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Basic Questions

To which extent the structure of subspaces of a given regular space
X determines the topological properties of X?

Can the second countability (or, more generally, the existence of
countable network ) of X be characterized in this way?

Is there a finite list B of regular uncountable spaces such that every
other regular uncountable space X contains a subspace
homeomorphic to one space from B?

To answer this question we are willing to use standard forcing
axioms (MA, PFA,...), and/or restrict ourselves to some appropriate
subclass of well-behaved spaces.
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The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality ℵ1 embeds
homomorphically into any uncountable regular space of countable
network and that

every subset of the Sorgenfrey line (R,→) of cardinality ℵ1 embeds
homomorphically into any uncountable subspace of (R,→).

Note that neither an uncountable discrete space nor an uncountable
subspace of the Sorgenfrey line has a countable network.

So even in the class of first countable spaces the list B must have
at least three elements.
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S and L spaces

Hereditary Lindelöfness and hereditary separability play important
roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable
subcover.

An S space is a regular hereditarily separable (HS) space which is
not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not
separable.
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S space

Theorem (M.E. Rudin, 1972)

It is consistent to have an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains an
uncountable discrete space or is HL.
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L space

Theorem (Moore, 2005)

There is an L space.

Adding algebraic structure will not help:

Theorem (P.-Wu, 2014)

There is an L group.

It turns out that the class of L spaces/groups does not have a
reasonably small basis.

Or restrict ourselves to the class of first countable spaces.

Theorem (Szentmiklossy, 1980)

MAω1 implies that there are no first countable L spaces.
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One class

A topological space X is cometrizable if it has a weaker metrizable
topology and a neighbourhood assignment consisting of closed sets
in this weaker topology.

Example: The Sorgenfrey line is a cometrizable space.

Theorem (Gruenhage 1987)

Assume PFA. A cometrizable space has a countable network if it
contains no uncountable discrete subspace nor an uncountable
subspace of the Sorgenfrey line.



Another class

Definition

C = {Xα : α < κ} ⊂ P(X ) is a weak network if there is a base such
that for every open set O in the base, O \ ∪{Xα : Xα ⊂ O} is at
most countable.

Obviously, separable metric space, Sorgenfrey subset and discrete
space all have countable weak networks.

Theorem (PFA)

If a regular space X has a countable weak network, then either X
has a countable network or X contains an uncountable subset
which is either discrete or Sorgenfrey.
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Weak network

Observation: For HL spaces, countable weak network is preserved
by going to weaker topology;

strengthen the topology without
destroying countable weak network will not add a counterexample.

Corollary (PFA)

If X is a regular space and is weaker than the Sorgenfrey topology
when mod [X ]≤ω, then X contains an uncountable metrizable or
Sorgenfrey subset.

Corollary (Gruenhage; PFA)

If there is a regular space contains none of the 3 spaces, there is a
sub-metrizable one.
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Applications to other problem

Theorem (PFA)

If X is a regular HL space with a countable weak network, then X
admits a 2-to-1 continuous map to a metric space.

A similar question in perfect normal compact spaces has drawn
people’s attention for a long time.

Question (Fremlin)

Is it consistent that every perfectly normal compact space admits a
2-to-1 continuous map to a metric space?
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Connection with perfectly normal compact spaces

Gruenhage also pointed out that consistency of basis problem
should provide consistency to the following:

Question

Is it consistent that every perfectly normal locally connected
compact space is metrizable?

Question

If X and Y are compact and X × Y is perfectly normal, must one
of X and Y be metrizable?
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First countability

Theorem (PFA)

If X is a first countable regular HL space of size ℵ1 with a
countable weak network, then there is a partition X = ∪

n<ω
Xn such

that each Xn is either metrizable or Sorgenfrey.

Corollary (PFA)

If f is a continuous 1-1 map from a Sorgenfrey subset of size ℵ1 to
a first countable regular space, then it is a countable union of
sub-maps such that each sub-map is either a homeomorphism or a
map from Sorgenfrey to metrizable space.



First countability

Theorem (PFA)

If X is a first countable regular HL space of size ℵ1 with a
countable weak network, then there is a partition X = ∪

n<ω
Xn such

that each Xn is either metrizable or Sorgenfrey.

Corollary (PFA)

If f is a continuous 1-1 map from a Sorgenfrey subset of size ℵ1 to
a first countable regular space, then it is a countable union of
sub-maps such that each sub-map is either a homeomorphism or a
map from Sorgenfrey to metrizable space.



Inner topology
Definition

For a topological space (X , τ) and a collection C ⊂ P(X ), the inner
topology (X , τ I ,C) induced by C is the topology with base
{{x} ∪ O I ,C : x ∈ O,O is open} where O I ,C = ∪{C ∈ C : C ⊂ O}.

Theorem (PFA)

If (X , τ) is regular and (X , τ I ,C) is HL for some countable C, then
(X , τ) either has a countable network or contains an uncountable
Sorgenfrey subset.

Proposition (PFA)

If X is first countable, regular and contains no uncountable
separable metrizable or Sorgenfrey subset, then for any countable
collection C, (X , τ I ,C) is a countable union of discrete subsets.

HL of inner topology is preserved under continuous image and
perfect preimage for sub-metrizable spaces.



Inner topology
Definition

For a topological space (X , τ) and a collection C ⊂ P(X ), the inner
topology (X , τ I ,C) induced by C is the topology with base
{{x} ∪ O I ,C : x ∈ O,O is open} where O I ,C = ∪{C ∈ C : C ⊂ O}.

Theorem (PFA)

If (X , τ) is regular and (X , τ I ,C) is HL for some countable C, then
(X , τ) either has a countable network or contains an uncountable
Sorgenfrey subset.

Proposition (PFA)

If X is first countable, regular and contains no uncountable
separable metrizable or Sorgenfrey subset, then for any countable
collection C, (X , τ I ,C) is a countable union of discrete subsets.

HL of inner topology is preserved under continuous image and
perfect preimage for sub-metrizable spaces.



Inner topology
Definition

For a topological space (X , τ) and a collection C ⊂ P(X ), the inner
topology (X , τ I ,C) induced by C is the topology with base
{{x} ∪ O I ,C : x ∈ O,O is open} where O I ,C = ∪{C ∈ C : C ⊂ O}.

Theorem (PFA)

If (X , τ) is regular and (X , τ I ,C) is HL for some countable C, then
(X , τ) either has a countable network or contains an uncountable
Sorgenfrey subset.

Proposition (PFA)

If X is first countable, regular and contains no uncountable
separable metrizable or Sorgenfrey subset, then for any countable
collection C, (X , τ I ,C) is a countable union of discrete subsets.

HL of inner topology is preserved under continuous image and
perfect preimage for sub-metrizable spaces.



Inner topology
Definition

For a topological space (X , τ) and a collection C ⊂ P(X ), the inner
topology (X , τ I ,C) induced by C is the topology with base
{{x} ∪ O I ,C : x ∈ O,O is open} where O I ,C = ∪{C ∈ C : C ⊂ O}.

Theorem (PFA)

If (X , τ) is regular and (X , τ I ,C) is HL for some countable C, then
(X , τ) either has a countable network or contains an uncountable
Sorgenfrey subset.

Proposition (PFA)

If X is first countable, regular and contains no uncountable
separable metrizable or Sorgenfrey subset, then for any countable
collection C, (X , τ I ,C) is a countable union of discrete subsets.

HL of inner topology is preserved under continuous image and
perfect preimage for sub-metrizable spaces.



Outer “topology”

Definition

For a topological space (X , τ) and a collection C ⊂ P(X ), the
outer “topology” (X , τO,C) induced by C is the collection {OO,C : O
is open} where OO,C = ∩{C ∈ C : O ⊂ C}.

Proposition (PFA)

Suppose X is a regular, HL space. Any outer topology induced by a
countable collection either has a countable network or contains an
uncountable Sorgenfrey subset.

If the outer topology guesses almost correctly, then the original
topology will either have a countable network or contain an
uncountable Sorgenfrey subset.

Example. Cometrizable spaces.
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Outer “topology” to covering property

Proposition (PFA)

Suppose X is a first countable regular, HL space, C is countable
such that (X , τO,C) is metrizable and
(X , 〈{x} ∪ (uO,C

x ,n \ ux ,n) : x ∈ X 〉) contains no uncountable HL
subset for all n. Then X contains an uncountable metrizable subset.

Proposition (PFA)

Suppose X is a first countable regular, HL space, C is countable
such that (X , τO,C) is Sorgenfrey and
(X , 〈{x} ∪ (uO,C

x ,n \ ux ,n) : x ∈ X 〉) contains no uncountable HL
subset for all n.Then for any Y ∈ [X ]ω1 and n < ω, there is
Y ′ ∈ [Y ]ω1 such that

[x ,∞) ∩ Y ′ ⊂ ux ,n for all x ∈ Y ′.
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The role of covering property

People have considered to force properties of X from covering
properties of its finite powers.

Fact (MAω1)

Suppose that X is a first countable space with covering property
(**): for any m, n < ω, for any {aα ∈ X n : α < ω1}, there are
α 6= β such that for any i < n, aα(i) ∈ uaβ(i),m and
aβ(i) ∈ uaα(i),m. Then X contains a metrizable subspace.

Question

Is it consistent that X has an uncountable metrizable subspace if
Xω is HL?
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Real ordering in covering property

Now we know that for basis problem, we should concentrate on
sub-Sorgenfrey spaces.

and the square of sub-Sorgenfrey spaces will
fail to be HL.

Maybe a weaker covering property for basis problem should involve
real ordering.

Question (PFA)

Must X has a metrizable or Sorgenfrey subspace if X is first
countable, regular and for all m, n < ω, for every
{aα ∈ X n : α < ω1}, there are α 6= β such that for any i < n,
max{aα(i), aβ(i)} ∈ umin{aα(i),aβ(i)},m?
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A weaker covering property

Definition

A first countable space X with a real ordering < has property (∗) if

for any n < ω, for any (m0, ...,mn−1) ∈ ωn, for any
{aα, bα ∈ X n : α < ω1} such that bα(i) ∈ uaα(i),mi ∩ (aα(i),∞)
whenever α < ω1, i < n, there are α 6= β such that for any i < n,
bα(i) ∈ uaβ(i),mi and bβ(i) ∈ uaα(i),mi .

Theorem (PFA)

Assume that X is a first countable regular space with property (∗)
and X has no uncountable left sub-Sorgenfrey subspace. Then X
contains an uncountable metrizable or Sorgenfrey subspace.
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The role of ordering

The Sorgenfrey topology can be viewed as the separable metric
topology combined with the real ordering.

And if we try to do the same thing to well-ordering: find a topology
(ω1, τ) such that {β : β ≥ α} is open for all α.

We will succeed if we want a HL regular one – Moore’s L space.
But we will fail if we want a first countable HL regular one.

What about the Countryman order?

We will still succeed if we want a HL regular one. But first
countable?
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Thank you!


