻ P that intersects G ≻ P trivially. By the minimality criterion G ≻ P is not minimal.

Minimal groups Semidirect products

- *I* is an infinite index set, A_5^I is equipped with the product topology.
- G = {(x_i)_{i∈I} : x_i ∈ A₅ ∧ |i : x_i ≠ e| < ∞} is a minimal precompact group being essential dense subgroup of the compact group A'₅.
- Now choose an element z ∈ A₅ of order two. Let
 P := {Id, γ_z} ≤ Aut(G), where γ_z is the inner automorphism defined by z.
- Clearly, $G \geq P$ is a dense subgroup of the compact group $A_5^l \geq P$. $G \geq P$ is not essential in $A_5^l \geq P$.
- Indeed, the 2-element group generated by ((z)_{i∈I}, γ_z) is a closed normal subgroup of A^I₅ ≻ P that intersects G ≻ P trivially. By the minimality criterion G ≻ P is not minimal.

Minimal groups Semidirect products

- 4 同 🕨 - 4 目 🕨 - 4 目

This example shows that the group $G \ge P$ may fail to be minimal, even if G and P are minimal. However, adding the requirement of completeness of G, one has the following:

Theorem (Eberhardt, Dierolf, Schwanengel, 1980)

If G is complete (with respect to its two-sided uniformity), then $G \ge P$ is minimal for minimal groups G and P.

Minimal groups Semidirect products

・ 同・ ・ ヨ・

This example shows that the group $G \ge P$ may fail to be minimal, even if G and P are minimal. However, adding the requirement of completeness of G, one has the following:

Theorem (Eberhardt, Dierolf, Schwanengel, 1980)

If G is complete (with respect to its two-sided uniformity), then $G \ge P$ is minimal for minimal groups G and P.

Minimal groups Semidirect products

▲ 同 ▶ → 三 ▶

A natural question arises:

Question

Is there a compact group G and a closed subgroup $P \leq Aut(G)$ such that $G \geq P$ is not minimal?

Remark

It is important to note that there are compact groups G such that Aut(G) is not minimal. Indeed, one may take $G = (\mathbb{Q}, discrete)^*$, that is the Pontryagin dual of the discrete group \mathbb{Q} (Dikranjan, Megrelishvili).

Minimal groups Semidirect products

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A natural question arises:

Question

Is there a compact group G and a closed subgroup $P \leq Aut(G)$ such that $G \geq P$ is not minimal?

Remark

It is important to note that there are compact groups G such that Aut(G) is not minimal. Indeed, one may take $G = (\mathbb{Q}, discrete)^*$, that is the Pontryagin dual of the discrete group \mathbb{Q} (Dikranjan, Megrelishvili).

Minimal groups Semidirect products

< □ > < □ >

A natural question arises:

Question

Is there a compact group G and a closed subgroup $P \leq Aut(G)$ such that $G \geq P$ is not minimal?

Remark

It is important to note that there are compact groups G such that Aut(G) is not minimal. Indeed, one may take $G = (\mathbb{Q}, discrete)^*$, that is the Pontryagin dual of the discrete group \mathbb{Q} (Dikranjan, Megrelishvili).

Theorem

If G is a compact topological group, then G > P is minimal for every closed subgroup P of Aut(G).

Using this theorem and the minimality criterion we obtain the following:

▲ 同 ▶ → 三 ▶

Theorem

If G is a compact topological group, then G > P is minimal for every closed subgroup P of Aut(G).

Using this theorem and the minimality criterion we obtain the following:

A D

Abelian case

Theorem

If G is a compact abelian topological group, then $G \ge P$ is minimal for every (not necessarily closed) subgroup P of Aut(G).

Remark

In fact, we prove a bit more. Let G be a compact (not necessarily abelian) topological group, and $P \leq \operatorname{Aut}(G)$ such that \overline{P} does not contain a nontrivial inner automorphism. Then we can show that the dense subgroup $G \ge P$ is essential in the minimal group $G \ge \overline{P}$.

Abelian case

Theorem

If G is a compact abelian topological group, then G > P is minimal for every (not necessarily closed) subgroup P of Aut(G).

Remark

In fact, we prove a bit more. Let G be a compact (not necessarily abelian) topological group, and $P \leq \operatorname{Aut}(G)$ such that \overline{P} does not contain a nontrivial inner automorphism. Then we can show that the dense subgroup $G \geq P$ is essential in the minimal group $G \geq \overline{P}$.

Definition (Megrelishvili)

Let π : G × X → X be an action of a topological group (G, τ) on a Hausdorff uniform space (X, U). The uniformity (or, the action) is π-uniform if

$$\forall g_0 \in G \ \forall \varepsilon \in \mathfrak{U} \ \exists \delta \in \mathfrak{U}, \ \exists O \in \mathit{N}_{g_0}(\tau)$$

$$(x,y) \in \delta, g \in O \Rightarrow (gx,gy) \in \varepsilon$$

< ロ > < 同 > < 回 > < 回 >

Let X be a compact space and G a subgroup of H(X). A Hausdorff group topology τ on G is said to be π-uniform if the natural action (G, τ) × X → X is π-uniform.

Definition (Megrelishvili)

Let π : G × X → X be an action of a topological group (G, τ) on a Hausdorff uniform space (X, U). The uniformity (or, the action) is π-uniform if

$$\forall g_0 \in G \ \forall \varepsilon \in \mathcal{U} \ \exists \delta \in \mathcal{U}, \ \exists O \in N_{g_0}(\tau)$$

$$(x,y) \in \delta, g \in O \Rightarrow (gx,gy) \in \varepsilon$$

Let X be a compact space and G a subgroup of H(X). A Hausdorff group topology τ on G is said to be π-uniform if the natural action (G, τ) × X → X is π-uniform.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The notion of a π -uniform action was originally used to study compactifications of *G*-spaces.
- Later it was employed by Gamarnik to prove that for a compact space X, the compact-open topology on H(X) is minimal within the class of π-uniform topologies. We extend this result to every closed subgroup of H(X).

- The notion of a π -uniform action was originally used to study compactifications of *G*-spaces.
- Later it was employed by Gamarnik to prove that for a compact space X, the compact-open topology on H(X) is minimal within the class of π-uniform topologies. We extend this result to every closed subgroup of H(X).

Theorem

Let (X, τ) be a compact topological space and let P be a closed subgroup of H(X), the group of all homeomorphisms of X. Then the compact-open topology τ_{co} is minimal within the class of π -uniform topologies on P.

As a corollary we get the following:

Corollary

If K is a compact topological group and P is a closed subgroup of Aut(K), then the compact-open topology is minimal within the class of π -uniform topologies on P.

 As a corollary we get the following:

Corollary

If K is a compact topological group and P is a closed subgroup of Aut(K), then the compact-open topology is minimal within the class of π -uniform topologies on P.

For a topological group (G, γ) and its subgroup H denote by γ/H the natural quotient topology on the coset space G/H.

Merson's Lemma

Let (G, γ) be a (not necessarily Hausdorff) topological group and H be a (not necessarily closed) subgroup of G. If $\gamma_1 \subseteq \gamma$ is a coarser group topology on G such that $\gamma_1|_H = \gamma|_H$ and $\gamma_1/H = \gamma/H$, then $\gamma_1 = \gamma$.

- 4 同 6 4 日 6 4 日 6

For a topological group (G, γ) and its subgroup H denote by γ/H the natural quotient topology on the coset space G/H.

Merson's Lemma

Let (G, γ) be a (not necessarily Hausdorff) topological group and H be a (not necessarily closed) subgroup of G. If $\gamma_1 \subseteq \gamma$ is a coarser group topology on G such that $\gamma_1|_H = \gamma|_H$ and $\gamma_1/H = \gamma/H$, then $\gamma_1 = \gamma$.

- 4 同 2 4 日 2 4 日 2 4

Main result

Theorem

If G is a compact topological group, then G > P is minimal for every closed subgroup P of Aut(G).

Image: A image: A

Menachem Shlossberg (with Michael Megrelishvili & Luie Polev) Minimality of the semidirect product

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = \tau_{co}$

• The action

$$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$$

is α -uniform and γ_1/G is an α -uniform topology on P.

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = \tau_{co}$

• The action

$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$

is α -uniform and γ_1/G is an α -uniform topology on P.

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = au_{co}$

• The action

$$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$$

is α -uniform and γ_1/G is an α -uniform topology on P.

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = \tau_{co}$

• The action

$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$

is α -uniform and γ_1/G is an α -uniform topology on P.

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = \tau_{co}$

The action

$$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$$

is α -uniform and γ_1/G is an α -uniform topology on P.

Sketch

The structure of the proof

- γ is the product topology on $G \ge P$.
- Assume that $\gamma_1 \subseteq \gamma$ is a coarser Hausdorff group topology on $G \ge P$. Clearly, $\gamma_1|_G = \gamma|_G$. We want to show that $\gamma_1/G = \gamma/G$ and conclude the proof using Merson's Lemma.

$\gamma_1/G = \gamma/G = \tau_{co}$

The action

$$\alpha: (P, \gamma_1/G) \times (G, \gamma_1|_G) \to (G, \gamma_1|_G)$$

is α -uniform and γ_1/G is an α -uniform topology on P.

The question which remains open is:

Question

When is the semidirect product G > P of a non-abelian compact group G with a (not necessarily closed) subgroup $P \le Aut(G)$ minimal?

Or in particular,

Referee's question

Let G be a nilpotent compact topological group. Is it true that for every subgroup P of Aut(G) the group $G \ge P$ is minimal? What if G is nilpotent of class 2?

The question which remains open is:

Question

When is the semidirect product G > P of a non-abelian compact group G with a (not necessarily closed) subgroup $P \le Aut(G)$ minimal?

Or in particular,

Referee's question

Let G be a nilpotent compact topological group. Is it true that for every subgroup P of Aut(G) the group $G \ge P$ is minimal? What if G is nilpotent of class 2?

A (1) < (1) < (1) </p>

Thank you!

▲ 同 ▶ → ● 三

Menachem Shlossberg (with Michael Megrelishvili & Luie Polev) Minimality of the semidirect product