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Coarse geometry

A uniform embedding of one metric space X into another Y is a uniformly
continuous injection φ : X → Y with uniformly continuous inverse.

Alternatively, φ is a uniform embedding if, for all sequences xn, zn in X ,

d(xn, zn) −→
n→∞

0 ⇔ d
(
φ(xn), φ(zn)

)
−→
n→∞

0.

An analogous concept due to M. Gromov is also available for preservation
of the large scale geometry.

Namely, a map φ : X → Y is a coarse embedding if, for all sequences
xn, zn in X ,

d(xn, zn) −→
n→∞

∞ ⇔ d
(
φ(xn), φ(zn)

)
−→
n→∞

∞.
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How are the uniform and coarse structures related?

For example, it is easy to show that every uniform homeomorphism
φ : X → Y between two Banach spaces is automatically a coarse
equivalence, that is, a bijective coarse embedding.

Conversely, N. Kalton constructed two coarsely equivalent Banach spaces
that fail to be uniformly homeomorphic.

Problem (N. Kalton)

Are the following equivalent for Banach spaces X and Y ?

X uniformly embeds into Y ,

X coarsely embeds into Y .

This is known, for example, for Y = H Hilbert space by a result of N. L.
Randrianarivony.
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Observe that, if φ : X → Y is either a uniform or a coarse embedding,
then there are ∆, δ > 0 so that

‖x − z‖ > ∆ ⇒ ‖φx − φz‖ > δ.

If this latter condition holds, we say that φ is uncollapsed.

Theorem

Suppose φ : X → Y is uniformly continuous and uncollapsed. Then, for
any 1 6 p 6∞, there is a simultaneously uniform and coarse embedding

ψ : X → `p(Y ).

So, if X uniformly embeds into Y , then X coarsely embeds into `p(Y ).

E.g., if X uniformly embeds into `p, then X coarsely embeds into
`p = `p(`p).
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Conversely, if X admits a uniformly continuous coarse embedding into Y ,
then X uniformly embeds into `p(Y ).

So can a coarse embedding be replaced by a uniformly continuous coarse
embedding?

Theorem (A. Naor)

There is a bornologous map φ : X → Y between separable Banach spaces
which isn’t close to any uniformly continuous map ψ : X → Y .

Here φ and ψ are close if supx∈X ‖φx − ψx‖ <∞.

Also, bornologous is a large scale property enjoyed by every uniformly
continuous map.
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J. Roe’s Coarse spaces

In the same manner that a uniform space is an abstraction of the uniform
structure of a metric space, a coarse space is an abstraction of the coarse
structure of a metric space.

Definition

A coarse space is a set X equipped with an ideal E of subsets E ⊆ X × X
so that ∆X ∈ E and

E ,F ∈ E ⇒ E ◦ F ,E−1 ∈ E .

For example, if (X , d) is a metric space, its corresponding coarse structure
Ed is the ideal generated by sets of the form

Eα = {(x , y) ∈ X × X | d(x , y) < α}

where α <∞.
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The left-invariant coarse structure of a topological group

Theorem (G. Birkhoff – S. Kakutani – A. Weil)

The left-invariant uniform structure UL on a topological group G is given
by

UL =
⋃
d

Ud ,

where the union is taken over all left-invariant continuous pseudo-metrics
d on G .

Definition

The left-invariant coarse structure EL on a topological group G is given by

EL =
⋂
d

Ed ,

and the intersection is taken over all left-invariant continuous
pseudo-metrics d on G .
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Examples

The coarse structure EL on a finitely generated discrete group Γ is that
induced by the word metric ρS of any finite generating set S ⊆ Γ.

The coarse structure on a locally compact second countable group G is
that induced by any compatible left-invariant proper metric d , i.e., whose
closed balls Bd(α) are compact.

The coarse structure on the additive group (X ,+) of a Banach space X is
that induced by the norm.

For many other groups, the coarse structure may be computed explicitly.

Henceforth, we only consider topological groups whose coarse structure EL
is induced by a single left-invariant compatible metric d , i.e.,

EL = Ed .
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Linear and affine representations

Let E be a Banach space and G a topological group. A continuous
isometric linear representation of G on E is a continuous action

π : G y E

by linear isometries on E .

Alternatively, π may be viewed as a continuous homomorphism

π : G → Isom(E )

into the group Isom(E ) of linear isometries of E , equipped with the strong
operator topology, that is, the topology of pointwise convergence on E .
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By a result of Mazur and Ulam, every surjective isometry A : E → E of a
Banach space is affine, that is, of the form

A(ξ) = T (ξ) + η0

for some linear isometry T and vector η0 ∈ E .

It follows that, if α : G y E is an action by isometries, we may decompose
it into an isometric linear representation

π : G → Isom(E )

and a cocycle
b : G → E .

I.e., for g ∈ G and ξ ∈ E ,

α(g)ξ = π(g)ξ + b(g).
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Conversely, given π, for α(g)ξ = π(g)ξ + b(g) to define an action, b must
satisfy the cocycle equation

b(gf ) = π(g)b(f ) + b(g).

Also,
‖b(f )− b(g)‖ = ‖b(g−1f )‖.

Therefore, if α and thus also b are continuous, then b is actually uniformly
continuous.

Definition

The action α : G y E is coarsely proper if the cocycle

b : G → E

defines a coarse embedding of G into E .

A coarsely proper continuous affine isometric action α : G y E may be
viewed as an action that faithfully represents the coarse geometry of G .
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The Haagerup property

Definition

A topological group G is said to have the Haagerup property if it admits a
coarsely proper continuous affine isometric action α : G y H on a Hilbert
space H.

Examples

Finitely generated free groups [U. Haagerup],

locally compact amenable groups [Bekka, Chérix and Valette],

the automorphism group Aut(T) of the countably regular tree T.

In the context of countable or locally compact groups, the Haagerup
property is often viewed as a strong non-rigidity property.

For general Polish groups, we may also view it as a regularity property,
since it allows for an efficient representation of G on the most regular
Banach space H.
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As, for example, the Banach space `3 does not even coarsely embed into
H, the result of Bekka–Chérix–Valette fails for amenable Polish groups.

Definition

A topological group G is amenable if every continuous affine action
α : G y K on a compact convex subset K of a locally convex topological
vector space has a fixed point.

Extending earlier work of Aharoni, Maurey and Mityagin on the uniform
classification of Banach spaces, we obtain the following.

Theorem

The following conditions are equivalent for an amenable Polish group G ,

1 G coarsely embeds into a Hilbert space,

2 G has the Haagerup property.

A geometric particuliarity of H used here is that a metric space coarsely
embeds into H if and only if it has a uniformly continuous coarse
embedding into H.
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Local properties

As seen with the example `3, representations on Hilbert space H can be
too restrictive and we may wish to replace H with other nice spaces.

For example, we could consider various local geometric notions, i.e., that
are dependent only on the finite-dimensional subspaces of a space.

Definition

A Banach space X is finitely representable in a Banach space Y if, for
every finite-dimensional subspace F ⊆ X and ε > 0, there is an isomorphic
embedding

T : F → Y , ‖T‖·‖T−1‖ < 1 + ε.

So we say that a property of Banach space is local if, whenever Y has the
property and X is finitely representable in Y , then so does X .

For example super-reflexivity and super-stability.
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Another take on amenability

A locally compact group G is amenable if and only if it admits a Følner
sequence, that is, a sequence F1,F2, . . . ⊆ G of compact sets so that

lim
n

∣∣Fn M gFn
∣∣∣∣Fn∣∣ = 0

for all g ∈ G .

For Polish amenable groups, the situation is more complicated.

Definition

A topological group G is said to be approximately compact if there is a
countable chain K0 6 K1 6 . . . 6 G of compact subgroups whose union⋃

n Kn is dense in G .

E.g., the unitary subgroup U(M) of an approximately finite-dimensional
von Neumann algebra M is approximately compact (P. de la Harpe).
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Definition

A Polish group G is said to be Følner amenable if either

1 G is approximately compact, or

2 there is a continuous homomorphism φ : H → G from a locally
compact second countable amenable group H so that G = φ[H].

For example, every abelian Polish group is Følner amenable. E.g., Banach
spaces.
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Theorem

Let G be a Følner amenable Polish group admitting a uniformly
continuous coarse embedding into a Banach space E .

Then G admits a coarsely proper continuous affine isometric action on a
Banach space V that is finitely representable in L2(E ).

Earlier results of this type due to Naor–Peres and Pestov were known for
discrete groups.

Most local properties of Banach spaces are preserved under the passage
E 7→ L2(E ).

E.g., the property of being super-reflexive (Clarkson), that is, having a
uniformly convex renorming (Enflo).
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Theorem

The following are equivalent for a Følner amenable Polish group G .

G has a uniformly continuous coarse embedding into a super-reflexive
Banach space,

G has a coarsely proper continuous affine isometric ation on a
super-reflexive space.

Coupling a quantitative version of the above result with work of
Krivine–Maurey and Raynaud, we obtain the following.

Corollary

Let X be a Banach space uniformly embeddable into the unit ball BE of a
super-reflexive Banach space E . Then X contains an isomorphic copy of
some `p, 1 6 p <∞.
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Now, just recently, F. M. Schneider and A. Thom were able to weaken the
assumption of Følner amenablity to plain amenability in the preceding
theorem.

However, this obviously begs the following question.

Problem

Is every Polish amenable group also Følner amenable?

To our knowledge, this is still open, though a simple counter-example may
exist.
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Polish groups of bounded geometry

Definition

A Polish group has bounded geometry if it is coarsely equivalent to a
proper metric space.

Here a coarse equivalence between two metric spaces X and Y is a coarse
embedding φ : X → Y so that φ[X ] is cobounded in Y , i.e.,

sup
y∈Y

d(y , φ[X ]) <∞.

Since the coarse structure of a locally compact second countable group is
given by a proper metric on the group, every such group has bounded
geometry.
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Consider the central extension

Z→ HomeoZ(R)→ Homeo+(S1),

where HomeoZ(R) is the group of homeomorphisms of R commuting with
integral shifts.

Then the embedding of Z into HomeoZ(R) is a coarse equivalence. So
HomeoZ(R) has bounded geometry.

Using a partion of unity, coarse embeddings of bounded geometry groups
into Banach spaces can be made uniformly continuous.

Corollary

The following are equivalent for an amenable Polish group G of bounded
geometry.

G is coarsely embeddable in a super-reflexive Banach space,

G admits a coarsely proper continuous affine isometric ation on a
super-reflexive space.
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Every locally compact group admits a proper reflexive representation.

Theorem (Brown–Guentner, Haagerup–Przybyszewska)

Every locally compact Polish group has a coarsely proper continuous affine
isometric action on a reflexive space.

On the contrary, by a result of M. Megrelishvili, the group HomeoZ(R) is
generated by two subgroups with no non-trivial reflexive representations
and thus has no non-trivial reflexive representations either.

Also, for Følner amenable groups with faithful unitary representations, we
may have very strong geometric obstructions.

Theorem

Every continuous affine isometric action of Isom(ZU) on a reflexive
Banach space or on L1([0, 1]) has a fixed point.
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However, combining amenability and bounded geometry, we obtain an
analogue of the Brown–Guentner Theorem.

Theorem

Let G be an amenable Polish group of bounded geometry. Then G has a
coarsely proper continuous affine isometric action on a reflexive space.

The main idea here is to produce a sequence φn : G → `pn of uniformly
continuous maps that sufficiently separate points of G .

Using amenability, each of the φn are averaged to produce cocycles
bn : G → Lpn , so that the cocycle

b = b1 ⊕ b2 ⊕ . . .

with values in the reflexive space
⊕

n L
pn is coarsely proper.
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Reflexive spaces

Theorem

Let G be a Polish group whose coarse structure is given by a stable
left-invariant compatible metric. Then G admits a coarsely proper
continuous affine isometric action on a reflexive Banach space.

Here d is stable if, for all bounded sequences (xn) and (ym) and all
ultrafilters U and V, we have

lim
n→U

lim
m→V

d(xn, ym) = lim
m→V

lim
n→U

d(xn, ym).
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In the context of automorphism groups of countable first-order structures,
we have the following corollary.

Corollary

Let A be a countable atomic model of a stable theory T and assume that
Aut(A) has metrisable coarse structure.
Then Aut(A) admits a coarsely proper continuous affine isometric action
on a reflexive Banach space.

By a result of J. Zielinski, the assumption of metrisability is not automatic
from the other hypotheses.
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