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Maximal Homogeneous Spaces

Let X be a space. Denote by Aut X the group of
autohomeomorphisms of X .

Let

H(X ) = {f (x) : f ∈ AutβX and x ∈ X}

Clearly, H(X ) = H(H(X )).

Definition

A topological space X is β-stable if H(X ) = X . X is maximal
homogeneous if X if .β-stable and homogeneous.

A space X is maximal homogeneous iff X is a maximal
homogeneous subspace of βX containing X . Clearly, H(X ) is
β-stable and maximal homogeneous if X is homogeneous.
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β-stable spaces

Proposition

If X is a first countable space then X is β-stable.

Proposition

(T.Banach, R.) Suppose that X is a realcompact space and either
each point x ∈ X is a P-point or there exists a sequence
(xn)n ⊂ X \ {x} converging to x. Then X is β-stable.

Corollary

(T.Banach, R.) Let X be a homogeneous realcompact P space.
Then X is maximal homogeneous.

Corollary

(T.Banach, R.) Suppose that X is a homogeneous realcompact
space and there exists a convergent sequence in X . Then X is
maximal homogeneous.
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Totally countably p-compact space

Let p be a free ultrafilter on ω.

Recall that a space X is
p-compact if any sequence (xn)n∈ω ⊂ X has a p-limit in X . A
space X is p-compact space for some p iff X τ is countably
compact for any τ .
We say that a space X is totally countably p-compact if, for any
infinite M ⊂ X , there exists an infinite L ⊂ M such that any
sequence (xn)n∈ω ⊂ L (xi 6= xj for i 6= j) has a p-limit in X . Any
totally countably compact space (in particular, any sequentially
compact space) is totally countably p-compact for any
p ∈ ω∗ = βω \ ω. Clearly, any totally countably p-compact space
is contably compact.

Theorem

If p ∈ ω∗ and X is a totally countably p-compact space, then Xω

is totally countably p-compact and, hence, countably compact.
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β-stable spaces



Maximal homogeneous extremally disconnected space

Theorem

Let X be a maximal homogeneous extremally disconnected space.
If X contains a nonclosed dicrete sequence of points, then X is
totally countably p-compact for some p ∈ ω∗.

Note that all examples of homogeneous extremally disconnected
countably compact spaces are maximally homogeneous.

Corollary

Let X be a homogeneous extremally disconnected space. If X
contains a nonclosed dicrete sequence of points, then H(X ) is
maximal homogeneous, extremally disconnected, and totally
countably p-compact for some p ∈ ω∗.
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Maximal homogeneous groups

Problem

Let G be a topological group. Is H(G ) a topological group?

The answer is “no” under CH. Under CH there exists an
extremally disconnected group G containing a nonclosed dicrete
sequence of points. H(G ) is an extremally disconnected countably
compact space.
Any extremally disconnected countably compact group is finite.
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Products of groups

Theorem

(Comfort and Ross, 1966) Any product of pseudocompact groups
is pseudocompact.

Theorem

(Hart and van Mill, 1991) (MAcountable) There exists a countably
compact group whose square is not countably compact.
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Products of homogeneous spaces

There exists homogeneous spaces X and Y such that

1 (Comfort, van Mill, 1985) MA(ω1) X τ , Y τ are countably
compact for any τ and X × Y is not countably compact;

2 (Comfort, van Mill, 1987) MA(ω1) X , Y are extremally
disconnected countably compact spaces and X × Y is not
countably compact;

3 (Kata, 1994) X , Y are extremally disconnected countably
compact spaces and X × Y is not countably compact;

4 (Lindgren, Szymanski, 1997) MA(ω1) X , Y are extremally
disconnected countably compact spaces and X × Y is not
pseudocompact
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Non-pseudocompact products

Theorem

There exists homogeneous spaces X and Y such that X τ is
countably compact for any τ , Xω is countably compact, and
X × Y is not pseudocompact.

Theorem

(R. 1996) Let P be one of the following classes: (a) p-compact
spaces; (b) spaces X for which Xω is countably compact. Then for
earch X ∈ P there exists a homogeneous Y ∈ P such that
X × Y ' Y .

Let p ∈ ω∗. There exists p-compact X1 ⊂ βω such that ω ⊂ X1

and |X1| ≤ 2ω. Let Y1 = βω \ X1 ∪ ω. Then Y ω
1 is countably

compact, X1 ∩Y1 = ω and, hence, X1×Y1 is not pseudocompact.
By R. 1996, there exists homogeneous p-compact spaces X and Y
(Y ω is countably compact) such that X ' X × X1 and
Y ' Y × Y1. The product X × Y is not pseudocompact.
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