Characterizing Noetherian spaces as a Δ_2^0 -analogue to compact spaces¹

Matthew de Brecht & Arno Pauly

Kyoto University Université Libre de Bruxelles

TOPOSYM 2016

¹This work was supported by JSPS Core-to-Core Program, A. Advanced Research Networks. The first author was supported by JSPS KAKENHI Grant Number 15K15940. The second author was supported by the ERC inVEST (279499) project.

Defining Noetherian spaces

Definition

A topological space **X** is called *Noetherian*, iff every strictly ascending chain of open sets is finite.

Theorem (GOUBAULT-LARRECQ)

The following are equivalent for a topological space X:

1. X is Noetherian, i.e. every strictly ascending chain of open sets is finite.

- 2. Every strictly descending chain of closed sets is finite.
- 3. Every open set is compact.
- 4. Every subset is compact.

Defining Noetherian spaces

Definition

A topological space **X** is called *Noetherian*, iff every strictly ascending chain of open sets is finite.

Theorem (GOUBAULT-LARRECQ)

The following are equivalent for a topological space X:

1. X is Noetherian, i.e. every strictly ascending chain of open sets is finite.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 2. Every strictly descending chain of closed sets is finite.
- 3. Every open set is compact.
- 4. Every subset is compact.

Relevance

Noetherian spaces occur as

- spectra of Noetherian rings.
- Alexandrov topology of well-quasi orders.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Relevance

Noetherian spaces occur as

- spectra of Noetherian rings.
- Alexandrov topology of well-quasi orders.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Relevance

Noetherian spaces occur as

- spectra of Noetherian rings.
- Alexandrov topology of well-quasi orders.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Quasi-Polish spaces

Definition

A countably-based space is quasi-Polish, if its topology is induced by a Smyth-complete quasi-metric.

Proposition (de Brecht)

A locally compact sober countably-based space is quasi-Polish.

Quasi-Polish spaces

Definition

A countably-based space is quasi-Polish, if its topology is induced by a Smyth-complete quasi-metric.

Proposition (de Brecht)

A locally compact sober countably-based space is quasi-Polish.

When is a Noetherian space quasi-Polish?

Theorem

The following are equivalent for a sober Noetherian space X:

- 1. X is countable.
- 2. X is countably-based.
- 3. X is quasi-Polish.

Baire Category Theorem in quasi-Polish spaces

Theorem (HECKMANN; BECHER & GRIGORIEFF) Let **X** be quasi-Polish. If $\mathbf{X} = \bigcup_{i \in \mathbb{N}} A_i$ with each A_i being Σ_2^0 ,

then there is some i_0 such that A_{i_0} has non-empty interior.

(日) (日) (日) (日) (日) (日) (日)

When is a quasi-Polish space Noetherian?

Theorem

The following are equivalent for a quasi-Polish space X:

- 1. X is Noetherian.
- 2. Every Δ_2^0 -cover of **X** has a finite subcover.

Corollary

A Noetherian quasi-Polish space is T_D iff it is finite.

When is a quasi-Polish space Noetherian?

Theorem

The following are equivalent for a quasi-Polish space X:

- 1. X is Noetherian.
- 2. Every Δ_2^0 -cover of **X** has a finite subcover.

Corollary

A Noetherian quasi-Polish space is T_D iff it is finite.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \to \mathbf{Y}$, iff $\delta_Y(F(p)) = f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(f))$. Abbreviate: $F \vdash f$.

Definition $f : \mathbf{X} \rightarrow \mathbf{Y}$ is called continuous, iff it has a continuous realizer.

(日) (日) (日) (日) (日) (日) (日)

Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \to \mathbf{Y}$, iff $\delta_Y(F(p)) = f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(f))$. Abbreviate: $F \vdash f$.

Definition $f : \mathbf{X} \rightarrow \mathbf{Y}$ is called continuous, iff it has a continuous realizer.

(日) (日) (日) (日) (日) (日) (日)

Represented spaces and computability

Definition

A *represented space* **X** is a pair (X, δ_X) where *X* is a set and $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ a surjective partial function.

Definition

 $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a realizer of $f : \mathbf{X} \to \mathbf{Y}$, iff $\delta_Y(F(p)) = f(\delta_X(p))$ for all $p \in \delta_X^{-1}(\operatorname{dom}(f))$. Abbreviate: $F \vdash f$.

Definition

 $f: \mathbf{X} \to \mathbf{Y}$ is called continuous, iff it has a continuous realizer.

The various classes of spaces

Represented spaces
QCB_0 -spaces \cong admissibly represented spaces
Quasi-Polish spaces
Polish spaces

(日)

Observation

We can form function spaces (to be denoted by $\mathcal{C}(-,-))$ in the category of represented spaces by the UTM-theorem/

Definition Let $\mathbb{S} = (\{\top, \bot\}, \delta_{\mathbb{S}})$ be defined via $\delta_{\mathbb{S}}(p) = \bot$ iff $p = 0^{\mathbb{N}}$.

Definition

The space $\mathcal{O}(\mathbf{X})$ of open subsets of \mathbf{X} is obtained from $\mathcal{C}(\mathbf{X}, \mathbb{S})$ via identification.

Observation

We can form function spaces (to be denoted by $\mathcal{C}(-,-))$ in the category of represented spaces by the UTM-theorem/

Definition Let $\mathbb{S} = (\{\top, \bot\}, \delta_{\mathbb{S}})$ be defined via $\delta_{\mathbb{S}}(p) = \bot$ iff $p = 0^{\mathbb{N}}$.

Definition

The space $\mathcal{O}(\mathbf{X})$ of open subsets of \mathbf{X} is obtained from $\mathcal{C}(\mathbf{X}, \mathbb{S})$ via identification.

(ロ) (同) (三) (三) (三) (○) (○)

Observation

We can form function spaces (to be denoted by $\mathcal{C}(-,-))$ in the category of represented spaces by the UTM-theorem/

$\begin{array}{l} \text{Definition} \\ \text{Let } \mathbb{S} = (\{\top, \bot\}, \delta_{\mathbb{S}}) \text{ be defined via } \delta_{\mathbb{S}}(p) = \bot \text{ iff } p = \mathbf{0}^{\mathbb{N}}. \end{array}$

Definition

The space $\mathcal{O}(X)$ of open subsets of X is obtained from $\mathcal{C}(X, \mathbb{S})$ via identification.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Compactness in synthetic topology

Definition

Call a represented space X compact, if $isFull:\mathcal{O}(\textbf{X})\to\mathbb{S}$ is continuous.

Theorem

The following are equivalent for a represented space X:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1. X is compact.

2. For any represented space **Y**, the map $\forall : \mathcal{O}(\mathbf{X} \times \mathbf{Y}) \rightarrow \mathcal{O}(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \forall x \in \mathbf{X} (x, y) \in R\}$ is continuous.

Compactness in synthetic topology

Definition

Call a represented space \bm{X} compact, if $isFull:\mathcal{O}(\bm{X})\to\mathbb{S}$ is continuous.

Theorem

The following are equivalent for a represented space X:

- 1. X is compact.
- 2. For any represented space **Y**, the map $\forall : \mathcal{O}(\mathbf{X} \times \mathbf{Y}) \rightarrow \mathcal{O}(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \forall x \in \mathbf{X} (x, y) \in R\}$ is continuous.

Δ_2^0 -truth values

Definition

Let the represented space \mathbb{S}^{∇} have the points $\{\top, \bot\}$ and the representation $\rho(w0^{\omega}) = \bot$ and $\rho(w1^{\omega}) = \top$.

Definition

We can represent the Δ_2^0 -subsets of **X** via their continuous characteristic functions $C(\mathbf{X}, \mathbb{S}^{\nabla})$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Δ_2^0 -truth values

Definition

Let the represented space \mathbb{S}^{∇} have the points $\{\top, \bot\}$ and the representation $\rho(w0^{\omega}) = \bot$ and $\rho(w1^{\omega}) = \top$.

Definition

We can represent the Δ_2^0 -subsets of **X** via their continuous characteristic functions $C(\mathbf{X}, \mathbb{S}^{\nabla})$.

(日) (日) (日) (日) (日) (日) (日)

∇ -compactness

Definition

Call a represented space \bm{X} $\nabla\text{-compact, if isFull}:\Delta^0_2(\bm{X})\to\mathbb{S}^\nabla$ is continuous.

Theorem

The following are equivalent for a represented space X:

1. X is ∇ -compact.

2. For any represented space **Y**, the map $\forall : \Delta_2^0(\mathbf{X} \times \mathbf{Y}) \rightarrow \Delta_2^0(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \forall x \in \mathbf{X} (x, y) \in R\}$ is continuous.

3. For any represented space **Y**, the map $\exists : \Delta_2^0(\mathbf{X} \times \mathbf{Y}) \to \Delta_2^0(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \exists x \in \mathbf{X} (x, y) \in R\}$ is continuous.

abla-compactness

Definition

Call a represented space **X** ∇ -compact, if isFull : $\Delta_2^0(\mathbf{X}) \to \mathbb{S}^{\nabla}$ is continuous.

Theorem

The following are equivalent for a represented space X:

- **1**. **X** is ∇ -compact.
- 2. For any represented space **Y**, the map $\forall : \Delta_2^0(\mathbf{X} \times \mathbf{Y}) \rightarrow \Delta_2^0(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \forall x \in \mathbf{X} (x, y) \in R\}$ is continuous.
- 3. For any represented space **Y**, the map $\exists : \Delta_2^0(\mathbf{X} \times \mathbf{Y}) \to \Delta_2^0(\mathbf{Y})$ mapping *R* to $\{y \in \mathbf{Y} \mid \exists x \in \mathbf{X} (x, y) \in R\}$ is continuous.

The main result

Theorem A quasi-Polish space is Noetherian iff it is ∇ -compact.

Definition Let $\mathfrak{C}(X)$ denote the space of constructible subsets of X.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma

Let X be a Noetherian Quasi-Polish space. Then id : $\Delta_2^0(X) \to \mathfrak{C}(X)^{\nabla}$ is well-defined and continuous.

Theorem A quasi-Polish space is Noetherian iff it is ∇ -compact.

 $\begin{array}{l} \text{Definition} \\ \text{Let } \mathfrak{C}(\textbf{X}) \text{ denote the space of constructible subsets of } \textbf{X}. \end{array}$

Lemma Let X be a Noetherian Quasi-Polish space. Then id : $\Delta_2^0(X) \to \mathfrak{C}(X)^{\nabla}$ is well-defined and continuous.

Theorem

A quasi-Polish space is Noetherian iff it is ∇ -compact.

 $\begin{array}{l} \text{Definition} \\ \text{Let } \mathfrak{C}(\textbf{X}) \text{ denote the space of constructible subsets of } \textbf{X}. \end{array}$

(日) (日) (日) (日) (日) (日) (日)

Lemma

Let **X** be a Noetherian Quasi-Polish space. Then id : $\Delta_2^0(\mathbf{X}) \to \mathfrak{C}(\mathbf{X})^{\nabla}$ is well-defined and continuous.

The preprint

