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Defining Noetherian spaces

Definition
A topological space X is called Noetherian, iff every strictly
ascending chain of open sets is finite.

Theorem (GOUBAULT-LARRECQ)
The following are equivalent for a topological space X:

1. X is Noetherian, i.e. every strictly ascending chain of open
sets is finite.

2. Every strictly descending chain of closed sets is finite.
3. Every open set is compact.
4. Every subset is compact.
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Relevance

Noetherian spaces occur as
I spectra of Noetherian rings.
I Alexandrov topology of well-quasi orders.



Relevance

Noetherian spaces occur as
I spectra of Noetherian rings.
I Alexandrov topology of well-quasi orders.



Relevance

Noetherian spaces occur as
I spectra of Noetherian rings.
I Alexandrov topology of well-quasi orders.



Quasi-Polish spaces

Definition
A countably-based space is quasi-Polish, if its topology is
induced by a Smyth-complete quasi-metric.

Proposition (de Brecht)
A locally compact sober countably-based space is quasi-Polish.
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When is a Noetherian space quasi-Polish?

Theorem
The following are equivalent for a sober Noetherian space X:

1. X is countable.
2. X is countably-based.
3. X is quasi-Polish.



Baire Category Theorem in quasi-Polish spaces

Theorem (HECKMANN; BECHER & GRIGORIEFF)
Let X be quasi-Polish. If X =

⋃
i∈N Ai with each Ai being Σ0

2,
then there is some i0 such that Ai0 has non-empty interior.



When is a quasi-Polish space Noetherian?

Theorem
The following are equivalent for a quasi-Polish space X:

1. X is Noetherian.
2. Every ∆0

2-cover of X has a finite subcover.

Corollary
A Noetherian quasi-Polish space is TD iff it is finite.
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Represented spaces and computability

Definition
A represented space X is a pair (X , δX ) where X is a set and
δX :⊆ NN → X a surjective partial function.

Definition
F :⊆ NN → NN is a realizer of f : X→ Y, iff δY (F (p)) = f (δX (p))
for all p ∈ δ−1

X (dom(f )). Abbreviate: F ` f .

NN F−−−−→ NNyδX

yδY

X f−−−−→ Y

Definition
f : X→ Y is called continuous, iff it has a continuous realizer.
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The various classes of spaces

Represented spaces

QCB0-spaces ∼= admissibly represented spaces

Quasi-Polish spaces

Polish spaces



Cartesian closure

Observation
We can form function spaces (to be denoted by C(−,−)) in the
category of represented spaces by the UTM-theorem/

Definition
Let S = ({>,⊥}, δS) be defined via δS(p) = ⊥ iff p = 0N.

Definition
The space O(X) of open subsets of X is obtained from C(X,S)
via identification.
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Compactness in synthetic topology

Definition
Call a represented space X compact, if isFull : O(X)→ S is
continuous.

Theorem
The following are equivalent for a represented space X:

1. X is compact.
2. For any represented space Y, the map
∀ : O(X× Y)→ O(Y) mapping R to
{y ∈ Y | ∀x ∈ X (x , y) ∈ R} is continuous.
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∆0
2-truth values

Definition
Let the represented space S∇ have the points {>,⊥} and the
representation ρ(w0ω) = ⊥ and ρ(w1ω) = >.

Definition
We can represent the ∆0

2-subsets of X via their continuous
characteristic functions C(X,S∇).
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The main result

Theorem
A quasi-Polish space is Noetherian iff it is ∇-compact.

Definition
Let C(X) denote the space of constructible subsets of X.

Lemma
Let X be a Noetherian Quasi-Polish space. Then
id : ∆0

2(X)→ C(X)∇ is well-defined and continuous.
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