The space of invariant geometric laminations of degree d

Alexander Blokh*, Lex Oversteegen*, Ross Ptacek**, Vladlen Timorin**

*Department of Mathematics University of Alabama at Birmingham

**Faculty of Mathematics National Research University Higher School of Economics, Moscow.

Prague, 2016

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation

We consider polynomials in one complex variable

$$P(z) = a_0 + a_1 z + \dots + a_{d-2} z^{d-2} + z^d$$

as topological dynamical systems on \mathbb{C} . Parameter space is \mathbb{C}^{d-1} .

Any quadratic polynomial is affinely conjugate to

$$P_c(z)=z^2+c.$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The basin of infinity and the Julia set

Definition The basin of infinity

$$\Omega_P = \{z \in \mathbb{C} \mid P^{\circ n}(z) \to \infty \ (n \to \infty)\}$$

Definition The Julia set $J(P) = \partial \Omega_P$ is an invariant set. The dynamics of $P|_{J(P)}$ is chaotic (not stable).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $P_0(z)=z^2+0$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A super-attracting fixed point

Denote by $\sigma_d:\mathbb{S}\to\mathbb{S}$ the degree d covering map of the unit circle defined by

$$\sigma_d(z) = z^d$$

We will parameterize the unit circle $\mathbb{S}=\mathbb{R}/\mathbb{Z}$ and, if we use this parameterization,

 $\sigma_d(t) = dt \mod 1$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Denote by $\sigma_d:\mathbb{S}\to\mathbb{S}$ the degree d covering map of the unit circle defined by

$$\sigma_d(z) = z^d$$

We will parameterize the unit circle $\mathbb{S}=\mathbb{R}/\mathbb{Z}$ and, if we use this parameterization,

 $\sigma_d(t) = dt \mod 1$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

 $P(z) = z^2 - 0.2$

 $P(z) = z^2 - 0.4$

 $P(z) = z^2 - 0.5$

 $P(z)=z^2-0.73$

Parabolic bifurcation: $P(z) = z^2 - 0.75$

A fixed point with multiplier -1

Basilica: $P(z) = z^2 - 1$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A superattracting cycle of period 2

Rabbit

Douady rabbit: $f(z) = z^2 - 0.12.. + 0.74..i$

A superattracting cycle of period 3

Airplane: $f(z) = z^2 - 1.75..$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A superattracting cycle of period 3

Dendrite: $f(z) = z^2 + i$

All cycles are repelling

The Mandelbrot set

The Mandelbrot set

$\mathcal{M}_2 = \{c \in \mathbb{C} \mid \textit{the sequence} \$ $0 \mapsto c \mapsto c^2 + c \mapsto (c^2 + c)^2 + c \mapsto \dots$ $\textit{is bounded}\}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

・ロト ・個ト ・ヨト

・ロト ・日下・ ・ ヨト

・ロト ・ 日本・ ・ 日本・

・ロト ・ 日下・ ・ 田下・

・ロト ・ 日下 ・ モト

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - 釣��

Let P be a polynomial of degree d with connected Julia set J(P) and basin of infinity Ω_P .

There exists a conformal map $\phi : \mathbb{C} \setminus \overline{\mathbb{D}} \to \Omega_P$ which conjugates $\sigma_d(z) = z^d$ and $P|_{\Omega_P}$. If J(P) is locally connected, then ϕ extends and there is a continuous map $\phi : \mathbb{S} \to J(P)$ which semi-conjugates $\sigma_d|_{\mathbb{S}}$ and $P|_{J(P)}$.

Set $x \sim_P y$ iff $\phi(x) = \phi(y)$;

then the equivalence relation \sim_P on \mathbb{S} is called the σ_d -invariant lamination generated by P.

ション ふゆ く 山 マ チャット しょうくしゃ

Let *P* be a polynomial of degree *d* with connected Julia set J(P) and basin of infinity Ω_P .

There exists a conformal map $\phi : \mathbb{C} \setminus \overline{\mathbb{D}} \to \Omega_P$ which conjugates $\sigma_d(z) = z^d$ and $P|_{\Omega_P}$. If J(P) is locally connected, then ϕ extends and there is a continuous map $\phi : \mathbb{S} \to J(P)$ which semi-conjugates $\sigma_d|_{\mathbb{S}}$ and $P|_{J(P)}$.

Set $x \sim_P y$ iff $\phi(x) = \phi(y)$;

then the equivalence relation \sim_P on $\mathbb S$ is called the σ_d -invariant lamination generated by P.

ション ふゆ く 山 マ チャット しょうくしゃ

Let *P* be a polynomial of degree *d* with connected Julia set J(P) and basin of infinity Ω_P .

There exists a conformal map $\phi : \mathbb{C} \setminus \overline{\mathbb{D}} \to \Omega_P$ which conjugates $\sigma_d(z) = z^d$ and $P|_{\Omega_P}$. If J(P) is locally connected, then ϕ extends and there is a continuous map $\phi : \mathbb{S} \to J(P)$ which semi-conjugates $\sigma_d|_{\mathbb{S}}$ and $P|_{J(P)}$.

Set $x \sim_P y$ iff $\phi(x) = \phi(y)$;

then the equivalence relation \sim_P on $\mathbb S$ is called the σ_d -invariant lamination generated by P.

(日) (伊) (日) (日) (日) (0) (0)

Let *P* be a polynomial of degree *d* with connected Julia set J(P) and basin of infinity Ω_P .

There exists a conformal map $\phi : \mathbb{C} \setminus \overline{\mathbb{D}} \to \Omega_P$ which conjugates $\sigma_d(z) = z^d$ and $P|_{\Omega_P}$. If J(P) is locally connected, then ϕ extends and there is a continuous map $\phi : \mathbb{S} \to J(P)$ which semi-conjugates $\sigma_d|_{\mathbb{S}}$ and $P|_{J(P)}$.

Set $x \sim_P y$ iff $\phi(x) = \phi(y)$;

then the equivalence relation \sim_P on \mathbb{S} is called the σ_d -invariant lamination generated by P.

(日) (伊) (日) (日) (日) (0) (0)

Definition (Lamination)

An equivalence relation \sim on \mathbb{S} is called a lamination if:

- 1. Convex hulls of classes are disjoint,
- 2. the graph of \sim is a closed subset of $\mathbb{S} imes \mathbb{S}$,
- 3. each equivalence class of \sim is finite.

Definition (Invariant Laminations)

- 1. ~ is forward invariant: for a ~-class \mathfrak{g} , the set $\sigma_d(\mathfrak{g})$ is a ~-class,
- for any ~-class g, the map σ_d : g → σ_d(g) extends to S as an orientation preserving covering map such that g is the full preimage of σ_d(g) under this covering map.

Definition (Lamination)

An equivalence relation \sim on \mathbb{S} is called a lamination if:

- 1. Convex hulls of classes are disjoint,
- 2. the graph of \sim is a closed subset of $\mathbb{S}\times\mathbb{S},$
- 3. each equivalence class of \sim is finite.

Definition (Invariant Laminations)

- 1. ~ is forward invariant: for a ~-class \mathfrak{g} , the set $\sigma_d(\mathfrak{g})$ is a ~-class,
- for any ~-class g, the map σ_d : g → σ_d(g) extends to S as an orientation preserving covering map such that g is the full preimage of σ_d(g) under this covering map.

Definition (Lamination)

An equivalence relation \sim on \mathbb{S} is called a lamination if:

- 1. Convex hulls of classes are disjoint,
- 2. the graph of \sim is a closed subset of $\mathbb{S} \times \mathbb{S}$,
- 3. each equivalence class of \sim is finite.

Definition (Invariant Laminations)

- 1. ~ is forward invariant: for a ~-class \mathfrak{g} , the set $\sigma_d(\mathfrak{g})$ is a ~-class,
- for any ~-class g, the map σ_d : g → σ_d(g) extends to S as an orientation preserving covering map such that g is the full preimage of σ_d(g) under this covering map.

Definition (Lamination)

An equivalence relation \sim on \mathbb{S} is called a lamination if:

- 1. Convex hulls of classes are disjoint,
- 2. the graph of \sim is a closed subset of $\mathbb{S} \times \mathbb{S}$,
- 3. each equivalence class of \sim is finite.

Definition (Invariant Laminations)

- 1. \sim is forward invariant: for a \sim -class g, the set $\sigma_d(g)$ is a \sim -class,
- for any ~-class g, the map σ_d : g → σ_d(g) extends to S as an orientation preserving covering map such that g is the full preimage of σ_d(g) under this covering map.

Definition (Lamination)

An equivalence relation \sim on \mathbb{S} is called a lamination if:

- 1. Convex hulls of classes are disjoint,
- 2. the graph of \sim is a closed subset of $\mathbb{S} \times \mathbb{S}$,
- 3. each equivalence class of \sim is finite.

Definition (Invariant Laminations)

- 1. ~ is forward invariant: for a ~-class \mathfrak{g} , the set $\sigma_d(\mathfrak{g})$ is a ~-class,
- for any ~-class g, the map σ_d : g → σ_d(g) extends to S as an orientation preserving covering map such that g is the full preimage of σ_d(g) under this covering map.

Topological polynomials

Let \sim be a σ_d -invariant lamination. The quotient space $J_{\sim} = \mathbb{S}/\sim$ is called a topological Julia set and the map $f_{\sim} : J_{\sim} \to J_{\sim}$ induced by $\sigma_d|_{\mathbb{S}}$ a topological polynomial.

If J(P) is locally connected, then J(P) and J_{\sim} are homeomorphic and the maps $P|_{J(P)}$ and f_{\sim_P} are topologically conjugate.

ション ふゆ く 山 マ チャット しょうくしゃ

Topological polynomials

Let \sim be a σ_d -invariant lamination. The quotient space $J_{\sim} = \mathbb{S}/\sim$ is called a topological Julia set and the map $f_{\sim} : J_{\sim} \to J_{\sim}$ induced by $\sigma_d|_{\mathbb{S}}$ a topological polynomial.

If J(P) is locally connected, then J(P) and J_{\sim} are homeomorphic and the maps $P|_{J(P)}$ and f_{\sim_P} are topologically conjugate.

ション ふゆ く 山 マ チャット しょうくしゃ

A complex polynomials of degree d, with locally connected Julia set, corresponds to a topological poynomial which is defined by a σ_d -invariant lamination \approx on the unit circle \mathbb{S} .

To study the parameter space of all polynomials of degree d, with connected Julia sets, Thurston proposed studying the space of all σ_d -invariant laminations.

He completed this approach for the space of quadratic polynomials but the case of higher degree has remained elusive.

・ロト ・ 行下・ ・ ヨト ・ ヨト ・ ヨー
A complex polynomials of degree d, with locally connected Julia set, corresponds to a topological poynomial which is defined by a σ_d -invariant lamination \approx on the unit circle S.

To study the parameter space of all polynomials of degree d, with connected Julia sets, Thurston proposed studying the space of all σ_d -invariant laminations.

He completed this approach for the space of quadratic polynomials but the case of higher degree has remained elusive.

ション ふゆ く 山 マ チャット しょうくしゃ

A complex polynomials of degree d, with locally connected Julia set, corresponds to a topological poynomial which is defined by a σ_d -invariant lamination \approx on the unit circle S.

To study the parameter space of all polynomials of degree d, with connected Julia sets, Thurston proposed studying the space of all σ_d -invariant laminations.

He completed this approach for the space of quadratic polynomials but the case of higher degree has remained elusive.

ション ふゆ く 山 マ チャット しょうくしゃ

Let \sim be a σ_d -invariant lamination.

Convex hulls of \sim -classes are pairwise disjoint. Consider all their edges; this is a closed family of chords \mathcal{L}_P .

Thurston studied the dynamics of families of chords similar to \mathcal{L}_P without referring to polynomials. Such families of chords are called σ_d -invariant geometric laminations (geolaminations).

To each geolamination \mathcal{L} we associate the union of all its leaves which is a continuum called the solid of \mathcal{L} .

Let \sim be a σ_d -invariant lamination.

Convex hulls of \sim -classes are pairwise disjoint. Consider all their edges; this is a closed family of chords \mathcal{L}_P .

Thurston studied the dynamics of families of chords similar to \mathcal{L}_P without referring to polynomials. Such families of chords are called σ_d -invariant geometric laminations (geolaminations).

To each geolamination \mathcal{L} we associate the union of all its leaves which is a continuum called the solid of \mathcal{L} .

Let \sim be a σ_d -invariant lamination.

Convex hulls of \sim -classes are pairwise disjoint. Consider all their edges; this is a closed family of chords \mathcal{L}_{P} .

Thurston studied the dynamics of families of chords similar to \mathcal{L}_P without referring to polynomials. Such families of chords are called σ_d -invariant geometric laminations (geolaminations).

To each geolamination \mathcal{L} we associate the union of all its leaves which is a continuum called the solid of \mathcal{L} .

Let \sim be a σ_d -invariant lamination.

Convex hulls of \sim -classes are pairwise disjoint. Consider all their edges; this is a closed family of chords \mathcal{L}_{P} .

Thurston studied the dynamics of families of chords similar to \mathcal{L}_P without referring to polynomials. Such families of chords are called σ_d -invariant geometric laminations (geolaminations).

To each geolamination \mathcal{L} we associate the union of all its leaves which is a continuum called the solid of \mathcal{L} .

Limits of laminations

Geolaminations provide a way of putting a natural topology on the set of laminations (through the Hausdorff metric on the set solids of geolaminations).

The set of invariant geolaminations is closed in the space of subcontinua of the closed unit disk. Hence it is a compact metric space.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Limit arguments can be used to associate geolaminations to polynomials whose Julia set is not locally connected.

Limits of laminations

Geolaminations provide a way of putting a natural topology on the set of laminations (through the Hausdorff metric on the set solids of geolaminations).

The set of invariant geolaminations is closed in the space of subcontinua of the closed unit disk. Hence it is a compact metric space.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Limit arguments can be used to associate geolaminations to polynomials whose Julia set is not locally connected.

Limits of laminations

Geolaminations provide a way of putting a natural topology on the set of laminations (through the Hausdorff metric on the set solids of geolaminations).

The set of invariant geolaminations is closed in the space of subcontinua of the closed unit disk. Hence it is a compact metric space.

(ロ) (型) (E) (E) (E) (O)

Limit arguments can be used to associate geolaminations to polynomials whose Julia set is not locally connected.

Geolaminations

Definition (Thurston)

A closed family ${\cal L}$ of pairwise disjoint chords in ${\mathbb D}$ is called a geolamination.

Elements of \mathcal{L} are called leaves and the closures of components of $\mathbb{D} \setminus \bigcup \mathcal{L}$ gaps. For a gap or leaf G we denote by $\sigma_d(G)$ the convex hull of $\sigma_d(G \cap \mathbb{S})$.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

 \mathbb{S}/\mathcal{L} is the quotient space which identifies all points which are connected by a leaf of \mathcal{L} .

Geolaminations

Definition (Thurston)

A closed family ${\mathcal L}$ of pairwise disjoint chords in ${\mathbb D}$ is called a geolamination.

Elements of \mathcal{L} are called leaves and the closures of components of $\mathbb{D} \setminus \bigcup \mathcal{L}$ gaps. For a gap or leaf G we denote by $\sigma_d(G)$ the convex hull of $\sigma_d(G \cap \mathbb{S})$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 \mathbb{S}/\mathcal{L} is the quotient space which identifies all points which are connected by a leaf of $\mathcal{L}.$

Geolaminations

Definition (Thurston)

A closed family ${\mathcal L}$ of pairwise disjoint chords in ${\mathbb D}$ is called a geolamination.

Elements of \mathcal{L} are called leaves and the closures of components of $\mathbb{D} \setminus \bigcup \mathcal{L}$ gaps. For a gap or leaf G we denote by $\sigma_d(G)$ the convex hull of $\sigma_d(G \cap \mathbb{S})$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

 \mathbb{S}/\mathcal{L} is the quotient space which identifies all points which are connected by a leaf of $\mathcal{L}.$

Definition (σ_d -invariant geolamination) A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of \mathbb{S}) are elements of \mathcal{L} ,
- 2. for each leaf $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$,
- 3. for each $\ell\in\mathcal{L}$ there exists $\ell'\in\mathcal{L}$ such that $\sigma_d(\ell')=\ell$,
- for each ℓ ∈ L such that σ_d(ℓ) is non-degenerate there exist d disjoint leaves ℓ₁,..., ℓ_d ∈ L so that ℓ = ℓ₁ and for each i, σ_d(ℓ) = σ_d(ℓ_i).

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Definition (σ_d -invariant geolamination)

A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of $\mathbb S)$ are elements of $\mathcal L,$
- 2. for each leaf $\ell\in\mathcal{L},\;\;\sigma_{d}(\ell)\in\mathcal{L},$
- 3. for each $\ell\in\mathcal{L}$ there exists $\ell'\in\mathcal{L}$ such that $\sigma_d(\ell')=\ell$,
- for each ℓ ∈ L such that σ_d(ℓ) is non-degenerate there exist d disjoint leaves ℓ₁,..., ℓ_d ∈ L so that ℓ = ℓ₁ and for each i, σ_d(ℓ) = σ_d(ℓ_i).

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Definition (σ_d -invariant geolamination)

A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of $\mathbb S)$ are elements of $\mathcal L,$
- 2. for each leaf $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$,
- 3. for each $\ell\in\mathcal{L}$ there exists $\ell'\in\mathcal{L}$ such that $\sigma_d(\ell')=\ell$,
- 4. for each $\ell \in \mathcal{L}$ such that $\sigma_d(\ell)$ is non-degenerate there exist d disjoint leaves $\ell_1, \ldots, \ell_d \in \mathcal{L}$ so that $\ell = \ell_1$ and for each i, $\sigma_d(\ell) = \sigma_d(\ell_i)$.

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Definition (σ_d -invariant geolamination)

A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of \mathbb{S}) are elements of \mathcal{L} ,
- 2. for each leaf $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$,
- 3. for each $\ell \in \mathcal{L}$ there exists $\ell' \in \mathcal{L}$ such that $\sigma_d(\ell') = \ell$,
- 4. for each $\ell \in \mathcal{L}$ such that $\sigma_d(\ell)$ is non-degenerate there exist d disjoint leaves $\ell_1, \ldots, \ell_d \in \mathcal{L}$ so that $\ell = \ell_1$ and for each i, $\sigma_d(\ell) = \sigma_d(\ell_i)$.

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Definition (σ_d -invariant geolamination)

A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of \mathbb{S}) are elements of \mathcal{L} ,
- 2. for each leaf $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$,
- 3. for each $\ell \in \mathcal{L}$ there exists $\ell' \in \mathcal{L}$ such that $\sigma_d(\ell') = \ell$,
- for each ℓ ∈ L such that σ_d(ℓ) is non-degenerate there exist d disjoint leaves ℓ₁,..., ℓ_d ∈ L so that ℓ = ℓ₁ and for each i, σ_d(ℓ) = σ_d(ℓ_i).

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Definition (σ_d -invariant geolamination)

A geolamination is σ_d -invariant provided:

- 1. all degenerate chords (i.e., points of \mathbb{S}) are elements of \mathcal{L} ,
- 2. for each leaf $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$,
- 3. for each $\ell \in \mathcal{L}$ there exists $\ell' \in \mathcal{L}$ such that $\sigma_d(\ell') = \ell$,
- for each ℓ ∈ L such that σ_d(ℓ) is non-degenerate there exist d disjoint leaves ℓ₁,..., ℓ_d ∈ L so that ℓ = ℓ₁ and for each i, σ_d(ℓ) = σ_d(ℓ_i).

The above definition is a slight modification of Thurston's definition. It can be shown that any geolamination which is σ_d -invariant is also invariant in the sense of Thurston (i.e., these geolaminations are also gap invariant).

Basilica: $f(z) = z^2 - 1$

Geolamination for $z^2 - 1$

Rabbit: $f(z) = z^2 - 0.12.. + 0.74..i$

Geolamination for the rabbit

Recall that we want to study the space of invariant laminations; each lamination corresponds to a geolamination.

A geolamination consists of a collection of leaves.

Which leaves in such a geolamination determine the entire geolamination?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Recall that we want to study the space of invariant laminations; each lamination corresponds to a geolamination.

A geolamination consists of a collection of leaves.

Which leaves in such a geolamination determine the entire geolamination?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Recall that we want to study the space of invariant laminations; each lamination corresponds to a geolamination.

A geolamination consists of a collection of leaves.

Which leaves in such a geolamination determine the entire geolamination?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition (critical set)

A leaf $\ell = \overline{ab}$ of a geolamination is critical if $\sigma(a) = \sigma(b)$; a gap G of a geolamination \mathcal{L} is critical if either $\sigma_d(G)$ is a leaf or a point, or the degree of $\sigma|_{\partial G}$ is bigger than one.

Theorem

If two topological polynomials have the same critical sets, then the corresponding laminations (and geolaminations) are equal.

Definition (critical set)

A leaf $\ell = \overline{ab}$ of a geolamination is critical if $\sigma(a) = \sigma(b)$; a gap G of a geolamination \mathcal{L} is critical if either $\sigma_d(G)$ is a leaf or a point, or the degree of $\sigma|_{\partial G}$ is bigger than one.

Theorem

If two topological polynomials have the same critical sets, then the corresponding laminations (and geolaminations) are equal.

ション ふゆ く 山 マ チャット しょうくしゃ

Hence to study the space of laminations we can study the space of critical sets.

Every σ_d -invariant geolamination has at most d-1 critical sets.

An ordered collection C of d-1 critical chords so that no two intersect in \mathbb{D} and their union does not contain a SCC, is called a full collection of critical chords.

Hence to study the space of laminations we can study the space of critical sets.

Every σ_d -invariant geolamination has at most d-1 critical sets.

An ordered collection C of d-1 critical chords so that no two intersect in \mathbb{D} and their union does not contain a SCC, is called a full collection of critical chords.

Hence to study the space of laminations we can study the space of critical sets.

Every σ_d -invariant geolamination has at most d-1 critical sets.

An ordered collection C of d-1 critical chords so that no two intersect in \mathbb{D} and their union does not contain a SCC, is called a full collection of critical chords.

The space of full collections of critical chords is a:

circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a geolamination.

Distinct full collections of critical chords may well correspond to the same lamination and, hence, the same topological polynomial. When is that the case?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The space of full collections of critical chords is a: circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a geolamination.

Distinct full collections of critical chords may well correspond to the same lamination and, hence, the same topological polynomial. When is that the case?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The space of full collections of critical chords is a:

circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a geolamination.

Distinct full collections of critical chords may well correspond to the same lamination and, hence, the same topological polynomial. When is that the case?

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

The space of full collections of critical chords is a:

circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a geolamination.

Distinct full collections of critical chords may well correspond to the same lamination and, hence, the same topological polynomial. When is that the case?

The space of full collections of critical chords is a:

circle if d = 2,

a 2-manifold if d = 3,

We can always insert a full collection of critical chords into a geolamination.

Distinct full collections of critical chords may well correspond to the same lamination and, hence, the same topological polynomial. When is that the case?

Linkage

If two polygons (e.g., quadrilaterals) have alternating vertices, we call them strongly linked:

イロト イポト イヨト イヨト

ж
Suppose that Q is a quadrilateral with vertices $a_0 < a_1 < a_2 < a_3$ in \mathbb{S} so that $\sigma_d(a_0) = \sigma_d(a_2)$ and $\sigma_d(a_1) = \sigma_d(a_3)$ and $\sigma_d(Q)$ is a leaf. Then diagonals of Q are critical chords called spikes and Q is called a critical quadrilateral.

If all critical sets of a σ_d -invariant geolamination \mathcal{L} are critical quadrilaterals, then there are d-1 of them. Choosing one spike in each of them, we get a collection of d-1 critical chords called a complete sample of spikes. Call a no loop collection of d-1 critical chords a full collection. If \mathcal{L} is a geolamination which corresponds to a lamination and all its critical sets are critical quadrilaterals, then a complete sample of spikes is a full collection.

Suppose that Q is a quadrilateral with vertices $a_0 < a_1 < a_2 < a_3$ in \mathbb{S} so that $\sigma_d(a_0) = \sigma_d(a_2)$ and $\sigma_d(a_1) = \sigma_d(a_3)$ and $\sigma_d(Q)$ is a leaf. Then diagonals of Q are critical chords called spikes and Q is called a critical quadrilateral.

If all critical sets of a σ_d -invariant geolamination \mathcal{L} are critical quadrilaterals, then there are d-1 of them. Choosing one spike in each of them, we get a collection of d-1 critical chords called a complete sample of spikes. Call a no loop collection of d-1 critical chords a full collection. If \mathcal{L} is a geolamination which corresponds to a lamination and all its critical sets are critical quadrilaterals, then a complete sample of spikes is a full collection.

Definition (Quadratic criticality)

Let $(\mathcal{L}, \text{QCP})$ be a geolamination with an ordered (d-1)-tuple QCP of critical quadrilaterals that are gaps or leaves of \mathcal{L} such that any complete sample of spikes is a full collection. Then QCP is called a quadratically critical portrait (qc-portrait) for \mathcal{L} and is denoted by QCP while the pair $(\mathcal{L}, \text{QCP})$ is called a geolamination with a qc-portrait.

うして ふゆう ふほう ふほう うらつ

We assume that our geolaminations come with ordered qc-portraits. We allow for degenerate quadrilaterals:

Definition

A (generalized) critical quadrilateral Q is the convex hull of ordered collection of at most 4 points $a_0 \le a_1 \le a_2 \le a_3 \le a_0$ in \mathbb{S} so that $\overline{a_0a_2}$ and $\overline{a_1a_3}$ are critical chords called spikes. Two critical quadrilaterals are viewed as equal if their marked vertices coincide up to a circular permutation of indices.

A collapsing quadrilateral is a critical quadrilateral, whose σ_d -image is a leaf. A critical quadrilateral Q has two intersecting spikes and is either a collapsing quadrilateral, a critical leaf, an all-critical triangle, or an all-critical quadrilateral.

うして ふゆう ふほう ふほう うらつ

We assume that our geolaminations come with ordered qc-portraits. We allow for degenerate quadrilaterals:

Definition

A (generalized) critical quadrilateral Q is the convex hull of ordered collection of at most 4 points $a_0 \le a_1 \le a_2 \le a_3 \le a_0$ in \mathbb{S} so that $\overline{a_0a_2}$ and $\overline{a_1a_3}$ are critical chords called spikes. Two critical quadrilaterals are viewed as equal if their marked vertices coincide up to a circular permutation of indices.

A collapsing quadrilateral is a critical quadrilateral, whose σ_d -image is a leaf. A critical quadrilateral Q has two intersecting spikes and is either a collapsing quadrilateral, a critical leaf, an all-critical triangle, or an all-critical quadrilateral.

(日) (伊) (日) (日) (日) (0) (0)

We assume that our geolaminations come with ordered qc-portraits. We allow for degenerate quadrilaterals:

Definition

A (generalized) critical quadrilateral Q is the convex hull of ordered collection of at most 4 points $a_0 \le a_1 \le a_2 \le a_3 \le a_0$ in \mathbb{S} so that $\overline{a_0a_2}$ and $\overline{a_1a_3}$ are critical chords called spikes. Two critical quadrilaterals are viewed as equal if their marked vertices coincide up to a circular permutation of indices.

A collapsing quadrilateral is a critical quadrilateral, whose σ_d -image is a leaf. A critical quadrilateral Q has two intersecting spikes and is either a collapsing quadrilateral, a critical leaf, an all-critical triangle, or an all-critical quadrilateral.

Lemma

The family of all σ_d -invariant geolaminations with qc-portraits is closed.

Definition

A critical cluster of \mathcal{L} is by definition a convex subset of $\overline{\mathbb{D}}$, whose boundary is a union of critical leaves.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Lemma

The family of all σ_d -invariant geolaminations with qc-portraits is closed.

Definition

A critical cluster of \mathcal{L} is by definition a convex subset of $\overline{\mathbb{D}}$, whose boundary is a union of critical leaves.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Linked geolaminations)

Let \mathcal{L}_1 and \mathcal{L}_2 be geolaminations with qc-portraits $\operatorname{QCP}_1 = (C_1^i)_{i=1}^{d-1}$ and $\operatorname{QCP}_2 = (C_2^i)_{i=1}^{d-1}$ and a number $0 \le k \le d-1$ such that:

- 1. for every *i* with $1 \le i \le k$, the sets C_1^i and C_2^i are either strongly linked critical quadrilaterals or share a spike;
- 2. for each j > k the sets C_1^j and C_2^j are contained in a common critical cluster of \mathcal{L}_1 and \mathcal{L}_2 .

うして ふゆう ふほう ふほう うらつ

Then we say that \mathcal{L}_1 and \mathcal{L}_2 are linked geolaminations. The critical sets C_1^i and C_2^i , $1 \le i \le d - 1$ are called associated critical sets.

Definition (Generic topological polynomial) A topological polynomial is generic if all critical sets of the corresponding geolamination are finite.

If a topological polynomial is not generic then it either has a periodic infinite critical set with a periodic point on its boundary or an infinte non-periodic critical set which maps to a periodic infinte critical set.

うして ふゆう ふほう ふほう うらつ

Definition (Generic topological polynomial) A topological polynomial is generic if all critical sets of the corresponding geolamination are finite.

If a topological polynomial is not generic then it either has a periodic infinite critical set with a periodic point on its boundary or an infinte non-periodic critical set which maps to a periodic infinte critical set.

(日) (伊) (日) (日) (日) (0) (0)

Every σ_d invariant geolamination has at most d-1 critical sets.

We can associate to every generic topological polynomial a geolamination with a qc-portrait by inserting a full collection of d-1 generalized critical quadrilaterals into the critical sets.

Two generic topological polynomials are linked if the resulting geolaminations with qc-portraits are linked.

ション ふゆ く 山 マ チャット しょうくしゃ

Every σ_d invariant geolamination has at most d-1 critical sets.

We can associate to every generic topological polynomial a geolamination with a qc-portrait by inserting a full collection of d-1 generalized critical quadrilaterals into the critical sets.

Two generic topological polynomials are linked if the resulting geolaminations with qc-portraits are linked.

ション ふゆ く 山 マ チャット しょうくしゃ

Every σ_d invariant geolamination has at most d-1 critical sets.

We can associate to every generic topological polynomial a geolamination with a qc-portrait by inserting a full collection of d-1 generalized critical quadrilaterals into the critical sets.

Two generic topological polynomials are linked if the resulting geolaminations with qc-portraits are linked.

(日) (伊) (日) (日) (日) (0) (0)

Theorem (Main Theorem)

If two generic topological polynomials have linked geolaminations, then the corresponding laminations and hence the two topological polynomials are the same.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If J_{\sim} is the topological Julia set of a generic topological polynomial then every gap G of the corresponding lamination is either finite or a periodic Siegel gap U (so that the first return map on the boundary is semi-conjugate to an irrational rotation of a circle), or a non-periodic gap V so that its boundary maps monotonically to the boundary of a periodic Siegel gap.

If all gaps are finite, then J_{\sim} is a dendrite and we call the topological polynomial dendritic.

A complex polynomial is <mark>dendritic</mark> if all periodic orbits are repelling. Then the corresponding topological polynomial is also dendritic.

If J_{\sim} is the topological Julia set of a generic topological polynomial then every gap G of the corresponding lamination is either finite or a periodic Siegel gap U (so that the first return map on the boundary is semi-conjugate to an irrational rotation of a circle), or a non-periodic gap V so that its boundary maps monotonically to the boundary of a periodic Siegel gap.

If all gaps are finite, then J_{\sim} is a dendrite and we call the topological polynomial dendritic.

A complex polynomial is <mark>dendritic</mark> if all periodic orbits are repelling. Then the corresponding topological polynomial is also dendritic.

If J_{\sim} is the topological Julia set of a generic topological polynomial then every gap G of the corresponding lamination is either finite or a periodic Siegel gap U (so that the first return map on the boundary is semi-conjugate to an irrational rotation of a circle), or a non-periodic gap V so that its boundary maps monotonically to the boundary of a periodic Siegel gap.

If all gaps are finite, then J_{\sim} is a dendrite and we call the topological polynomial dendritic.

A complex polynomial is dendritic if all periodic orbits are repelling. Then the corresponding topological polynomial is also dendritic.

Minor tags of generic topological polynomials

Let P be a generic quadratic topological polynomial.

Then the associated geolamination has a unique critical gap/leaf G_P . Then $\sigma_2(G_P)$ is a gap, leaf or point in \mathbb{D} which is called the minor tag of P.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Minor tags of generic quadratic topological polynomials

The following theorem follows from classical results of Douady, Hubbard and Thurston.

Theorem (Thurston)

If P_1 and P_2 are two distinct generic quadtratic polynomials, Then their minor tags are disjoint and this collection of all minor tags is upper-semicontinuous. Hence the closure of the collection of all such minor tags is a lamination: the space of quadratic generic topological polynomials is a lamination itself!

Corollary

There exists a continuous function from the space of dendritic polynomials \mathcal{MD}_2 to the quotient space which identifies each minor tag to a point.

(日) (伊) (日) (日) (日) (0) (0)

Minor tags of generic quadratic topological polynomials

The following theorem follows from classical results of Douady, Hubbard and Thurston.

Theorem (Thurston)

If P_1 and P_2 are two distinct generic quadtratic polynomials, Then their minor tags are disjoint and this collection of all minor tags is upper-semicontinuous. Hence the closure of the collection of all such minor tags is a lamination: the space of quadratic generic topological polynomials is a lamination itself!

Corollary

There exists a continuous function from the space of dendritic polynomials \mathcal{MD}_2 to the quotient space which identifies each minor tag to a point.

(ロ) (型) (E) (E) (E) (O)

Minor tags of generic quadratic topological polynomials

The following theorem follows from classical results of Douady, Hubbard and Thurston.

Theorem (Thurston)

If P_1 and P_2 are two distinct generic quadtratic polynomials, Then their minor tags are disjoint and this collection of all minor tags is upper-semicontinuous. Hence the closure of the collection of all such minor tags is a lamination: the space of quadratic generic topological polynomials is a lamination itself!

Corollary

There exists a continuous function from the space of dendritic polynomials \mathcal{MD}_2 to the quotient space which identifies each minor tag to a point.

Upper semicontinuity

Definition

We say that a family of sets G_{α} is upper-semicontinuous if whenever $x_n \in G_{\alpha_n}$ converges to $x_{\infty} \in G_{\alpha}$, then $\limsup G_{\alpha_n} \subset G_{\alpha}$.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

Thurston defines for each σ_2 -invariant geolamination \mathcal{L} as its major a leaf $M_{\mathcal{L}} \in \mathcal{L}$ of maximal length and as its minor $m_{\mathcal{L}} = \sigma_2(M_{\mathcal{L}})$.

For each dendritic polynomial $P_c = z^2 + c$ of degree 2 with associated lamination \sim_P and geolamination \mathcal{L}_P , $m_{\mathcal{L}_P} \subset \sigma_2(G_c)$ is an edge of $\sigma_2(G_c)$. (In fact, the shortest edge of $\sigma_2(G_c)$.)

Theorem (Thurston)

The collection of all minors of all σ_2 -invariant geolaminations is itself a geolamination, called $QML = \{m_L\}$ (for Quadratic Minor Lamination). Moreover $\mathcal{M}_2^{Comb} = S/QML$ is a locally connected continuum.

うして ふゆう ふほう ふほう うらう

Thurston defines for each σ_2 -invariant geolamination \mathcal{L} as its major a leaf $M_{\mathcal{L}} \in \mathcal{L}$ of maximal length and as its minor $m_{\mathcal{L}} = \sigma_2(M_{\mathcal{L}})$.

For each dendritic polynomial $P_c = z^2 + c$ of degree 2 with associated lamination \sim_P and geolamination \mathcal{L}_P , $m_{\mathcal{L}_P} \subset \sigma_2(\mathcal{G}_c)$ is an edge of $\sigma_2(\mathcal{G}_c)$. (In fact, the shortest edge of $\sigma_2(\mathcal{G}_c)$.)

Theorem (Thurston)

The collection of all minors of all σ_2 -invariant geolaminations is itself a geolamination, called QML={ m_L } (for Quadratic Minor Lamination). Moreover $\mathcal{M}_2^{Comb} = S/QML$ is a locally connected continuum.

(日) (伊) (日) (日) (日) (0) (0)

Thurston defines for each σ_2 -invariant geolamination \mathcal{L} as its major a leaf $M_{\mathcal{L}} \in \mathcal{L}$ of maximal length and as its minor $m_{\mathcal{L}} = \sigma_2(M_{\mathcal{L}})$.

For each dendritic polynomial $P_c = z^2 + c$ of degree 2 with associated lamination \sim_P and geolamination \mathcal{L}_P , $m_{\mathcal{L}_P} \subset \sigma_2(\mathcal{G}_c)$ is an edge of $\sigma_2(\mathcal{G}_c)$. (In fact, the shortest edge of $\sigma_2(\mathcal{G}_c)$.)

Theorem (Thurston)

The collection of all minors of all σ_2 -invariant geolaminations is itself a geolamination, called QML={ m_L } (for Quadratic Minor Lamination). Moreover $\mathcal{M}_2^{Comb} = S/QML$ is a locally connected continuum.

(日) (伊) (日) (日) (日) (0) (0)

Thurston defines for each σ_2 -invariant geolamination \mathcal{L} as its major a leaf $M_{\mathcal{L}} \in \mathcal{L}$ of maximal length and as its minor $m_{\mathcal{L}} = \sigma_2(M_{\mathcal{L}})$.

For each dendritic polynomial $P_c = z^2 + c$ of degree 2 with associated lamination \sim_P and geolamination \mathcal{L}_P , $m_{\mathcal{L}_P} \subset \sigma_2(\mathcal{G}_c)$ is an edge of $\sigma_2(\mathcal{G}_c)$. (In fact, the shortest edge of $\sigma_2(\mathcal{G}_c)$.)

Theorem (Thurston)

The collection of all minors of all σ_2 -invariant geolaminations is itself a geolamination, called QML={ m_L } (for Quadratic Minor Lamination). Moreover $\mathcal{M}_2^{Comb} = S/QML$ is a locally connected continuum.

Quadratic Minor Lamination

The quadratic minor lamination $QML = \{m_L\}$ contains all minor tags of dendritic quadratic polynomials and their limits.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Quadratic Minor Lamination

The MLC conjecture

Conjecture

The boundary of the Mandelbrot set \mathcal{M}_2 is homeomorphic to the quotient space $\mathcal{M}_2^{Comb} = \mathbb{S}/\mathrm{QML}$. In other words, the Mandelbrot set is obtained from $\overline{\mathbb{D}}$ by collapsing all leaves of QML .

(ロ)、(部)、(E)、(E)、 E

Quadratic polynomials $P_c = z^2 + c$ are tagged by their critical value. Generic Quadratic Laminations are tagged by minors tags which are the image of the critical set. Quadratic geolaminations are tagged by minors (images of major leaves in the boundary of the critical set).

In case d = 2 one can think of a major as a leaf whose length is closest to $\frac{1}{2}$. Similarly, when d = 3, one could find two appropriate leaves whose length is closest to $\frac{1}{3}$ and declare their images to be the two minors of \mathcal{L} .

However, unlike the case d = 2, minors do not uniquely determine the majors and two distinct laminations may well have the same pair of minors.

Quadratic polynomials $P_c = z^2 + c$ are tagged by their critical value. Generic Quadratic Laminations are tagged by minors tags which are the image of the critical set. Quadratic geolaminations are tagged by minors (images of major leaves in the boundary of the critical set).

In case d = 2 one can think of a major as a leaf whose length is closest to $\frac{1}{2}$. Similarly, when d = 3, one could find two appropriate leaves whose length is closest to $\frac{1}{3}$ and declare their images to be the two minors of \mathcal{L} .

However, unlike the case d = 2, minors do not uniquely determine the majors and two distinct laminations may well have the same pair of minors.

Quadratic polynomials $P_c = z^2 + c$ are tagged by their critical value. Generic Quadratic Laminations are tagged by minors tags which are the image of the critical set. Quadratic geolaminations are tagged by minors (images of major leaves in the boundary of the critical set).

In case d = 2 one can think of a major as a leaf whose length is closest to $\frac{1}{2}$. Similarly, when d = 3, one could find two appropriate leaves whose length is closest to $\frac{1}{3}$ and declare their images to be the two minors of \mathcal{L} .

However, unlike the case d = 2, minors do not uniquely determine the majors and two distinct laminations may well have the same pair of minors.

Every cubic polynomial is affinely conjugate to a polynomial of the form

$$P(z) = z^3 + 3cz^2 + v$$

which has critical points 0 and -2c. We consider P = (P, -2c, 0) as a marked polynomial.

Note that v = P(0) is a critical value called the minor tag and that P(c) = P(-2c). We call $c = (-2c)^*$ the co-critical point (of -2c).

Definition The mixed tag of the marked polynomial (P, -2c, 0) is the pair

$$(c, v) = ((-2c)^*, P(0))$$

ション ふゆ アメリア メリア しょうくの

Every cubic polynomial is affinely conjugate to a polynomial of the form

$$P(z) = z^3 + 3cz^2 + v$$

which has critical points 0 and -2c. We consider P = (P, -2c, 0) as a marked polynomial.

Note that v = P(0) is a critical value called the minor tag and that P(c) = P(-2c). We call $c = (-2c)^*$ the co-critical point (of -2c).

Definition

The mixed tag of the marked polynomial (P, -2c, 0) is the pair

$$(c, v) = ((-2c)^*, P(0))$$

ション ふゆ アメリア メリア しょうくの

Every cubic polynomial is affinely conjugate to a polynomial of the form

$$P(z) = z^3 + 3cz^2 + v$$

which has critical points 0 and -2c. We consider P = (P, -2c, 0) as a marked polynomial.

Note that v = P(0) is a critical value called the minor tag and that P(c) = P(-2c). We call $c = (-2c)^*$ the co-critical point (of -2c).

Definition

The mixed tag of the marked polynomial (P, -2c, 0) is the pair

$$(c, v) = ((-2c)^*, P(0))$$
Let (P, c, w) be a marked dendritic polynomial. Then there exists a lamination \sim , a quotient map $\pi : \mathbb{S} \to J_{\sim} = \mathbb{S}/\sim$ and a monotone map $m : J(P) \to J_{\sim}$, where the topological Julia set J_{\sim} is a dendrite. Let \mathcal{L}_{\sim} denote the associated geolamination.

For each $z \in J$, let G_z denote the convex hull of $\pi^{-1} \circ m(z)$. We call $(\mathcal{L}_{\sim}, G_c, G_w)$ a marked geolamination. Note that G_c and G_w are the critical sets of \mathcal{L}_{\sim} .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

If $c \neq w$, let c^* denote the co-critical point of c. If c = w, put $c^* = c$. Let (P, c, w) be a marked dendritic polynomial. Then there exists a lamination \sim , a quotient map $\pi : \mathbb{S} \to J_{\sim} = \mathbb{S}/\sim$ and a monotone map $m : J(P) \to J_{\sim}$, where the topological Julia set J_{\sim} is a dendrite. Let \mathcal{L}_{\sim} denote the associated geolamination.

For each $z \in J$, let G_z denote the convex hull of $\pi^{-1} \circ m(z)$. We call $(\mathcal{L}_{\sim}, G_c, G_w)$ a marked geolamination. Note that G_c and G_w are the critical sets of \mathcal{L}_{\sim} .

If $c \neq w$, let c^* denote the co-critical point of c. If c = w, put $c^* = c$. Let (P, c, w) be a marked dendritic polynomial. Then there exists a lamination \sim , a quotient map $\pi : \mathbb{S} \to J_{\sim} = \mathbb{S}/\sim$ and a monotone map $m : J(P) \to J_{\sim}$, where the topological Julia set J_{\sim} is a dendrite. Let \mathcal{L}_{\sim} denote the associated geolamination.

For each $z \in J$, let G_z denote the convex hull of $\pi^{-1} \circ m(z)$. We call $(\mathcal{L}_{\sim}, G_c, G_w)$ a marked geolamination. Note that G_c and G_w are the critical sets of \mathcal{L}_{\sim} .

If $c \neq w$, let c^* denote the co-critical point of c. If c = w, put $c^* = c$.

Tagging cubic dendritic polynomials

The mixed tag of (P, c, w)

$Tag(P, c, w) = (G_{c^*} \times \sigma_3(G_w)) \subset \overline{\mathbb{D}} \times \overline{\mathbb{D}}.$

Note that each tag is the product of two sets each of which is either a point, a leaf or a gap. Hence we may think of these objects as "leaves and gaps" in a higher dimensional lamination in $\overline{\mathbb{D}} \times \overline{\mathbb{D}}$.

Tagging cubic dendritic polynomials

The mixed tag of (P, c, w)

$$Tag(P, c, w) = (G_{c^*} \times \sigma_3(G_w)) \subset \overline{\mathbb{D}} \times \overline{\mathbb{D}}.$$

Note that each tag is the product of two sets each of which is either a point, a leaf or a gap. Hence we may think of these objects as "leaves and gaps" in a higher dimensional lamination in $\overline{\mathbb{D}} \times \overline{\mathbb{D}}$.

Tagging generic cubic topological polynomials P

Every generic topological has either one or two finite critical sets which are critical gap(s) or leaves(s) of the associated geolamination \mathcal{L} .

We consider *marked critical sets* so if their are two critical sets we can call one G_c and the other G_w . Denote by G_{c^*} (the co-critical set) the gap/leaf/point of \mathcal{L} , distinct from G_c , which has the same image as G_c . If \mathcal{L} has only one critical set put $G_c = G_{c^*} = G = G_w$. As above

$$Tag(P, G_c, G_w) = (G_{c^*} \times \sigma_3(G_w)) \subset \overline{\mathbb{D}} \times \overline{\mathbb{D}}.$$

Tagging generic cubic topological polynomials P

Every generic topological has either one or two finite critical sets which are critical gap(s) or leaves(s) of the associated geolamination \mathcal{L} .

We consider *marked critical sets* so if their are two critical sets we can call one G_c and the other G_w . Denote by G_{c^*} (the co-critical set) the gap/leaf/point of \mathcal{L} , distinct from G_c , which has the same image as G_c .

If \mathcal{L} has only one critical set put $G_c = G_{c^*} = G = G_w$. As above,

$$Tag(P, G_c, G_w) = (G_{c^*} \times \sigma_3(G_w)) \subset \overline{\mathbb{D}} \times \overline{\mathbb{D}}.$$

Tagging generic cubic topological polynomials $\ensuremath{\textit{P}}$

Every generic topological has either one or two finite critical sets which are critical gap(s) or leaves(s) of the associated geolamination \mathcal{L} .

We consider *marked critical sets* so if their are two critical sets we can call one G_c and the other G_w . Denote by G_{c^*} (the co-critical set) the gap/leaf/point of \mathcal{L} , distinct from G_c , which has the same image as G_c .

If \mathcal{L} has only one critical set put $G_c = G_{c^*} = G = G_w$. As above,

$$Tag(P, G_c, G_w) = (G_{c^*} \times \sigma_3(G_w)) \subset \overline{\mathbb{D}} \times \overline{\mathbb{D}}.$$

An application of our results

Theorem Mixed tags of generic cubic topological polynomials are disjoint or coincide. The closure of the collection of all mixed tags CML of cubic generic topological polynomials is itself a (higher dimensional) "lamination" in $\overline{\mathbb{D}} \times \overline{\mathbb{D}}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Corollary

There exists a continuous function from the space of marked dendritic cubic polynomials \mathcal{MD}_3 to the quotient space $\mathcal{MD}_3^{Comb} = \overline{\mathbb{D}} \times \overline{\mathbb{D}}/\mathrm{CML}$ obtained by identifying individual tags to points.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Tags of quadratic invariant laminations

Recall that the minor $m_{\mathcal{L}}$ of a σ_2 -invariant geolamination \mathcal{L} is the image of a longest leaf M of \mathcal{L} called a major.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Thurston defined $QML = \{m_{\mathcal{L}}\}$ as the set of all minors. He proved, in particular, that distinct minors are unlinked.

The central strip

Lemma (Thurston)

Given two majors M, M', let C(M) be the open strip in \mathbb{D} between M and M' (the central strip); Thurston showed that no eventual image of M can enter C(M).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. σ_2 cannot have wandering triangles,
- vertices of a finite periodic gap belong to one cycle,
- 3. quadratic minors are unlinked.

Lemma (Thurston)

Given two majors M, M', let C(M) be the open strip in \mathbb{D} between M and M' (the central strip); Thurston showed that no eventual image of M can enter C(M).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. σ_2 cannot have wandering triangles,
- 2. vertices of a finite periodic gap belong to one cycle,
- 3. quadratic minors are unlinked.

Lemma (Thurston)

Given two majors M, M', let C(M) be the open strip in \mathbb{D} between M and M' (the central strip); Thurston showed that no eventual image of M can enter C(M).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. σ_2 cannot have wandering triangles,
- 2. vertices of a finite periodic gap belong to one cycle,
- 3. quadratic minors are unlinked.

Lemma (Thurston)

Given two majors M, M', let C(M) be the open strip in \mathbb{D} between M and M' (the central strip); Thurston showed that no eventual image of M can enter C(M).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. σ_2 cannot have wandering triangles,
- 2. vertices of a finite periodic gap belong to one cycle,
- 3. quadratic minors are unlinked.

Sketch of Unlinkage Proof Suppose *m*, *n* are linked minors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Sketch of Unlinkage Proof Then their majors' central strips overlap.

Sketch of Unlinkage Proof

Choose c a critical leaf in the intersection with preperiodic endpoints. By CSL, no image of M, N can meet c.

Sketch of Unlinkage Proof Hence m, n are carried forward in order by σ_2^i .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Sketch of Unlinkage Proof

m, n are contained in a finite preperiodic gap of the geolamination generated by c, contradicting transitivity.

Higher degree case

The Central Strip Lemma fails for cubics;

consequences are:

- 1. the existence of wandering triangles for cubics,
- 2. the existence of periodic gaps with two cycles of vertices.

Definition

For linked geolaminations \mathcal{L}_1 , \mathcal{L}_2 with qc-portraits, an accordion is the union \mathcal{A} of a leaf ℓ of \mathcal{L}_1 with the leaves of \mathcal{L}_2 linked with ℓ . Accordions resemble gaps of *one* geolamination b/c they *preserve* order under σ_d .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

If $\ell_1 \in \mathcal{L}_1$, then each critical set of \mathcal{L}_2 has a spike unlinked with ℓ_1 .

≣ *•* ९२.०

・ロト ・個ト ・モト ・モト

Definition

Let \mathcal{L}_1 and \mathcal{L}_2 be geolaminations. Suppose that there are geolaminations with qc-portraits $(\mathcal{L}_1^m, \text{QCP}_1)$, $(\mathcal{L}_2^m, \text{QCP}_2)$ such that $\mathcal{L}_1 \subset \mathcal{L}_1^m, \mathcal{L}_2 \subset \mathcal{L}_2^m$. Then we say that \mathcal{L}_1 and \mathcal{L}_2 are linked if $(\mathcal{L}_1^m, \text{QCP}_1)$ and $(\mathcal{L}_2^m, \text{QCP}_2)$ are linked.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem

Suppose that \mathcal{L}_a and \mathcal{L}_b are linked laminations. Consider linked chords ℓ_a , ℓ_x and the set $B = CH(\ell_a, \ell_x)$. Suppose that for all n, $|\sigma^n(B) \cap S| = 4$ and B is not wandering. Then

- (a) the set B is a stand-alone gap of some preperiod $r \ge 0$;
- (b) if X is the union of polygons in the forward orbit of σ^r_d(B) and Q is a component of X, then Q ∩ S is a finite set, the vertices of σ^r_d(B) are periodic of the same period and belong to two, or three, or four distinct periodic orbits, and the first return map on Q ∩ S can be identity only if Q = σ^r_d(B) is a quadrilateral,
- (c) the leaves l_a, l_x are (pre)periodic of the same eventual period of endpoints.