Hereditary coreflective subcategories in categories of semitopological groups

Veronika Pitrová

Jan Evangelista Purkyně University in Ústí nad Labem

1 / 17

Veronika Pitrová (UJEP)

Introduction

Structure	Group operation	Inverse
semitopological group	separately continuous	_
quasitopological group	separately continuous	continuous
paratopological group	continuous	_
topological group	continuous	continuous

Reflective subcategories

Definition

A subcategory **A** of **C** is reflective in **C** provided that for every $X \in \mathbf{C}$ there exists an **A**-reflection: $X_{\mathbf{A}} \in \mathbf{A}$ and a **C**-morphism $r_X : X \to X_{\mathbf{A}}$ such that for every **C**-morphism $f : X \to Y$ where $Y \in \mathbf{A}$ there exists a unique **A**-morphism $\overline{f} : X_{\mathbf{A}} \to Y$, such that the following diagram commutes:

《曰》 《圖》 《臣》 《臣》

• epireflective \Leftrightarrow closed under the formation of subgroups and products

- epireflective \Leftrightarrow closed under the formation of subgroups and products
- extremal epimorphisms are precisely the open surjective homomorphisms:

A B A A B A

- epireflective \Leftrightarrow closed under the formation of subgroups and products
- extremal epimorphisms are precisely the open surjective homomorphisms:
 - extremal epireflective ⇔ closed under the formation of subgroups, products and semitopological groups with finer topologies
 e.g. STopAb, the category of all torsion-free semitopological groups

< □ ト < 同 ト < 三 ト < 三 ト

- epireflective \Leftrightarrow closed under the formation of subgroups and products
- extremal epimorphisms are precisely the open surjective homomorphisms:
 - extremal epireflective ⇔ closed under the formation of subgroups, products and semitopological groups with finer topologies
 e.g. STopAb, the category of all torsion-free semitopological groups
 - epireflective, closed under the formation of (usual) quotients e.g. **QTopGr**, **PTopGr**, **TopGr**, **TopAb**

< ロト (四) (三) (三) (三)

Definition

A subcategory **B** of **A** is coreflective in **A** provided that for every $X \in \mathbf{A}$ there exists a **B**-coreflection: $X_{\mathbf{B}} \in \mathbf{B}$ and an **A**-morphism $c_X : X_{\mathbf{B}} \to X$ such that for every **A**-morphism $f : Y \to X$ where $Y \in \mathbf{B}$ there exists a unique **B**-morphism $\bar{f} : Y \to X_{\mathbf{B}}$, such that the following diagram commutes:

▶ < 문 ► < E ►</p>

 $\bullet\,$ A denotes an epireflective subcategory of ${\bf STopGr}$

E

A B < A B </p>

- hereditary coreflective \Rightarrow monocoreflective

A B < A B <</p>

- A denotes an epireflective subcategory of ${\bf STopGr}$
- hereditary coreflective \Rightarrow monocoreflective
- monocoreflective \Leftrightarrow closed under the formation of coproducts and extremal quotients

A B < A B <</p>

- A denotes an epireflective subcategory of ${\bf STopGr}$
- hereditary coreflective \Rightarrow monocoreflective
- monocoreflective \Leftrightarrow closed under the formation of coproducts and extremal quotients
- bicoreflective \Leftrightarrow monocoreflective, contains $r_{\mathbf{A}}(\mathbb{Z})$ e.g. **QTopGr** in **STopGr**, **TopGr** in **PTopGr**

• the "most general" group from **A** that contains each G_i as a subgroup

▶ < 문 ► < 문 ►</p>

- the "most general" group from **A** that contains each G_i as a subgroup
- in **STopGr**: the free product with the finest topology such that $\coprod_{i \in I} G_i$ is a semitopological group and all $m_j : G_j \to \coprod_{i \in I} G_i$ are continuous

- the "most general" group from **A** that contains each G_i as a subgroup
- in **STopGr**: the free product with the finest topology such that $\coprod_{i \in I} G_i$ is a semitopological group and all $m_j : G_j \to \coprod_{i \in I} G_i$ are continuous
- in **STopAb**, **QTopAb**: the direct sum with the cross topology

- the "most general" group from **A** that contains each G_i as a subgroup
- in **STopGr**: the free product with the finest topology such that $\coprod_{i \in I} G_i$ is a semitopological group and all $m_j : G_j \to \coprod_{i \in I} G_i$ are continuous
- in **STopAb**, **QTopAb**: the direct sum with the cross topology
- in **PTopAb**, **TopAb**: the direct sum with the usual topology

Questions

1. What is the hereditary coreflective hull of subcategories of \mathbf{A} ?

2. Which hereditary coreflective subcategories of **A** are bicoreflective in **A**?

A B < A B </p>

The hereditary coreflective hull

• in general:

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopGr} and \mathbf{B} be a subcategory of \mathbf{A} . Moreover, let

- 1. $B_0 = B$,
- 2. $\mathbf{B}_{\alpha+1} = \mathrm{MCH}_{\mathbf{A}}(\mathrm{SB}_{\alpha})$ for every ordinal α ,
- 3. $\mathbf{B}_{\beta} = \bigcup_{\alpha < \beta} \mathbf{B}_{\alpha}$ for every limit ordinal β .

Then the hereditary coreflective hull of **B** in **A** is the subcategory $\mathbf{B}^* = \bigcup_{\alpha \in \mathrm{On}} \mathbf{B}_{\alpha}.$

The hereditary coreflective hull

• if extremal epimorphisms in **A** are precisely the surjective open homomorphisms:

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopGr} such that the extremal epimorphisms in \mathbf{A} are precisely the surjective open homomorphisms and \mathbf{B} be a subcategory of \mathbf{A} . Moreover let

- 1. $B_0 = B$,
- B₁ be the subcategory consisting of all coproducts of groups from B₀,
- B₂ be the subcategory consisting of all subgroups of groups from B₁,
- 4. \mathbf{B}_3 be the subcategory consisting of all extremal quotients of groups from \mathbf{B}_2 .

Then the hereditary coreflective hull of \mathbf{B} in \mathbf{A} is the subcategory \mathbf{B}_3 .

The hereditary coreflective hull in $A \subseteq STopAb$

• if $\mathbf{A} \subseteq \mathbf{STopAb}$ is closed under the formation extremal quotients:

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopAb} that is closed under the formation of extremal quotients and \mathbf{B} be a coreflective subcategory of \mathbf{A} . Then the hereditary coreflective hull of \mathbf{B} in \mathbf{A} is the subcategory consisting of all subgroups of groups from \mathbf{B} .

A B < A B <</p>

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

< <p>I > < A</p>

- 4 B b - 4 B b

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

Outline of proof:

• **B** is closed under the formation of finite products with the cross topology, since they are quotients of finite coproducts

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

Outline of proof:

- **B** is closed under the formation of finite products with the cross topology, since they are quotients of finite coproducts
- **B** contains the group Z' of integers with a T_1 -topology

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

Outline of proof:

- **B** is closed under the formation of finite products with the cross topology, since they are quotients of finite coproducts
- **B** contains the group Z' of integers with a T_1 -topology
- the subset $V = U \times U \setminus \{(n, n) : n \text{ is a non-zero integer}\}$ of $Z' \times^* Z'$ is open (U is a neighborhood of 0 in Z')

イロト 不得下 イヨト イヨト

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

Outline of proof:

- **B** is closed under the formation of finite products with the cross topology, since they are quotients of finite coproducts
- **B** contains the group Z' of integers with a T_1 -topology
- the subset $V = U \times U \setminus \{(n, n) : n \text{ is a non-zero integer}\}$ of $Z' \times^* Z'$ is open (U is a neighborhood of 0 in Z')

•
$$[(1,1)] \cap V = \{(0,0)\}$$

イロト 不得下 イヨト イヨト

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} and \mathbf{B} be a hereditary coreflective subcategory of \mathbf{A} that contains the group Z of integers with a T₀-topology. Then \mathbf{B} contains the discrete group \mathbb{Z} , therefore it is bicoreflective in \mathbf{A} .

Outline of proof:

- **B** is closed under the formation of finite products with the cross topology, since they are quotients of finite coproducts
- **B** contains the group Z' of integers with a T_1 -topology
- the subset $V = U \times U \setminus \{(n, n) : n \text{ is a non-zero integer}\}$ of $Z' \times^* Z'$ is open (U is a neighborhood of 0 in Z')
- $[(1,1)] \cap V = \{(0,0)\}$
- ! the proof fails in **PTopGr** and **TopGr**, since $Z \times^* Z$ does not need to be a paratopological group

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopGr} that satisfies one of the following conditions:

- 1. A is closed under the formation of finite coproducts,
- 2. A contains the group $\mathbb{Z}_n \sqcup \mathbb{Z}_n$ for every $n \in \mathbb{N}$,

and **B** be a hereditary coreflective subcategory of **A** that contains a group with a proper open subgroup. Then **B** contains the discrete group \mathbb{Z} , therefore it is bicoreflective in **A**.

3 K 4 3 K

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopGr} that satisfies one of the following conditions:

- 1. A is closed under the formation of finite coproducts,
- 2. A contains the group $\mathbb{Z}_n \sqcup \mathbb{Z}_n$ for every $n \in \mathbb{N}$,

and **B** be a hereditary coreflective subcategory of **A** that contains a group with a proper open subgroup. Then **B** contains the discrete group \mathbb{Z} , therefore it is bicoreflective in **A**.

Corollary

If \mathbf{A} satisfies the conditions of the preceding proposition, \mathbf{B} is a hereditary coreflective subcategory of \mathbf{A} that contains a cyclic group with a non-indiscrete topology that is not T_0 , then \mathbf{B} is bicoreflective in \mathbf{A} .

3

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

< <p>I > < A</p>

- 4 B b - 4 B b

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

 \bullet holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$

3 K 4 3 K

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

- holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$
- hereditary coreflective subcategories that are not bicoreflective:
 - 1. the subcategory containing only the trivial group
 - 2. the subcategory of all indiscrete groups

3 K 4 3 K

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

- holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$
- hereditary coreflective subcategories that are not bicoreflective:
 - 1. the subcategory containing only the trivial group
 - 2. the subcategory of all indiscrete groups
- PTopGr, TopGr:

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

- holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$
- hereditary coreflective subcategories that are not bicoreflective:
 - 1. the subcategory containing only the trivial group
 - 2. the subcategory of all indiscrete groups
- PTopGr, TopGr:
 - Z the subgroup of the unit circle group $\{z \in \mathbb{C} : |z| = 1\}$ generated by $e^{i\pi r}$ for some irrational r

< ロト < 同ト < ヨト < ヨト

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

- holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$
- hereditary coreflective subcategories that are not bicoreflective:
 - 1. the subcategory containing only the trivial group
 - 2. the subcategory of all indiscrete groups
- PTopGr, TopGr:
 - Z the subgroup of the unit circle group $\{z \in \mathbb{C} : |z| = 1\}$ generated by $e^{i\pi r}$ for some irrational r
 - every non-trivial subgroup of Z is dense

< ロト (四) (三) (三) (三)

Corollary

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopGr} or \mathbf{QTopGr} that satisfies the conditions of the preceding proposition. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

- holds particularly for ${\bf STopGr}$ and ${\bf QTopGr}$
- hereditary coreflective subcategories that are not bicoreflective:
 - 1. the subcategory containing only the trivial group
 - 2. the subcategory of all indiscrete groups
- PTopGr, TopGr:
 - Z the subgroup of the unit circle group $\{z \in \mathbb{C} : |z| = 1\}$ generated by $e^{i\pi r}$ for some irrational r
 - every non-trivial subgroup of Z is dense
 - is the hereditary coreflective hull of Z bicoreflective in **PTopGr** (**TopGr**)?

Hereditary bicoreflective subcategories in $\mathbf{A}\subseteq\mathbf{STopAb}$

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopAb} or \mathbf{QTopAb} such that $\mathbb{Z} \in \mathbf{A}$ and \mathbf{B} be the subcategory of \mathbf{A} consisting precisely of such groups $G \in \mathbf{A}$ that no infinite cyclic subgroup of G is T_0 . Then \mathbf{B} is the largest hereditary coreflective subcategory of \mathbf{A} that is not bicoreflective in \mathbf{A} .

Hereditary bicoreflective subcategories in $\mathbf{A}\subseteq\mathbf{STopAb}$

Proposition

Let \mathbf{A} be an extremal epireflective subcategory of \mathbf{STopAb} or \mathbf{QTopAb} such that $\mathbb{Z} \in \mathbf{A}$ and \mathbf{B} be the subcategory of \mathbf{A} consisting precisely of such groups $G \in \mathbf{A}$ that no infinite cyclic subgroup of G is T_0 . Then \mathbf{B} is the largest hereditary coreflective subcategory of \mathbf{A} that is not bicoreflective in \mathbf{A} .

Example

- A extremal epireflective in **PTopAb** or **TopAb**, $\mathbb{Z} \in \mathbf{A}$
- **B** such groups $G \in \mathbf{A}$ that every infinite cyclic subgroup of G that is T_0 has a neighborhood base at 0 consisting only of its non-trivial subgroups
- \Rightarrow **B** is hereditary and coreflective in **A**, but not bicoreflective

э

<ロト <回ト < 回ト < ヨト

If $r_{\mathbf{A}}(\mathbb{Z}) = \mathbb{Z}_n$

Proposition

Let $n \in \mathbb{N}$ and \mathbf{A} be the subcategory of **STopGr** (**QTopGr**, **PTopGr** or **TopGr**) consisting of all groups G such that the order of every element of G is a divisor of n. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

< <p>I > < A</p>

If $r_{\mathbf{A}}(\mathbb{Z}) = \mathbb{Z}_n$

Proposition

Let $n \in \mathbb{N}$ and \mathbf{A} be the subcategory of **STopGr** (**QTopGr**, **PTopGr** or **TopGr**) consisting of all groups G such that the order of every element of G is a divisor of n. Then every hereditary coreflective subcategory of \mathbf{A} that contains a non-indiscrete group is bicoreflective in \mathbf{A} .

Proposition

Let \mathbf{A} be an epireflective subcategory of \mathbf{STopAb} such that $r_{\mathbf{A}}(\mathbb{Z}) = \mathbb{Z}_n, n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$ be the prime factorization of n and \mathbf{B}_i be the subcategory of \mathbf{A} consisting precisely of such groups $G \in \mathbf{A}$ that no cyclic subgroup of G of order $p_i^{\alpha_i}$ is discrete. Then each \mathbf{B}_i is a maximal hereditary coreflective subcategory of \mathbf{A} that is not bicoreflective in \mathbf{A} .

イロト 不得下 イヨト イヨト

Thank you for your attention.

÷.

(日) (四) (三) (三) (三)