Equivariant geometry of Banach spaces and topological groups

Christian Rosendal, University of Illinois at Chicago

Toposym, Prague, July 2016

Christian Rosendal

Equivariant geometry

Toposym, July 2016 1 / 25

A uniform embedding of one metric space X into another Y is a uniformly continuous injection $\phi: X \to Y$ with uniformly continuous inverse.

A uniform embedding of one metric space X into another Y is a uniformly continuous injection $\phi: X \to Y$ with uniformly continuous inverse.

Alternatively, ϕ is a uniform embedding if, for all sequences x_n, z_n in X,

$$d(x_n, z_n) \underset{n \to \infty}{\longrightarrow} 0 \iff d(\phi(x_n), \phi(z_n)) \underset{n \to \infty}{\longrightarrow} 0.$$

A uniform embedding of one metric space X into another Y is a uniformly continuous injection $\phi: X \to Y$ with uniformly continuous inverse.

Alternatively, ϕ is a uniform embedding if, for all sequences x_n, z_n in X,

$$d(x_n, z_n) \underset{n \to \infty}{\longrightarrow} 0 \iff d(\phi(x_n), \phi(z_n)) \underset{n \to \infty}{\longrightarrow} 0.$$

An analogous concept due to M. Gromov is also available for preservation of the large scale geometry.

A uniform embedding of one metric space X into another Y is a uniformly continuous injection $\phi: X \to Y$ with uniformly continuous inverse.

Alternatively, ϕ is a uniform embedding if, for all sequences x_n, z_n in X,

$$d(x_n, z_n) \underset{n \to \infty}{\longrightarrow} 0 \iff d(\phi(x_n), \phi(z_n)) \underset{n \to \infty}{\longrightarrow} 0.$$

An analogous concept due to M. Gromov is also available for preservation of the large scale geometry.

Namely, a map $\phi: X \to Y$ is a coarse embedding if, for all sequences x_n, z_n in X,

$$d(x_n, z_n) \underset{n \to \infty}{\longrightarrow} \infty \quad \Leftrightarrow \quad d(\phi(x_n), \phi(z_n)) \underset{n \to \infty}{\longrightarrow} \infty.$$

∃ ► < ∃</p>

æ

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces that fail to be uniformly homeomorphic.

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces that fail to be uniformly homeomorphic.

Problem (N. Kalton)

Are the following equivalent for Banach spaces X and Y?

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces that fail to be uniformly homeomorphic.

Problem (N. Kalton)

Are the following equivalent for Banach spaces X and Y?

• X uniformly embeds into Y,

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces that fail to be uniformly homeomorphic.

Problem (N. Kalton)

Are the following equivalent for Banach spaces X and Y?

- X uniformly embeds into Y,
- X coarsely embeds into Y.

For example, it is easy to show that every uniform homeomorphism $\phi: X \to Y$ between two Banach spaces is automatically a coarse equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces that fail to be uniformly homeomorphic.

Problem (N. Kalton)

Are the following equivalent for Banach spaces X and Y?

- X uniformly embeds into Y,
- X coarsely embeds into Y.

This is known, for example, for Y = H Hilbert space by a result of N. L. Randrianarivony.

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

If this latter condition holds, we say that ϕ is uncollapsed.

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

If this latter condition holds, we say that ϕ is uncollapsed.

Theorem

Suppose $\phi: X \to Y$ is uniformly continuous and uncollapsed.

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

If this latter condition holds, we say that ϕ is uncollapsed.

Theorem

Suppose $\phi: X \to Y$ is uniformly continuous and uncollapsed. Then, for any $1 \leq p \leq \infty$, there is a simultaneously uniform and coarse embedding

$$\psi\colon X\to \ell^p(Y).$$

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

If this latter condition holds, we say that ϕ is uncollapsed.

Theorem

Suppose $\phi: X \to Y$ is uniformly continuous and uncollapsed. Then, for any $1 \leq p \leq \infty$, there is a simultaneously uniform and coarse embedding

$$\psi\colon X\to \ell^p(Y).$$

So, if X uniformly embeds into Y, then X coarsely embeds into $\ell^{p}(Y)$.

$$||x-z|| \ge \Delta \implies ||\phi x - \phi z|| \ge \delta.$$

If this latter condition holds, we say that ϕ is uncollapsed.

Theorem

Suppose $\phi: X \to Y$ is uniformly continuous and uncollapsed. Then, for any $1 \leq p \leq \infty$, there is a simultaneously uniform and coarse embedding

$$\psi\colon X\to \ell^p(Y).$$

So, if X uniformly embeds into Y, then X coarsely embeds into $\ell^{p}(Y)$.

E.g., if X uniformly embeds into ℓ^p , then X coarsely embeds into $\ell^p = \ell^p(\ell^p)$.

Conversely, if X admits a uniformly continuous coarse embedding into Y, then X uniformly embeds into $\ell^{p}(Y)$.

Conversely, if X admits a uniformly continuous coarse embedding into Y, then X uniformly embeds into $\ell^{p}(Y)$.

So can a coarse embedding be replaced by a uniformly continuous coarse embedding?

Conversely, if X admits a uniformly continuous coarse embedding into Y, then X uniformly embeds into $\ell^p(Y)$.

So can a coarse embedding be replaced by a uniformly continuous coarse embedding?

Theorem (A. Naor)

There is a bornologous map $\phi: X \to Y$ between separable Banach spaces which isn't close to any uniformly continuous map $\psi: X \to Y$.

Conversely, if X admits a uniformly continuous coarse embedding into Y, then X uniformly embeds into $\ell^p(Y)$.

So can a coarse embedding be replaced by a uniformly continuous coarse embedding?

Theorem (A. Naor)

There is a bornologous map $\phi: X \to Y$ between separable Banach spaces which isn't close to any uniformly continuous map $\psi: X \to Y$.

Here ϕ and ψ are close if $\sup_{x \in X} \|\phi x - \psi x\| < \infty$.

Conversely, if X admits a uniformly continuous coarse embedding into Y, then X uniformly embeds into $\ell^p(Y)$.

So can a coarse embedding be replaced by a uniformly continuous coarse embedding?

Theorem (A. Naor)

There is a bornologous map $\phi: X \to Y$ between separable Banach spaces which isn't close to any uniformly continuous map $\psi: X \to Y$.

Here ϕ and ψ are close if $\sup_{x \in X} \|\phi x - \psi x\| < \infty$.

Also, **bornologous** is a large scale property enjoyed by every uniformly continuous map.

In the same manner that a uniform space is an abstraction of the uniform structure of a metric space, a coarse space is an abstraction of the coarse structure of a metric space.

In the same manner that a uniform space is an abstraction of the uniform structure of a metric space, a coarse space is an abstraction of the coarse structure of a metric space.

Definition

A coarse space is a set X equipped with an ideal \mathcal{E} of subsets $E \subseteq X \times X$ so that $\Delta_X \in \mathcal{E}$ and

$$E, F \in \mathcal{E} \Rightarrow E \circ F, E^{-1} \in \mathcal{E}.$$

In the same manner that a uniform space is an abstraction of the uniform structure of a metric space, a coarse space is an abstraction of the coarse structure of a metric space.

Definition

A coarse space is a set X equipped with an ideal \mathcal{E} of subsets $E \subseteq X \times X$ so that $\Delta_X \in \mathcal{E}$ and

$$E, F \in \mathcal{E} \Rightarrow E \circ F, E^{-1} \in \mathcal{E}.$$

For example, if (X, d) is a metric space, its corresponding coarse structure \mathcal{E}_d is the ideal generated by sets of the form

$$\mathsf{E}_{\alpha} = \{(x, y) \in \mathsf{X} \times \mathsf{X} \mid \mathsf{d}(x, y) < \alpha\}$$

where $\alpha < \infty$.

The left-invariant coarse structure of a topological group

Theorem (G. Birkhoff – S. Kakutani – A. Weil)

The left-invariant uniform structure \mathcal{U}_L on a topological group G is given by

$$\mathcal{U}_L = \bigcup_d \mathcal{U}_d,$$

where the union is taken over all left-invariant continuous pseudo-metrics d on G.

The left-invariant coarse structure of a topological group

Theorem (G. Birkhoff – S. Kakutani – A. Weil)

The left-invariant uniform structure \mathcal{U}_L on a topological group G is given by

$$\mathcal{U}_L = \bigcup_d \mathcal{U}_d,$$

where the union is taken over all left-invariant continuous pseudo-metrics d on G.

Definition

The left-invariant coarse structure \mathcal{E}_L on a topological group G is given by

$$\mathcal{E}_L = \bigcap_d \mathcal{E}_d,$$

and the intersection is taken over all left-invariant continuous pseudo-metrics d on G.

Christian Rosendal

Equivariant geometry

The coarse structure \mathcal{E}_L on a finitely generated discrete group Γ is that induced by the word metric ρ_S of any finite generating set $S \subseteq \Gamma$.

The coarse structure \mathcal{E}_L on a finitely generated discrete group Γ is that induced by the word metric ρ_S of any finite generating set $S \subseteq \Gamma$.

The coarse structure on a locally compact second countable group G is that induced by any compatible left-invariant proper metric d, i.e., whose closed balls $B_d(\alpha)$ are compact.

The coarse structure \mathcal{E}_L on a finitely generated discrete group Γ is that induced by the word metric ρ_S of any finite generating set $S \subseteq \Gamma$.

The coarse structure on a locally compact second countable group G is that induced by any compatible left-invariant proper metric d, i.e., whose closed balls $B_d(\alpha)$ are compact.

The coarse structure on the additive group (X, +) of a Banach space X is that induced by the norm.

The coarse structure \mathcal{E}_L on a finitely generated discrete group Γ is that induced by the word metric ρ_S of any finite generating set $S \subseteq \Gamma$.

The coarse structure on a locally compact second countable group G is that induced by any compatible left-invariant proper metric d, i.e., whose closed balls $B_d(\alpha)$ are compact.

The coarse structure on the additive group (X, +) of a Banach space X is that induced by the norm.

For many other groups, the coarse structure may be computed explicitly.

The coarse structure \mathcal{E}_L on a finitely generated discrete group Γ is that induced by the word metric ρ_S of any finite generating set $S \subseteq \Gamma$.

The coarse structure on a locally compact second countable group G is that induced by any compatible left-invariant proper metric d, i.e., whose closed balls $B_d(\alpha)$ are compact.

The coarse structure on the additive group (X, +) of a Banach space X is that induced by the norm.

For many other groups, the coarse structure may be computed explicitly.

Henceforth, we only consider topological groups whose coarse structure \mathcal{E}_L is induced by a single left-invariant compatible metric d, i.e.,

$$\mathcal{E}_L = \mathcal{E}_d.$$

Let E be a Banach space and G a topological group. A continuous isometric linear representation of G on E is a continuous action

$$\pi: G \curvearrowright E$$

by linear isometries on E.

Let E be a Banach space and G a topological group. A continuous isometric linear representation of G on E is a continuous action

$$\pi: G \curvearrowright E$$

by linear isometries on E.

Alternatively, π may be viewed as a continuous homomorphism

$$\pi\colon G\to \operatorname{Isom}(E)$$

into the group Isom(E) of linear isometries of E, equipped with the strong operator topology,

Let E be a Banach space and G a topological group. A continuous isometric linear representation of G on E is a continuous action

$$\pi: G \curvearrowright E$$

by linear isometries on E.

Alternatively, π may be viewed as a continuous homomorphism

$$\pi \colon G \to \operatorname{Isom}(E)$$

into the group Isom(E) of linear isometries of E, equipped with the strong operator topology, that is, the topology of pointwise convergence on E.
$$A(\xi) = T(\xi) + \eta_0$$

for some linear isometry T and vector $\eta_0 \in E$.

$$A(\xi) = T(\xi) + \eta_0$$

for some linear isometry T and vector $\eta_0 \in E$.

It follows that, if α : $G \frown E$ is an action by isometries, we may decompose it into an isometric linear representation

 $\pi \colon G \to \operatorname{Isom}(E)$

$$A(\xi) = T(\xi) + \eta_0$$

for some linear isometry T and vector $\eta_0 \in E$.

It follows that, if α : $G \curvearrowright E$ is an action by isometries, we may decompose it into an isometric linear representation

 $\pi: G \to \operatorname{Isom}(E)$

and a cocycle

$$b: G \rightarrow E.$$

$$A(\xi) = T(\xi) + \eta_0$$

for some linear isometry T and vector $\eta_0 \in E$.

It follows that, if α : $G \curvearrowright E$ is an action by isometries, we may decompose it into an isometric linear representation

$$\pi\colon G\to \operatorname{Isom}(E)$$

and a cocycle

$$b: G \rightarrow E.$$

I.e., for $g \in G$ and $\xi \in E$,

$$\alpha(g)\xi = \pi(g)\xi + b(g).$$

$$b(gf) = \pi(g)b(f) + b(g).$$

$$b(gf) = \pi(g)b(f) + b(g).$$

Also,

$$||b(f) - b(g)|| = ||b(g^{-1}f)||.$$

$$b(gf) = \pi(g)b(f) + b(g).$$

Also,

$$||b(f) - b(g)|| = ||b(g^{-1}f)||.$$

Therefore, if α and thus also *b* are continuous, then *b* is actually uniformly continuous.

$$b(gf) = \pi(g)b(f) + b(g).$$

Also,

$$||b(f) - b(g)|| = ||b(g^{-1}f)||.$$

Therefore, if α and thus also *b* are continuous, then *b* is actually uniformly continuous.

Definition

The action α : $G \curvearrowright E$ is coarsely proper if the cocycle

$$b\colon \, G \to E$$

defines a coarse embedding of G into E.

$$b(gf) = \pi(g)b(f) + b(g).$$

Also,

$$||b(f) - b(g)|| = ||b(g^{-1}f)||.$$

Therefore, if α and thus also *b* are continuous, then *b* is actually uniformly continuous.

Definition

The action α : $G \curvearrowright E$ is coarsely proper if the cocycle

$$b\colon G\to E$$

defines a coarse embedding of G into E.

A coarsely proper continuous affine isometric action α : $G \curvearrowright E$ may be viewed as an action that faithfully represents the coarse geometry of G.

11 / 25

A topological group G is said to have the Haagerup property if it admits a coarsely proper continuous affine isometric action α : $G \curvearrowright \mathcal{H}$ on a Hilbert space \mathcal{H} .

A topological group G is said to have the Haagerup property if it admits a coarsely proper continuous affine isometric action α : $G \curvearrowright \mathcal{H}$ on a Hilbert space \mathcal{H} .

Examples

- Finitely generated free groups [U. Haagerup],
- locally compact amenable groups [Bekka, Chérix and Valette],
- the automorphism group Aut(T) of the countably regular tree T.

A topological group G is said to have the Haagerup property if it admits a coarsely proper continuous affine isometric action α : $G \curvearrowright \mathcal{H}$ on a Hilbert space \mathcal{H} .

Examples

- Finitely generated free groups [U. Haagerup],
- locally compact amenable groups [Bekka, Chérix and Valette],
- the automorphism group Aut(T) of the countably regular tree T.

In the context of countable or locally compact groups, the Haagerup property is often viewed as a strong non-rigidity property.

A topological group G is said to have the Haagerup property if it admits a coarsely proper continuous affine isometric action α : $G \curvearrowright \mathcal{H}$ on a Hilbert space \mathcal{H} .

Examples

- Finitely generated free groups [U. Haagerup],
- locally compact amenable groups [Bekka, Chérix and Valette],
- the automorphism group Aut(T) of the countably regular tree T.

In the context of countable or locally compact groups, the Haagerup property is often viewed as a strong non-rigidity property.

For general Polish groups, we may also view it as a regularity property, since it allows for an efficient representation of G on the most regular Banach space \mathcal{H} .

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform classification of Banach spaces, we obtain the following.

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform classification of Banach spaces, we obtain the following.

Theorem

The following conditions are equivalent for an amenable Polish group G,

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform classification of Banach spaces, we obtain the following.

Theorem

The following conditions are equivalent for an amenable Polish group G,

G coarsely embeds into a Hilbert space,

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform classification of Banach spaces, we obtain the following.

Theorem

The following conditions are equivalent for an amenable Polish group G,

- G coarsely embeds into a Hilbert space,
- **2** *G* has the Haagerup property.

Definition

A topological group G is amenable if every continuous affine action $\alpha: G \curvearrowright K$ on a compact convex subset K of a locally convex topological vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform classification of Banach spaces, we obtain the following.

Theorem

The following conditions are equivalent for an amenable Polish group G,

- G coarsely embeds into a Hilbert space,
- **2** *G* has the Haagerup property.

A geometric particuliarity of \mathcal{H} used here is that a metric space coarsely embeds into \mathcal{H} if and only if it has a uniformly continuous coarse embedding into \mathcal{H} .

Christian Rosendal

Local properties

As seen with the example ℓ^3 , representations on Hilbert space \mathcal{H} can be too restrictive and we may wish to replace \mathcal{H} with other nice spaces.

Local properties

As seen with the example ℓ^3 , representations on Hilbert space \mathcal{H} can be too restrictive and we may wish to replace \mathcal{H} with other nice spaces.

For example, we could consider various local geometric notions, i.e., that are dependent only on the finite-dimensional subspaces of a space.

As seen with the example ℓ^3 , representations on Hilbert space \mathcal{H} can be too restrictive and we may wish to replace \mathcal{H} with other nice spaces.

For example, we could consider various local geometric notions, i.e., that are dependent only on the finite-dimensional subspaces of a space.

Definition

A Banach space X is finitely representable in a Banach space Y if, for every finite-dimensional subspace $F \subseteq X$ and $\epsilon > 0$, there is an isomorphic embedding

 $T\colon F\to Y, \qquad \|T\|\cdot\|T^{-1}\|<1+\epsilon.$

As seen with the example ℓ^3 , representations on Hilbert space \mathcal{H} can be too restrictive and we may wish to replace \mathcal{H} with other nice spaces.

For example, we could consider various local geometric notions, i.e., that are dependent only on the finite-dimensional subspaces of a space.

Definition

A Banach space X is finitely representable in a Banach space Y if, for every finite-dimensional subspace $F \subseteq X$ and $\epsilon > 0$, there is an isomorphic embedding

$$T \colon F \to Y, \qquad \|T\| \cdot \|T^{-1}\| < 1 + \epsilon.$$

So we say that a property of Banach space is local if, whenever Y has the property and X is finitely representable in Y, then so does X.

As seen with the example ℓ^3 , representations on Hilbert space \mathcal{H} can be too restrictive and we may wish to replace \mathcal{H} with other nice spaces.

For example, we could consider various local geometric notions, i.e., that are dependent only on the finite-dimensional subspaces of a space.

Definition

A Banach space X is finitely representable in a Banach space Y if, for every finite-dimensional subspace $F \subseteq X$ and $\epsilon > 0$, there is an isomorphic embedding

$$T \colon F \to Y, \qquad \|T\| \cdot \|T^{-1}\| < 1 + \epsilon.$$

So we say that a property of Banach space is local if, whenever Y has the property and X is finitely representable in Y, then so does X.

For example super-reflexivity and super-stability.

A locally compact group G is amenable if and only if it admits a Følner sequence, that is, a sequence $F_1, F_2, \ldots \subseteq G$ of compact sets so that

$$\lim_{n} \frac{\left|F_n \bigtriangleup gF_n\right|}{\left|F_n\right|} = 0$$

for all $g \in G$.

A locally compact group G is amenable if and only if it admits a Følner sequence, that is, a sequence $F_1, F_2, \ldots \subseteq G$ of compact sets so that

$$\lim_{n} \frac{|F_n \bigtriangleup gF_n|}{|F_n|} = 0$$

for all $g \in G$.

For Polish amenable groups, the situation is more complicated.

A locally compact group G is amenable if and only if it admits a Følner sequence, that is, a sequence $F_1, F_2, \ldots \subseteq G$ of compact sets so that

$$\lim_{n} \frac{|F_n \bigtriangleup gF_n|}{|F_n|} = 0$$

for all $g \in G$.

For Polish amenable groups, the situation is more complicated.

Definition

A topological group G is said to be approximately compact if there is a countable chain $K_0 \leq K_1 \leq \ldots \leq G$ of compact subgroups whose union $\bigcup_n K_n$ is dense in G.

A locally compact group G is amenable if and only if it admits a Følner sequence, that is, a sequence $F_1, F_2, \ldots \subseteq G$ of compact sets so that

$$\lim_{n} \frac{|F_n \bigtriangleup gF_n|}{|F_n|} = 0$$

for all $g \in G$.

For Polish amenable groups, the situation is more complicated.

Definition

A topological group G is said to be approximately compact if there is a countable chain $K_0 \leq K_1 \leq \ldots \leq G$ of compact subgroups whose union $\bigcup_n K_n$ is dense in G.

E.g., the unitary subgroup U(M) of an approximately finite-dimensional von Neumann algebra M is approximately compact (P. de la Harpe).

15 / 25

A Polish group G is said to be Følner amenable if either

э

A Polish group G is said to be Følner amenable if either

G is approximately compact, or

э

A Polish group G is said to be Følner amenable if either

- G is approximately compact, or
- 2 there is a continuous homomorphism $\phi: H \to G$ from a locally compact second countable amenable group H so that $G = \overline{\phi[H]}$.

A Polish group G is said to be Følner amenable if either

- G is approximately compact, or
- 2 there is a continuous homomorphism $\phi: H \to G$ from a locally compact second countable amenable group H so that $G = \overline{\phi[H]}$.

For example, every abelian Polish group is Følner amenable. E.g., Banach spaces.

Theorem

Let G be a Følner amenable Polish group admitting a uniformly continuous coarse embedding into a Banach space E.

Theorem

Let G be a Følner amenable Polish group admitting a uniformly continuous coarse embedding into a Banach space E. Then G admits a coarsely proper continuous affine isometric action on a Banach space V that is finitely representable in $L^2(E)$.

Theorem

Let G be a Følner amenable Polish group admitting a uniformly continuous coarse embedding into a Banach space E. Then G admits a coarsely proper continuous affine isometric action on a Banach space V that is finitely representable in $L^2(E)$.

Earlier results of this type due to Naor–Peres and Pestov were known for discrete groups.
Let G be a Følner amenable Polish group admitting a uniformly continuous coarse embedding into a Banach space E. Then G admits a coarsely proper continuous affine isometric action on a Banach space V that is finitely representable in $L^2(E)$.

Earlier results of this type due to Naor–Peres and Pestov were known for discrete groups.

Most local properties of Banach spaces are preserved under the passage $E \mapsto L^2(E)$.

Let G be a Følner amenable Polish group admitting a uniformly continuous coarse embedding into a Banach space E. Then G admits a coarsely proper continuous affine isometric action on a Banach space V that is finitely representable in $L^2(E)$.

Earlier results of this type due to Naor–Peres and Pestov were known for discrete groups.

Most local properties of Banach spaces are preserved under the passage $E \mapsto L^2(E)$.

E.g., the property of being super-reflexive (Clarkson), that is, having a uniformly convex renorming (Enflo).

The following are equivalent for a Følner amenable Polish group G.

э

The following are equivalent for a Følner amenable Polish group G.

• *G* has a uniformly continuous coarse embedding into a super-reflexive Banach space,

The following are equivalent for a Følner amenable Polish group G.

- *G* has a uniformly continuous coarse embedding into a super-reflexive Banach space,
- *G* has a coarsely proper continuous affine isometric ation on a super-reflexive space.

The following are equivalent for a Følner amenable Polish group G.

- *G* has a uniformly continuous coarse embedding into a super-reflexive Banach space,
- *G* has a coarsely proper continuous affine isometric ation on a super-reflexive space.

Coupling a quantitative version of the above result with work of Krivine–Maurey and Raynaud, we obtain the following.

Corollary

Let X be a Banach space uniformly embeddable into the unit ball B_E of a super-reflexive Banach space E. Then X contains an isomorphic copy of some ℓ^p , $1 \leq p < \infty$.

However, this obviously begs the following question.

However, this obviously begs the following question.

Problem

Is every Polish amenable group also Følner amenable?

However, this obviously begs the following question.

Problem Is every Polish amenable group also Følner amenable?

To our knowledge, this is still open, though a simple counter-example may exist.

A Polish group has **bounded geometry** if it is coarsely equivalent to a proper metric space.

A Polish group has **bounded geometry** if it is coarsely equivalent to a proper metric space.

Here a coarse equivalence between two metric spaces X and Y is a coarse embedding $\phi: X \to Y$ so that $\phi[X]$ is cobounded in Y,

A Polish group has **bounded geometry** if it is coarsely equivalent to a proper metric space.

Here a coarse equivalence between two metric spaces X and Y is a coarse embedding $\phi: X \to Y$ so that $\phi[X]$ is cobounded in Y, i.e.,

 $\sup_{y\in Y} d(y,\phi[X]) < \infty.$

A Polish group has **bounded geometry** if it is coarsely equivalent to a proper metric space.

Here a coarse equivalence between two metric spaces X and Y is a coarse embedding $\phi: X \to Y$ so that $\phi[X]$ is cobounded in Y, i.e.,

$$\sup_{y\in Y} d(y,\phi[X]) < \infty.$$

Since the coarse structure of a locally compact second countable group is given by a proper metric on the group, every such group has bounded geometry.

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where ${\rm Homeo}_{\mathbb Z}(\mathbb R)$ is the group of homeomorphisms of $\mathbb R$ commuting with integral shifts.

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where ${\rm Homeo}_{\mathbb Z}(\mathbb R)$ is the group of homeomorphisms of $\mathbb R$ commuting with integral shifts.

Then the embedding of \mathbb{Z} into $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is a coarse equivalence. So $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ has bounded geometry.

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is the group of homeomorphisms of \mathbb{R} commuting with integral shifts.

Then the embedding of \mathbb{Z} into $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is a coarse equivalence. So $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ has bounded geometry.

Using a partion of unity, coarse embeddings of bounded geometry groups into Banach spaces can be made uniformly continuous.

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where ${\rm Homeo}_{\mathbb Z}(\mathbb R)$ is the group of homeomorphisms of $\mathbb R$ commuting with integral shifts.

Then the embedding of \mathbb{Z} into $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is a coarse equivalence. So $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ has bounded geometry.

Using a partion of unity, coarse embeddings of bounded geometry groups into Banach spaces can be made uniformly continuous.

Corollary

The following are equivalent for an amenable Polish group G of bounded geometry.

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where ${\rm Homeo}_{\mathbb Z}(\mathbb R)$ is the group of homeomorphisms of $\mathbb R$ commuting with integral shifts.

Then the embedding of \mathbb{Z} into $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is a coarse equivalence. So $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ has bounded geometry.

Using a partion of unity, coarse embeddings of bounded geometry groups into Banach spaces can be made uniformly continuous.

Corollary

The following are equivalent for an amenable Polish group G of bounded geometry.

• G is coarsely embeddable in a super-reflexive Banach space,

$$\mathbb{Z} \to \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R}) \to \operatorname{Homeo}_{+}(\mathbb{S}^{1}),$$

where ${\rm Homeo}_{\mathbb Z}(\mathbb R)$ is the group of homeomorphisms of $\mathbb R$ commuting with integral shifts.

Then the embedding of \mathbb{Z} into $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is a coarse equivalence. So $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ has bounded geometry.

Using a partion of unity, coarse embeddings of bounded geometry groups into Banach spaces can be made uniformly continuous.

Corollary

The following are equivalent for an amenable Polish group G of bounded geometry.

- G is coarsely embeddable in a super-reflexive Banach space,
- *G* admits a coarsely proper continuous affine isometric ation on a super-reflexive space.

э

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine isometric action on a reflexive space.

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine isometric action on a reflexive space.

On the contrary, by a result of M. Megrelishvili, the group $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is generated by two subgroups with no non-trivial reflexive representations and thus has no non-trivial reflexive representations either.

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine isometric action on a reflexive space.

On the contrary, by a result of M. Megrelishvili, the group $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is generated by two subgroups with no non-trivial reflexive representations and thus has no non-trivial reflexive representations either.

Also, for Følner amenable groups with faithful unitary representations, we may have very strong geometric obstructions.

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine isometric action on a reflexive space.

On the contrary, by a result of M. Megrelishvili, the group $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ is generated by two subgroups with no non-trivial reflexive representations and thus has no non-trivial reflexive representations either.

Also, for Følner amenable groups with faithful unitary representations, we may have very strong geometric obstructions.

Theorem

Every continuous affine isometric action of $Isom(\mathbb{ZU})$ on a reflexive Banach space or on $L^1([0,1])$ has a fixed point.

However, combining amenability and bounded geometry, we obtain an analogue of the Brown–Guentner Theorem.

However, combining amenability and bounded geometry, we obtain an analogue of the Brown-Guentner Theorem.

Theorem

Let G be an amenable Polish group of bounded geometry. Then G has a coarsely proper continuous affine isometric action on a reflexive space.

However, combining amenability and bounded geometry, we obtain an analogue of the Brown-Guentner Theorem.

Theorem

Let G be an amenable Polish group of bounded geometry. Then G has a coarsely proper continuous affine isometric action on a reflexive space.

The main idea here is to produce a sequence $\phi_n \colon G \to \ell^{p_n}$ of uniformly continuous maps that sufficiently separate points of G.

However, combining amenability and bounded geometry, we obtain an analogue of the Brown-Guentner Theorem.

Theorem

Let G be an amenable Polish group of bounded geometry. Then G has a coarsely proper continuous affine isometric action on a reflexive space.

The main idea here is to produce a sequence $\phi_n \colon G \to \ell^{p_n}$ of uniformly continuous maps that sufficiently separate points of G.

Using amenability, each of the ϕ_n are averaged to produce cocycles $b_n \colon G \to L^{p_n}$, so that the cocycle

$$b = b_1 \oplus b_2 \oplus \ldots$$

with values in the reflexive space $\bigoplus_n L^{p_n}$ is coarsely proper.

Let G be a Polish group whose coarse structure is given by a stable left-invariant compatible metric. Then G admits a coarsely proper continuous affine isometric action on a reflexive Banach space.

Let G be a Polish group whose coarse structure is given by a stable left-invariant compatible metric. Then G admits a coarsely proper continuous affine isometric action on a reflexive Banach space.

Here *d* is stable if, for all bounded sequences (x_n) and (y_m) and all ultrafilters \mathcal{U} and \mathcal{V} , we have

$$\lim_{n\to\mathcal{U}}\lim_{m\to\mathcal{V}}d(x_n,y_m)=\lim_{m\to\mathcal{V}}\lim_{n\to\mathcal{U}}d(x_n,y_m).$$

In the context of automorphism groups of countable first-order structures, we have the following corollary.

Corollary

Let **A** be a countable atomic model of a stable theory T and assume that Aut(A) has metrisable coarse structure. Then Aut(A) admits a coarsely proper continuous affine isometric action on a reflexive Banach space. In the context of automorphism groups of countable first-order structures, we have the following corollary.

Corollary

Let **A** be a countable atomic model of a stable theory T and assume that Aut(A) has metrisable coarse structure. Then Aut(A) admits a coarsely proper continuous affine isometric action on a reflexive Banach space.

By a result of J. Zielinski, the assumption of metrisability is not automatic from the other hypotheses.