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Characterising properties by forbidden substructures
Some examples involving planarity

Kuratowski’s Theorem (’30): A finite graph is planar if and
only if it doesn’t embed K5 and K3,3.

K5 = = K3,3 = =

U

K3,3
K5

non-planar
planar

2 / 16



Characterising properties by forbidden substructures
Some examples involving planarity

Kuratowski’s Theorem (’30): A finite graph is planar if and
only if it doesn’t embed K5 and K3,3.

K5 = = K3,3 = =

U

K3,3
K5

non-planar
planar

2 / 16



Characterising properties by forbidden substructures
Some examples involving planarity

Kuratowski’s Theorem (’30): A finite graph is planar if and
only if it doesn’t embed K5 and K3,3.

K5 = = K3,3 = =

Claytor’s Theorem (’34): A Peano continuum is planar if and
only if it doesn’t embed K5, K3,3, L5 and L3,3.
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The Graph-Minor Theorem
The graph-theoretic notion of a minor

Say that G 4 H (G is a minor of H) if G embeds into a monotone
quotient of H.

Alternative description: G can be obtained by deleting and
contracting some edges of H.
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The Graph-Minor Theorem
Describing properties by forbidding finitely many substructures

Graph-Minor Theorem (Robertson & Seymour, ’83-’04, GM I–XX)

Any property of finite graphs that is preserved under taking minors
is characterised by finitely many forbidden minors.

False for graphs of size c (Thomas, ’88).

Open for countable graphs.

Algorithmic aspects: Checking whether a fixed graph is a
minor can be done in polynomial time ⇒ all minor-closed
properties can be verified in polynomial time.

Embeddability into a fixed surface (e.g. a torus) is
minor-closed. Have to forbid at least 16,000 graphs.
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Normal spanning trees (NST)
A generalisation of depth-first-search trees

A graph G, and an NST T with
root r.

Edges of G grow parallel to
branches on the tree T .

Finite connected graphs have NSTs (depth-first search).

Countable connected graphs have NSTs (Jung, ’67).

Uncountable graphs need not have an NST.

Having an NST is closed under taking (connected) minors
(Jung, ’67).

⇒ What are the (minimal) forbidden minors?
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Forbidden substructures for NSTs
Halin’s (ℵ0,ℵ1)-graphs without a normal spanning tree

An (ℵ0,ℵ1)-graph is bipartite on
vertex sets A and B, such that

|A| = ℵ0,

|B| = ℵ1, and

for all b ∈ B, |N(b)| = ℵ0.

A B

bN(b)

Observation (Halin): No (ℵ0,ℵ1)-graph can have an NST:

1 Sppse ∃ T a NST

2 ∃n such that nth level Tn unctble

3 every B-vertex in Tn has a
neighbour in A∩Tn+1

4 so A∩Tn+1 is uncountable,
contradiction.

T

Tn
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Forbidden substructures for NSTs
A characterisation due to Diestel and Leader

NST Forbidden Minor Theorem (Diestel & Leader, ’01)

A connected graph has an NST if and only if it does not contain
an (ℵ0,ℵ1)-graph or an Aronzsajn tree-graph as a minor.

Open problem (Diestel & Leader): Give a description of the
minor-minimal elements of the class of (ℵ0,ℵ1)-graphs.

Encode (ℵ0,ℵ1)-graphs as (multi-)set
N = 〈N(bα) : α < ω1〉 of ∞-sets ⊂ N.

⇒ combinatorics of uncountable
collections N ⊆ [ω]ω.

E.g. consider Almost disjoint
(ℵ0,ℵ1)-graphs (⇔ N ADF). A B

bN(b)
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Almost disjoint (ℵ0,ℵ1)-graphs
For the minor minimal graphs, can restrict our attention to AD-graphs

An (ℵ0,ℵ1)-graph is AD if |N(b) ∩N(b′)| <∞ for all b 6= b′ ∈ B.

Theorem (Bowler, Geschke, Pitz)

Every (ℵ0,ℵ1)-graph contains an AD-(ℵ0,ℵ1)-subgraph.

Every collection N ⊆ [ω]ω of size < c has an almost disjoint
refinement, i.e. for every N ∈ N can pick infinite N ′ ⊂ N
such that {N ′ : N ∈ N} is almost disjoint (Baumgartner,
Hajnal & Mate, ’73; Hechler, ’78).

Best possible, as N = [ω]ω doesn’t have an AD refinement.

So under ¬CH, the theorem follows immediately from
Hechler’s result. But under CH, one has to find a workaround:
Deal with ω1-towers separately.
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Special types of AD-(ℵ0,ℵ1)-graphs
An overview of (ℵ0,ℵ1)-graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

(full) T tops2 : Ctble binary tree, pick branches {bα : α < ω1}.
Neighbourhoods are infinite sets N(bα) ⊂ bα (N(bα) = bα)

Set-theoretic perspective (Roitman & Soukup):

(weak) tree-family: As T tops2 , but N(bα) =∗ bα (N(bα) ⊆∗ bα)

hidden tree-family: A is h.t.f. if for some binary tree T ,
{T ∩ a : a ∈ A} a weak tree family
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A Martin’s Axiom result
Under MA, the (full)-binary trees with tops form a minimal class of (ℵ0,ℵ1)-graphs

Theorem (Bowler, Geschke, Pitz)

Under MA+¬CH, every (ℵ0,ℵ1)-graph contains a full T tops2 as
subgraph.

Reminiscent of the result that under MA+¬CH, every ADF of
size < c is a hidden tree-family (Velickovic ’93, Roitman &
Soukup ’98)

Proof idea for T tops2 : For every finite subset B′ ⊂ B there are
arbitarily large finite trees ⊂ A with branches being large
subsets of B′... ∆-system lemma gives ccc.

Proof idea for full T tops2 : Take a finite support product.

11 / 16



Special types of AD-(ℵ0,ℵ1)-graphs
An overview of (ℵ0,ℵ1)-graphs with various different combinatorical properties

Graph-theoretic perspective (Diestel & Leader):

(full) T tops2 : Ctble binary tree, pick branches {bα : α < ω1}.
Neighbourhoods are infinite sets N(bα) ⊂ bα (N(bα) = bα)

divisible: for (A,B) there are partitions A = A1∪̇A2 and
B = B1∪̇B2 s.t. (A1, B1) and (A2, B2) are (ℵ0,ℵ1)-graphs

U-indivisible: For U ∈ ω∗ with χ(U) = ω1, pick N(bα) s.t.
N(bα)∗ has U as unique complete accumulation point.

U
ω∗

...
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anti-Luzin: A is a.L. if for all uncountable B ⊂ A there are
uncountable C and D of B such that

⋃
C ∩

⋃
D is finite
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Chaos under CH
There are minor-inequivalent classes besides T tops

2

Theorem (Diestel & Leader, ’01)

1 Every (ℵ0,ℵ1)-minor of a T tops2 is divisible

2 Every (ℵ0,ℵ1)-minor of an indivisible graph is indivisible

3 ⇒ under CH (or u = ω1), there are at least two
minor-minimal classes of (ℵ0,ℵ1)-graphs

Open problem (Diestel & Leader): Does every (ℵ0,ℵ1)-graph
have an (ℵ0,ℵ1)-minor that is either indivisible or a T tops2 ?

Some clues that this question might have a negative answer:

Assuming CH + there exists a Suslin tree, there is an
uncountable anti-Luzin ADF containing no uncountable
hidden weak tree families (Roitman & Soukup)
Under CH, there is an (ℵ0,ℵ1)-graph which contains neither
indivisible subgraphs nor T tops2 as a subgraph (Bowler,
Geschke & Pitz)
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More on indivisible (ℵ0,ℵ1)-graphs
Different ultrafilters ↔ different indivisible graphs?

(Diestel & Leader, ’01) If (A,B) and (A′, B′) are U- and
U ′-indivisible with (A,B) � (A′, B′) then U ≤RK U ′.

Theorem (Bowler, Geschke, Pitz)

[CH]. For every U-indivisible (ℵ0,ℵ1) graph G there is an
U-indivisible (ℵ0,ℵ1) graph H such that G 6� H.

On first sight, it seems difficult to diagonalise against all
possible minors, as there are 2ω1 many potential quotients.

Solution: Only those branching sets that intersect the
countable A-side are of importance...
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possible minors, as there are 2ω1 many potential quotients.

Solution: Only those branching sets that intersect the
countable A-side are of importance...
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Open questions
Problems I would like to find an answer to:

1 Under CH (+ any assumption you like) construct an
AD-(ℵ0,ℵ1)-graph which is minor-incomparable to both
indivisible graphs and T tops2 graphs.

2 Under CH, are there U-indivisible (ℵ0,ℵ1) graph G and H
such that G 6� H and H 6� G?

3 Under MA+¬CH, is there a minor-minimal T tops2 ?
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