Normal spanning trees in uncountable graphs, and almost disjoint families

Max Pitz

Joint with N. Bowler and S. Geschke

University of Hamburg, Germany

29 July 2016

• *Kuratowski's Theorem ('30):* A finite graph is planar if and only if it doesn't embed K_5 and $K_{3,3}$.

• *Kuratowski's Theorem ('30):* A finite graph is planar if and only if it doesn't embed K_5 and $K_{3,3}$.

• *Kuratowski's Theorem ('30):* A finite graph is planar if and only if it doesn't embed K_5 and $K_{3,3}$.

• *Claytor's Theorem ('34):* A Peano continuum is planar if and only if it doesn't embed K_5 , $K_{3,3}$, L_5 and $L_{3,3}$.

• *Kuratowski's Theorem ('30):* A finite graph is planar if and only if it doesn't embed K_5 and $K_{3,3}$.

$$K_5 = \bigcup = \bigcup K_{3,3} = \bigcup = \bigcup$$

• *Claytor's Theorem ('34):* A Peano continuum is planar if and only if it doesn't embed K_5 , $K_{3,3}$, L_5 and $L_{3,3}$.

The Graph-Minor Theorem

The graph-theoretic notion of a minor

Say that $G \preccurlyeq H$ (G is a minor of H) if G embeds into a monotone quotient of H.

Alternative description: G can be obtained by deleting and contracting some edges of H.

The Graph-Minor Theorem

Describing properties by forbidding finitely many substructures

Graph-Minor Theorem (Robertson & Seymour, '83-'04, GM I–XX)

Any property of finite graphs that is preserved under taking minors is characterised by finitely many forbidden minors.

The Graph-Minor Theorem

Describing properties by forbidding finitely many substructures

Graph-Minor Theorem (Robertson & Seymour, '83-'04, GM I–XX)

Any property of finite graphs that is preserved under taking minors is characterised by finitely many forbidden minors.

- False for graphs of size c (Thomas, '88).
- Open for countable graphs.
- Algorithmic aspects: Checking whether a fixed graph is a minor can be done in polynomial time ⇒ all minor-closed properties can be verified in polynomial time.
- Embeddability into a fixed surface (e.g. a torus) is minor-closed. Have to forbid at least 16,000 graphs.

Normal spanning trees (NST)

A generalisation of depth-first-search trees

- A graph G, and an NST T with root r.
- Edges of G grow parallel to branches on the tree T.

Normal spanning trees (NST)

A generalisation of depth-first-search trees

- A graph G, and an NST T with root r.
- Edges of G grow parallel to branches on the tree T.

- Finite connected graphs have NSTs (depth-first search).
- Countable connected graphs have NSTs (Jung, '67).
- Uncountable graphs need not have an NST.
- Having an NST is closed under taking (connected) minors (Jung, '67).

Normal spanning trees (NST)

A generalisation of depth-first-search trees

- A graph G, and an NST T with root r.
- Edges of G grow parallel to branches on the tree T.

- Finite connected graphs have NSTs (depth-first search).
- Countable connected graphs have NSTs (Jung, '67).
- Uncountable graphs need not have an NST.
- Having an NST is closed under taking (connected) minors (Jung, '67). ⇒ What are the (minimal) forbidden minors?

Halin's (\aleph_0, \aleph_1) -graphs without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

- $|A| = \aleph_0$,
- $|B| = \aleph_1$, and
- for all $b \in B$, $|N(b)| = \aleph_0$.

Halin's (\aleph_0, \aleph_1) -graphs without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

• $|A| = \aleph_0$,

•
$$|B| = \aleph_1$$
, and

• for all $b \in B$, $|N(b)| = \aleph_0$.

Halin's (\aleph_0, \aleph_1) -graphs without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

• $|A| = \aleph_0$,

•
$$|B| = \aleph_1$$
, and

• for all
$$b \in B$$
, $|N(b)| = \aleph_0$.

Observation (Halin): No (\aleph_0, \aleph_1) -graph can have an NST:

• Sppse $\exists T \text{ a NST}$

Halin's $(\aleph_0, \aleph_1)\text{-}\mathsf{graphs}$ without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

• $|A| = \aleph_0$,

•
$$|B| = \aleph_1$$
, and

• for all
$$b \in B$$
, $|N(b)| = \aleph_0$.

- Sppse $\exists T \text{ a NST}$
- **2** $\exists n \text{ such that } n^{\text{th}} \text{ level } T_n \text{ unctble}$

Halin's $(\aleph_0, \aleph_1)\text{-}\mathsf{graphs}$ without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

• $|A| = \aleph_0$,

•
$$|B| = \aleph_1$$
, and

• for all
$$b \in B$$
, $|N(b)| = \aleph_0$.

- **1** Sppse $\exists T \text{ a NST}$
- **2** $\exists n \text{ such that } n^{\mathsf{th}} \text{ level } T_n \text{ unctble}$
- every *B*-vertex in T_n has a neighbour in $A \cap T_{n+1}$

Halin's (\aleph_0, \aleph_1) -graphs without a normal spanning tree

An (\aleph_0, \aleph_1) -graph is bipartite on vertex sets A and B, such that

• $|A| = \aleph_0$,

•
$$|B| = \aleph_1$$
, and

• for all
$$b \in B$$
, $|N(b)| = \aleph_0$.

- **1** Sppse $\exists T \text{ a NST}$
- **2** $\exists n \text{ such that } n^{\mathsf{th}} \text{ level } T_n \text{ unctble}$
- every *B*-vertex in T_n has a neighbour in $A \cap T_{n+1}$
- so $A \cap T_{n+1}$ is uncountable, contradiction.

A characterisation due to Diestel and Leader

NST Forbidden Minor Theorem (Diestel & Leader, '01)

A connected graph has an NST if and only if it does not contain an (\aleph_0, \aleph_1) -graph or an Aronzsajn tree-graph as a minor.

A characterisation due to Diestel and Leader

NST Forbidden Minor Theorem (Diestel & Leader, '01)

A connected graph has an NST if and only if it does not contain an (\aleph_0, \aleph_1) -graph or an Aronzsajn tree-graph as a minor.

 Open problem (Diestel & Leader): Give a description of the minor-minimal elements of the class of (ℵ₀, ℵ₁)-graphs.

A characterisation due to Diestel and Leader

NST Forbidden Minor Theorem (Diestel & Leader, '01)

A connected graph has an NST if and only if it does not contain an (\aleph_0, \aleph_1) -graph or an Aronzsajn tree-graph as a minor.

- Open problem (Diestel & Leader): Give a description of the minor-minimal elements of the class of (ℵ₀, ℵ₁)-graphs.
- Encode (\aleph_0, \aleph_1) -graphs as (multi-)set $\mathcal{N} = \langle N(b_\alpha) : \alpha < \omega_1 \rangle$ of ∞ -sets $\subset \mathbb{N}$.
- \Rightarrow combinatorics of uncountable collections $\mathcal{N} \subseteq [\omega]^{\omega}$.
- E.g. consider Almost disjoint
 (ℵ0, ℵ1)-graphs (⇔ N ADF).

Almost disjoint (\aleph_0, \aleph_1) -graphs

For the minor minimal graphs, can restrict our attention to AD-graphs

An (\aleph_0, \aleph_1) -graph is AD if $|N(b) \cap N(b')| < \infty$ for all $b \neq b' \in B$.

Theorem (Bowler, Geschke, Pitz)

Every (\aleph_0, \aleph_1) -graph contains an AD- (\aleph_0, \aleph_1) -subgraph.

Almost disjoint (\aleph_0, \aleph_1) -graphs

For the minor minimal graphs, can restrict our attention to AD-graphs

An (\aleph_0, \aleph_1) -graph is AD if $|N(b) \cap N(b')| < \infty$ for all $b \neq b' \in B$.

Theorem (Bowler, Geschke, Pitz)

Every (\aleph_0, \aleph_1) -graph contains an AD- (\aleph_0, \aleph_1) -subgraph.

- Every collection $\mathcal{N} \subseteq [\omega]^{\omega}$ of size $< \mathfrak{c}$ has an almost disjoint refinement, i.e. for every $N \in \mathcal{N}$ can pick infinite $N' \subset N$ such that $\{N' \colon N \in \mathcal{N}\}$ is almost disjoint (Baumgartner, Hajnal & Mate, '73; Hechler, '78).
- Best possible, as $\mathcal{N} = [\omega]^{\omega}$ doesn't have an AD refinement.

Almost disjoint (\aleph_0, \aleph_1) -graphs

For the minor minimal graphs, can restrict our attention to AD-graphs

An (\aleph_0, \aleph_1) -graph is AD if $|N(b) \cap N(b')| < \infty$ for all $b \neq b' \in B$.

Theorem (Bowler, Geschke, Pitz)

Every (\aleph_0, \aleph_1) -graph contains an AD- (\aleph_0, \aleph_1) -subgraph.

- Every collection $\mathcal{N} \subseteq [\omega]^{\omega}$ of size $< \mathfrak{c}$ has an almost disjoint refinement, i.e. for every $N \in \mathcal{N}$ can pick infinite $N' \subset N$ such that $\{N' \colon N \in \mathcal{N}\}$ is almost disjoint (Baumgartner, Hajnal & Mate, '73; Hechler, '78).
- Best possible, as $\mathcal{N} = [\omega]^{\omega}$ doesn't have an AD refinement.
- So under ¬CH, the theorem follows immediately from Hechler's result. But under CH, one has to find a workaround: Deal with ω₁-towers separately.

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

 (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

 (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)

Set-theoretic perspective (Roitman & Soukup):

- (weak) tree-family: As T_2^{tops} , but $N(b_{\alpha}) =^* b_{\alpha} (N(b_{\alpha}) \subseteq^* b_{\alpha})$
- hidden tree-family: A is h.t.f. if for some binary tree T, $\{T \cap a \colon a \in A\}$ a weak tree family

A Martin's Axiom result

Under MA, the (full)-binary trees with tops form a minimal class of (\aleph_0, \aleph_1) -graphs

Theorem (Bowler, Geschke, Pitz)

Under MA+ \neg CH, every (\aleph_0, \aleph_1)-graph contains a full T_2^{tops} as subgraph.

- Reminiscent of the result that under MA+¬CH, every ADF of size < c is a hidden tree-family (Velickovic '93, Roitman & Soukup '98)
- Proof idea for T₂^{tops}: For every finite subset B' ⊂ B there are arbitarily large finite trees ⊂ A with branches being large subsets of B'... Δ-system lemma gives ccc.
- Proof idea for full T_2^{tops} : Take a finite support product.

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

 (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

- (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)
- divisible: for (A, B) there are partitions $A = A_1 \dot{\cup} A_2$ and $B = B_1 \dot{\cup} B_2$ s.t. (A_1, B_1) and (A_2, B_2) are (\aleph_0, \aleph_1) -graphs

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

- (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)
- divisible: for (A, B) there are partitions $A = A_1 \dot{\cup} A_2$ and $B = B_1 \dot{\cup} B_2$ s.t. (A_1, B_1) and (A_2, B_2) are (\aleph_0, \aleph_1) -graphs
- *U*-indivisible: For $\mathcal{U} \in \omega^*$ with $\chi(\mathcal{U}) = \omega_1$, pick $N(b_\alpha)$ s.t. $N(b_\alpha)^*$ has \mathcal{U} as unique complete accumulation point.

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

- (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)
- divisible: for (A, B) there are partitions $A = A_1 \dot{\cup} A_2$ and $B = B_1 \dot{\cup} B_2$ s.t. (A_1, B_1) and (A_2, B_2) are (\aleph_0, \aleph_1) -graphs
- *U*-indivisible: For $\mathcal{U} \in \omega^*$ with $\chi(\mathcal{U}) = \omega_1$, pick $N(b_\alpha)$ s.t. $N(b_\alpha)^*$ has \mathcal{U} as unique complete accumulation point.

Set-theoretic perspective (Roitman & Soukup):

- (weak) tree-family: As T_2^{tops} , but $N(b_{\alpha}) =^* b_{\alpha} (N(b_{\alpha}) \subseteq^* b_{\alpha})$
- hidden tree-family: A is h.t.f. if for some binary tree T, $\{T \cap a \colon a \in A\}$ a weak tree family

An overview of (\aleph_0, \aleph_1) -graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

- (full) T₂^{tops}: Ctble binary tree, pick branches {b_α: α < ω₁}. Neighbourhoods are infinite sets N(b_α) ⊂ b_α (N(b_α) = b_α)
- divisible: for (A, B) there are partitions $A = A_1 \dot{\cup} A_2$ and $B = B_1 \dot{\cup} B_2$ s.t. (A_1, B_1) and (A_2, B_2) are (\aleph_0, \aleph_1) -graphs
- *U*-indivisible: For $\mathcal{U} \in \omega^*$ with $\chi(\mathcal{U}) = \omega_1$, pick $N(b_\alpha)$ s.t. $N(b_\alpha)^*$ has \mathcal{U} as unique complete accumulation point.

Set-theoretic perspective (Roitman & Soukup):

- (weak) tree-family: As T_2^{tops} , but $N(b_{\alpha}) =^* b_{\alpha} (N(b_{\alpha}) \subseteq^* b_{\alpha})$
- hidden tree-family: A is h.t.f. if for some binary tree T, $\{T \cap a \colon a \in A\}$ a weak tree family
- anti-Luzin: A is a.L. if for all uncountable B ⊂ A there are uncountable C and D of B such that UC ∩ UD is finite

There are minor-inequivalent classes besides $T_2^{tops} \label{eq:tops}$

Theorem (Diestel & Leader, '01)

- Every (\aleph_0, \aleph_1) -minor of a T_2^{tops} is divisible
- **2** Every (\aleph_0, \aleph_1) -minor of an indivisible graph is indivisible
- S ⇒ under CH (or $\mathfrak{u} = \omega_1$), there are at least two minor-minimal classes of (\aleph_0, \aleph_1)-graphs

There are minor-inequivalent classes besides $T_2^{tops} \label{eq:tops}$

Theorem (Diestel & Leader, '01)

- Every (\aleph_0, \aleph_1) -minor of a T_2^{tops} is divisible
- **2** Every (\aleph_0, \aleph_1) -minor of an indivisible graph is indivisible
- S ⇒ under CH (or u = ω_1), there are at least two minor-minimal classes of (\aleph_0, \aleph_1)-graphs
 - Open problem (Diestel & Leader): Does every (ℵ₀, ℵ₁)-graph have an (ℵ₀, ℵ₁)-minor that is either indivisible or a T₂^{tops}?

There are minor-inequivalent classes besides $T_2^{tops} \label{eq:tops}$

Theorem (Diestel & Leader, '01)

- Every (\aleph_0, \aleph_1) -minor of a T_2^{tops} is divisible
- **2** Every (\aleph_0, \aleph_1) -minor of an indivisible graph is indivisible
- S ⇒ under CH (or $\mathfrak{u} = \omega_1$), there are at least two minor-minimal classes of (\aleph_0, \aleph_1)-graphs
- Open problem (Diestel & Leader): Does every (ℵ₀, ℵ₁)-graph have an (ℵ₀, ℵ₁)-minor that is either indivisible or a T^{tops}₂?

Some clues that this question might have a negative answer:

There are minor-inequivalent classes besides $T_2^{tops} \label{eq:tops}$

Theorem (Diestel & Leader, '01)

- Every (\aleph_0, \aleph_1) -minor of a T_2^{tops} is divisible
- **2** Every (\aleph_0, \aleph_1) -minor of an indivisible graph is indivisible
- S ⇒ under CH (or $\mathfrak{u} = \omega_1$), there are at least two minor-minimal classes of (\aleph_0, \aleph_1)-graphs
 - Open problem (Diestel & Leader): Does every (ℵ₀, ℵ₁)-graph have an (ℵ₀, ℵ₁)-minor that is either indivisible or a T₂^{tops}?

Some clues that this question might have a negative answer:

 Assuming CH + there exists a Suslin tree, there is an uncountable anti-Luzin ADF containing no uncountable hidden weak tree families (Roitman & Soukup)

There are minor-inequivalent classes besides $T_2^{tops} \label{eq:tops}$

Theorem (Diestel & Leader, '01)

- Every (\aleph_0, \aleph_1) -minor of a T_2^{tops} is divisible
- **2** Every (\aleph_0, \aleph_1) -minor of an indivisible graph is indivisible
- S ⇒ under CH (or $\mathfrak{u} = \omega_1$), there are at least two minor-minimal classes of (\aleph_0, \aleph_1)-graphs
 - Open problem (Diestel & Leader): Does every (ℵ₀, ℵ₁)-graph have an (ℵ₀, ℵ₁)-minor that is either indivisible or a T₂^{tops}?

Some clues that this question might have a negative answer:

- Assuming CH + there exists a Suslin tree, there is an uncountable anti-Luzin ADF containing no uncountable hidden weak tree families (Roitman & Soukup)
- Under CH, there is an (ℵ₀, ℵ₁)-graph which contains neither indivisible subgraphs nor T₂^{tops} as a subgraph (Bowler, Geschke & Pitz)

More on indivisible (\aleph_0, \aleph_1) -graphs

Different ultrafilters \leftrightarrow different indivisible graphs?

• (Diestel & Leader, '01) If (A, B) and (A', B') are \mathcal{U} - and \mathcal{U}' -indivisible with $(A, B) \preceq (A', B')$ then $\mathcal{U} \leq_{RK} \mathcal{U}'$.

More on indivisible (\aleph_0, \aleph_1) -graphs

 ${\sf Different\ ultrafilters} \leftrightarrow {\sf different\ indivisible\ graphs}?$

• (Diestel & Leader, '01) If (A, B) and (A', B') are \mathcal{U} - and \mathcal{U}' -indivisible with $(A, B) \preceq (A', B')$ then $\mathcal{U} \leq_{RK} \mathcal{U}'$.

Theorem (Bowler, Geschke, Pitz)

[CH]. For every \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph G there is an \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph H such that $G \not\preceq H$.

More on indivisible (\aleph_0, \aleph_1) -graphs

 ${\sf Different\ ultrafilters} \leftrightarrow {\sf different\ indivisible\ graphs}?$

• (Diestel & Leader, '01) If (A, B) and (A', B') are \mathcal{U} - and \mathcal{U}' -indivisible with $(A, B) \preceq (A', B')$ then $\mathcal{U} \leq_{RK} \mathcal{U}'$.

Theorem (Bowler, Geschke, Pitz)

[CH]. For every \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph G there is an \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph H such that $G \not\preceq H$.

- On first sight, it seems difficult to diagonalise against all possible minors, as there are 2^{ω1} many potential quotients.
- Solution: Only those branching sets that intersect the countable *A*-side are of importance...

Open questions

Problems I would like to find an answer to:

Ounder CH (+ any assumption you like) construct an AD-(ℵ₀, ℵ₁)-graph which is minor-incomparable to both indivisible graphs and T^{tops}₂ graphs.

Open questions

Problems I would like to find an answer to:

- Under CH (+ any assumption you like) construct an AD-(ℵ₀, ℵ₁)-graph which is minor-incomparable to both indivisible graphs and T^{tops}₂ graphs.
- **2** Under CH, are there \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph G and H such that $G \not\preceq H$ and $H \not\preceq G$?

Open questions

Problems I would like to find an answer to:

- Under CH (+ any assumption you like) construct an AD-(ℵ₀, ℵ₁)-graph which is minor-incomparable to both indivisible graphs and T^{tops}₂ graphs.
- **2** Under CH, are there \mathcal{U} -indivisible (\aleph_0, \aleph_1) graph G and H such that $G \not\preceq H$ and $H \not\preceq G$?
- **3** Under MA+ \neg CH, is there a minor-minimal T_2^{tops} ?