Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

Prague Topological Symposium 2016

Yasser F. Ortiz-Castillo and Artur H. Tomita Instituto de Matemática e Estatística Universidade de São Paulo

July 29

イロト イポト イヨト イヨト

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Introduction			Bibliography.

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Introduction			Bibliography.

Definitions

A crowded space is resolvable if it contains two disjoint dense sets and a space is pseudocompact if every continuous function with real values is bounded.

These two notions were introduced by Hewitt in the 1940's:

• E. Hewitt, *A problem of set-theoretic topology*, Duke Math. J. **10** (1943), 309–333.

• E. Hewitt, *Rings of real-valued continuous functions, I*, Trans. Amer. Math. Soc. (1948), 45–99.

イロト イヨト イヨト イヨト

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Introduction	Trees of open refinements		Bibliography.

Definitions

A crowded space is resolvable if it contains two disjoint dense sets and a space is pseudocompact if every continuous function with real values is bounded.

These two notions were introduced by Hewitt in the 1940's:

• E. Hewitt, *A problem of set-theoretic topology*, Duke Math. J. **10** (1943), 309–333.

• E. Hewitt, *Rings of real-valued continuous functions, I*, Trans. Amer. Math. Soc. (1948), 45–99.

イロト イヨト イヨト イヨト

IME-USP

The notion of resolvability comes from a problem of Katětov:

Is there a Hausdorff crowded space *X* such that every function $f: X \to \mathbb{R}$ is continuous at some point ?

• M. Katětov, *On topological spaces containing no disjoint dense sets*, Mat. Sib. 21 (1947), 3–12

and the next observation of Malykhin:

the answer is yes iff there exists a Hausdorff Baire irresolvable space

• V. I. Malykhin, On the resolvability of the product of two spaces, and a certain problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 725–729

So there are well known work about resolvability on Baire spaces and we know now that the answer to this problem is independent to *ZFC*

The notion of resolvability comes from a problem of Katětov:

Is there a Hausdorff crowded space *X* such that every function $f: X \to \mathbb{R}$ is continuous at some point ?

• M. Katětov, On topological spaces containing no disjoint dense sets, Mat. Sib. 21 (1947), 3–12

and the next observation of Malykhin:

the answer is yes iff there exists a Hausdorff Baire irresolvable space

• V. I. Malykhin, On the resolvability of the product of two spaces, and a certain problem of Katětov, Dokl. Akad. Nauk SSSR 222 (1975), 725–729

So there are well known work about resolvability on Baire spaces and we know now that the answer to this problem is independent to *ZFC*

In the same paper they ask:

Is every Tychonoff crowded pseudocompact space resolvable?
W. W. Comfort and S. García-Ferreira *Resolvability: a selective survey and some new results*, Topology Appl. 74, (1996) 149–167

This is a natural question because every countable compact space is pseudocompact and every Tychonoff pseudocompact space is Baire

The first partial solution was given by van Mill who proved that every Tychonoff pseudocompact *ccc* space is c-resolvable

 J. van Mill, Every crowded pseudocompact ccc space is resolvable, to appear.

ヘロト ヘヨト ヘヨト ヘヨト

In the same paper they ask:

Is every Tychonoff crowded pseudocompact space resolvable?

• W. W. Comfort and S. García-Ferreira *Resolvability: a selective survey and some new results*, Topology Appl. **74**, (1996) 149–167

This is a natural question because every countable compact space is pseudocompact and every Tychonoff pseudocompact space is Baire

The first partial solution was given by van Mill who proved that every Tychonoff pseudocompact *ccc* space is *c*-resolvable

 J. van Mill, Every crowded pseudocompact ccc space is resolvable, to appear.

In the same paper they ask:

Is every Tychonoff crowded pseudocompact space resolvable?

• W. W. Comfort and S. García-Ferreira *Resolvability: a selective survey and some new results*, Topology Appl. **74**, (1996) 149–167

This is a natural question because every countable compact space is pseudocompact and every Tychonoff pseudocompact space is Baire

The first partial solution was given by van Mill who proved that every Tychonoff pseudocompact *ccc* space is *c*-resolvable

• J. van Mill, *Every crowded pseudocompact ccc space is resolvable*, to appear.

In the same paper they ask:

Is every Tychonoff crowded pseudocompact space resolvable?

• W. W. Comfort and S. García-Ferreira *Resolvability: a selective survey and some new results*, Topology Appl. **74**, (1996) 149–167

This is a natural question because every countable compact space is pseudocompact and every Tychonoff pseudocompact space is Baire

The first partial solution was given by van Mill who proved that every Tychonoff pseudocompact *ccc* space is c-resolvable

• J. van Mill, *Every crowded pseudocompact ccc space is resolvable*, to appear.

Introduction			Bibliography.

We may mention something about resolvability in ccc spaces.

Casarrubias-Segura, Hernández-Hernández and Tamariz-Mascarúa proved with MA that every T_2 crowded Baire *ccc* space is ω -resolvable

Dorantes-Aldama showed, assuming that c is less than the first weakly inaccessible cardinal, that every T_2 crowded *ccc* Baire space is resolvable and the existence of a crowded *ccc* Baire space is equivalent to the existence of a measurable cardinal

For the following all the spaces considered are crowded and Tychonoff

Yasser F. Ortiz-Castillo and Artur H. Tomita

IME-USP

・ロト ・回ト ・ヨト ・ヨト

Introduction	Trees of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.

We may mention something about resolvability in *ccc* spaces. Casarrubias-Segura, Hernández-Hernández and Tamariz-Mascarúa proved with MA that every T_2 crowded Baire *ccc* space is ω -resolvable

Dorantes-Aldama showed, assuming that c is less than the first weakly inaccessible cardinal, that every T_2 crowded *ccc* Baire space is resolvable and the existence of a crowded *ccc* Baire space is equivalent to the existence of a measurable cardinal

・ロ・ ・ 四・ ・ ヨ・ ・ 日・

IME-USP

For the following all the spaces considered are crowded and Tychonoff

Introduction	Trees of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.

We may mention something about resolvability in *ccc* spaces. Casarrubias-Segura, Hernández-Hernández and Tamariz-Mascarúa proved with MA that every T_2 crowded Baire *ccc* space is ω -resolvable

Dorantes-Aldama showed, assuming that c is less than the first weakly inaccessible cardinal, that every T_2 crowded *ccc* Baire space is resolvable and the existence of a crowded *ccc* Baire space is equivalent to the existence of a measurable cardinal

For the following all the spaces considered are crowded and Tychonoff

Trees of open refinements		Bibliography.
,		
x		

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Trees of open refinements		Bibliography.

The first step is standard

Define a tree of nonempty open sets of X such that:

1
$$U_0 = \{X\},\$$

- 2 \mathcal{U}_{α} is cellular for every $\alpha < \kappa$, and
- 3 { $U \in U_{\alpha+1} : U \subseteq V$ } and { $cl(U) : U \in U_{\alpha+1}$ and $U \subseteq V$ } are infinite maximal cellular families with respect to *V* for every $\alpha < \kappa$ and $V \in U_{\alpha}$,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

IME-USP

4 if
$$\{U_{\xi} : \xi < \alpha\}$$
 is a chain, then $cl(U_{\xi+1}) \subseteq U_{\xi}$.

 κ is the ordinal number where the construction stops

introduction iree	es of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

IME-USP

Define

1
$$F_{\alpha} = \left[\bigcap_{\xi < \alpha} (\bigcup \mathcal{U}_{\xi})\right] \setminus (\bigcup \mathcal{U}_{\alpha})$$
 for every $\alpha < \kappa$ and $F_{\kappa} = \bigcap_{\xi < \kappa} (\bigcup \mathcal{U}_{\xi})$
2 $\Lambda = \{\alpha \le \kappa : cof(\alpha) = \omega\}$

Observe that

 $\kappa \leq c(X)^+$, and

if *X* is pseudocompact then $F_{\alpha} \neq \emptyset$ for each $\alpha \in \Lambda$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Trees of open refinements		Bibliography.

<ロ> (四) (四) (三) (三) (三)

IME-USP

Define

1
$$F_{\alpha} = \left[\bigcap_{\xi < \alpha} (\bigcup \mathcal{U}_{\xi})\right] \setminus (\bigcup \mathcal{U}_{\alpha})$$
 for every $\alpha < \kappa$ and $F_{\kappa} = \bigcap_{\xi < \kappa} (\bigcup \mathcal{U}_{\xi})$
2 $\Lambda = \{\alpha \le \kappa : cof(\alpha) = \omega\}$

Observe that

$$\kappa \leq c(X)^+$$
, and

if X is pseudocompact then $F_{\alpha} \neq \emptyset$ for each $\alpha \in \Lambda$

Yasser F. Ortiz-Castillo and Artur H. Tomita

	van Mill's construction		Bibliography.

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ のへで

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

		Trees of open refinements	van Mill's construction		Bibliography.
	Ву <i>с</i> (<i>X</i>	$() = \omega$			
Each open set of the tree is related to a function $f : X \to [0, 1]$, so each $\alpha < \omega_1$ it is defined a function from X to a countable power of $[0, 1]$				o for of	

van Mill observes that every open set is eventually divided by the tree

Cantor sets appears after ω divisions of an open set because of the pseudocompactness

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

IME-USP

such sets live in the images of the F_{α} with $\alpha \in \Lambda$

		van Mill's construction			Bibliography.		
Ву <i>с</i> (<i>X</i>	$\tilde{C}) = \omega$						
Each open set of the tree is related to a function $f : X \to [0, 1]$, so for each $\alpha < \omega_1$ it is defined a function from X to a countable power of $[0, 1]$							
T 1							
The go	al						

van Mill observes that every open set is eventually divided by the tree

Cantor sets appears after ω divisions of an open set because of the pseudocompactness

イロト イヨト イヨト イヨト

IME-USP

such sets live in the images of the F_{α} with $\alpha \in \Lambda$

		van Mill's construction			Bibliography.
Ву <i>с</i> (2	$() = \omega$				
Each c each c [0, 1]	open set of the tree $\alpha < \omega_1$ it is defined	e is related to a full a function from λ	nction f : X (to a count	$1 \rightarrow [0, 1]$, so able power	o for of
The g	nal				

van Mill observes that every open set is eventually divided by the tree

Cantor sets appears after ω divisions of an open set because of the pseudocompactness

イロト イヨト イヨト イヨト

IME-USP

such sets live in the images of the F_{α} with $\alpha \in \Lambda$

		van Mill's construction			Bibliography.
Ву <i>с</i> (<i>X</i>	$\Delta () = \omega$				
Each open set of the tree is related to a function $f : X \to [0, 1]$, so for each $\alpha < \omega_1$ it is defined a function from X to a countable power of [0, 1]					
The or	al				

van Mill observes that every open set is eventually divided by the tree

Cantor sets appears after ω divisions of an open set because of the pseudocompactness

イロト イヨト イヨト イヨト

IME-USP

such sets live in the images of the F_{α} with $\alpha \in \Lambda$

	Trees of open refinements	van Mill's construction			Bibliography.
By <i>c</i> (Each each [0, 1]	$X) = \omega$ open set of the tree $lpha < \omega_1$ it is defined	e is related to a fu l a function from)	unction <i>f</i> : <i>X</i> X to a count	$\to [0,1]$, so able power	o for of
The	Inal				

van Mill observes that every open set is eventually divided by the tree

Cantor sets appears after ω divisions of an open set because of the pseudocompactness

イロト イヨト イヨト イヨト

IME-USP

such sets live in the images of the F_{α} with $\alpha \in \Lambda$

		Bibliography.

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

◆□ > ◆□ > ◆三 > ◆三 > 三 ・ のへで

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

When $c(X) > \omega$

The van Mill's way could lead us through uncountable powers and then we may lose metrizability. Fortunately some facts can be translated and used:

 if U ⊆ ⋃_{ξ≤α} F_ξ for some α < κ, then U is divided by the tree before α

2 by pseudocompactness, if α ∈ Λ and {U_ξ ∈ U_ξ : ξ < α} is a chain, then (∩_{ξ<α} U_ξ) ∩ F_α ≠ Ø

Definition

For each $n \in \mathbb{N}$, let

 $\Gamma_n = \left\{ f : \{0,1\}^n \to \bigcup_{\xi < \kappa} \mathcal{U}_{\xi} : f \text{ is injective and } f[\{0,1\}^n] \text{ is cellular } \right\}$

and let
$$\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

			Main ideas		Bibliography.
When a	$c(X) > \omega$				
The var	n Mill's way could le e may lose metrizab	ad us through une bility. Fortunately s	countable po some facts c	owers and an be	

translated and used:

- if $U \subseteq \bigcup_{\xi \le \alpha} F_{\xi}$ for some $\alpha < \kappa$, then *U* is divided by the tree before α
- 2 by pseudocompactness, if α ∈ Λ and {U_ξ ∈ U_ξ : ξ < α} is a chain, then (∩_{ξ<α} U_ξ) ∩ F_α ≠ Ø

Definition

For each $n \in \mathbb{N}$, let

 $\Gamma_n = \left\{ f : \{0,1\}^n \to \bigcup_{\xi < \kappa} \mathcal{U}_{\xi} : f \text{ is injective and } f[\{0,1\}^n] \text{ is cellular } \right\}$

and let
$$\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

			Main ideas		Bibliography.
When a	$c(X) > \omega$				
The var then we translat	n Mill's way could le e may lose metrizab ted and used:	ad us through une ility. Fortunately s	countable po some facts c	owers and an be	

- if U ⊆ U_{ξ≤α} F_ξ for some α < κ, then U is divided by the tree before α
- 2 by pseudocompactness, if α ∈ Λ and {U_ξ ∈ U_ξ : ξ < α} is a chain, then (∩_{ξ<α} U_ξ) ∩ F_α ≠ Ø

Definition

For each $n \in \mathbb{N}$, let

 $\Gamma_n = \left\{ f : \{0,1\}^n \to \bigcup_{\xi < \kappa} \mathcal{U}_{\xi} : f \text{ is injective and } f[\{0,1\}^n] \text{ is cellular } \right\}$

and let
$$\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$$
.

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

The van Mill's way could lead us through uncountable powers and then we may lose metrizability. Fortunately some facts can be translated and used:

- if U ⊆ ⋃_{ξ≤α} F_ξ for some α < κ, then U is divided by the tree before α
- 2 by pseudocompactness, if α ∈ Λ and {U_ξ ∈ U_ξ : ξ < α} is a chain, then (∩_{ξ<α} U_ξ) ∩ F_α ≠ Ø

Definition

For each $n \in \mathbb{N}$, let $\Gamma_n = \left\{ f : \{0,1\}^n \to \bigcup_{\xi < \kappa} \mathcal{U}_{\xi} : f \text{ is injective and } f[\{0,1\}^n] \text{ is cellular } \right\}$ and let $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$.

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

(U) / (D) / (E) / (E)

The van Mill's way could lead us through uncountable powers and then we may lose metrizability. Fortunately some facts can be translated and used:

- if U ⊆ ⋃_{ξ≤α} F_ξ for some α < κ, then U is divided by the tree before α
- 2 by pseudocompactness, if α ∈ Λ and {U_ξ ∈ U_ξ : ξ < α} is a chain, then (∩_{ξ<α} U_ξ) ∩ F_α ≠ Ø

Definition

For each $n \in \mathbb{N}$, let

$$\Gamma_n = \left\{ f : \{0,1\}^n \to \bigcup_{\xi < \kappa} \mathcal{U}_{\xi} : f \text{ is injective and } f[\{0,1\}^n] \text{ is cellular } \right\}$$

and let
$$\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$$
.

		Main ideas		Bibliography.
on				
	Trees of open refinements	Trees of open refinements van Mill's construction	Trees of open refinements van Mill's construction Main ideas	Trees of open refinements van Mill's construction Main ideas The proof

- Given $n, m, f \in \Gamma_n$ and $g \in \Gamma_m$ we will say that g extends f if n < m and the set $\{g(y) : g(y) \subseteq f(x)\}$ is the set $\{g(y) : y \text{ extends } x\}$ for every $x \in \{0, 1\}^n$.
- **2** $f, g \in \Gamma$ are compatible if they are equal or if one of them extends the other.

emma

Let $\alpha \in \Lambda$ and $Y \subseteq X$. Suppose that there are a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ cofinal in α and a chain of compatible functions $f_n : \{0,1\}^n \to \mathcal{U}_{\alpha_n}(Y)$. Then, for every sequence of ordinals $(\beta_n)_{n \in \mathbb{N}}$ cofinal in α there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ and a chain of compatible functions $g_m : \{0,1\}^m \to \mathcal{U}_{\beta_{strin}}(Y)$.

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

ヘロン 人間 とくほ とくほ とう

		Main ideas	Bibliography.
Definit	ion		

- Given $n, m, f \in \Gamma_n$ and $g \in \Gamma_m$ we will say that g extends f if n < m and the set $\{g(y) : g(y) \subseteq f(x)\}$ is the set $\{g(y) : y \text{ extends } x\}$ for every $x \in \{0, 1\}^n$.
- **2** $f, g \in \Gamma$ are compatible if they are equal or if one of them extends the other.

Lemma

Let $\alpha \in \Lambda$ and $Y \subseteq X$. Suppose that there are a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ cofinal in α and a chain of compatible functions $f_n : \{0, 1\}^n \to \mathcal{U}_{\alpha_n}(Y)$. Then, for every sequence of ordinals $(\beta_n)_{n \in \mathbb{N}}$ cofinal in α there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ and a chain of compatible functions $g_m : \{0, 1\}^m \to \mathcal{U}_{\beta_{\phi(m)}}(Y)$.

<ロ> <四> <四> <四> <三< => < 三> <三< => 三三

Given $\alpha \in \Lambda$						
$Olven u \in N$						
Fix a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ and define						

 $\mathbb{C}_{\alpha}(Y)$ as the set of all chains of compatible functions $\{f_n \in \Gamma_n : n \in \mathbb{N}\}$ so that there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ satisfying that $f_n[\{0, 1\}^n] \subseteq \mathcal{U}_{\alpha_{\phi(n)}}(Y)$ for each $n \in \mathbb{N}$.

By the last lemma \mathbb{C}_{lpha} represent all the Cantor-like families in F_{lpha}

Observe that $|\mathbb{C}_{\alpha}(X)| \leq c(X)^{\omega}$

Given a chain $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(Y)$, let $f_{\{f_n:n \in \mathbb{N}\}} : \{0,1\}^{\omega} \to P(F_{\alpha})$ be the function defined by

$$f_{\{f_n:n\in\mathbb{N}\}}(x) = \left(\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \setminus int\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \right)$$

for each $x \in \{0, 1\}^{\omega}$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

<ロ> <同> <同> <同> < 同> < 同>

	Trees of open refinements		Main ideas		Bibliography.		
Giver	$n \alpha \in \Lambda$						
Fix a	Fix a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ and define						
$\mathbb{C}_{\alpha}(Y)$	as the set of all c	hains of compatib	le functions				

 $\{f_n \in \Gamma_n : n \in \mathbb{N}\}\$ so that there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ satisfying that $f_n[\{0, 1\}^n] \subseteq \mathcal{U}_{\alpha_{\phi(n)}}(Y)$ for each $n \in \mathbb{N}$.

By the last lemma \mathbb{C}_{α} represent all the Cantor-like families in F_{α}

Observe that $|\mathbb{C}_{\alpha}(X)| \leq c(X)^{\omega}$

Given a chain $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(Y)$, let $f_{\{f_n:n \in \mathbb{N}\}} : \{0,1\}^{\omega} \to P(F_{\alpha})$ be the function defined by

$$f_{\{f_n:n\in\mathbb{N}\}}(x) = \left(\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \setminus int\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \right)$$

for each $x \in \{0, 1\}^{\omega}$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

	Trees of open refinements		Main ideas		Bibliography.		
Giver	$\mathbf{n} \ \alpha \in \mathbf{\Lambda}$						
Fix a	Fix a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ and define						
$\mathbb{C}_{\alpha}(Y)$	as the set of all c	hains of compatib	le functions				

 $\{f_n \in \Gamma_n : n \in \mathbb{N}\}\$ so that there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ satisfying that $f_n[\{0,1\}^n] \subseteq \mathcal{U}_{\alpha_{\phi(n)}}(Y)$ for each $n \in \mathbb{N}$.

By the last lemma \mathbb{C}_{α} represent all the Cantor-like families in F_{α}

Observe that $|\mathbb{C}_{\alpha}(X)| \leq c(X)^{\omega}$

Given a chain $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(Y)$, let $f_{\{f_n:n \in \mathbb{N}\}} : \{0,1\}^{\omega} \to P(F_{\alpha})$ be the function defined by

$$f_{\{f_n:n\in\mathbb{N}\}}(x) = \left(\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \setminus int(\bigcap_{n\in\mathbb{N}} f_n(x|_n)) \right)$$

for each $x \in \{0, 1\}^{\omega}$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

<ロ> <同> <同> <同> < 同> < 同>

Fix a strictly increasing sequence of ordinals $(\alpha_n)_{n \in \mathbb{N}}$ and define $\mathbb{C}_{\alpha}(Y)$ as the set of all chains of compatible functions $\{f_n \in \Gamma_n : n \in \mathbb{N}\}$ so that there is a strictly increasing function $\phi : \mathbb{N} \to \mathbb{N}$ satisfying that $f_n[\{0, 1\}^n] \subseteq \mathcal{U}_{\alpha_{\phi(n)}}(Y)$ for each $n \in \mathbb{N}$.

By the last lemma \mathbb{C}_{α} represent all the Cantor-like families in F_{α}

Observe that $|\mathbb{C}_{\alpha}(X)| \leq c(X)^{\omega}$

Given a chain $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(Y)$, let $f_{\{f_n:n \in \mathbb{N}\}} : \{0,1\}^{\omega} \to P(F_{\alpha})$ be the function defined by

$$f_{\{f_n:n\in\mathbb{N}\}}(x) = \left(\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \setminus int\left(\bigcap_{n\in\mathbb{N}} f_n(x|_n)\right) \right)$$

for each $x \in \{0, 1\}^{\omega}$

Yasser F. Ortiz-Castillo and Artur H. Tomita

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

	Trees of open refinements	van Mill's construction	Main ideas	Bibliography.
Cruc	ial Facts:			

 $\{t_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(O)$, then $t_{\{t_n:n \in \mathbb{N}\}}(x) \cap cl(O) \neq \emptyset$ for every $x \in \{0,1\}^{\omega}$

Fact III

Suppose that X is pseudocompact and $c(X) \leq c$. If O is an open subset contained in $\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}$ satisfying that $\mathcal{U}_{\xi}(V) \neq \emptyset$ for every nonempty open $V \subseteq O$ and every $\xi < \alpha$, then O is resolvable (*c*-resolvable)

IME-USP

		Main ideas	Bibliography.
Cruc	cial Facts:		

Fact I

By the definition of the tree, if $x, y \in \{0, 1\}^{\omega}$, then

$$f_{\{f_n:n\in\mathbb{N}\}}(x)\cap f_{\{f_n:n\in\mathbb{N}\}}(y)=\emptyset$$
 iff $x\neq y$

Fact I

Let *X* be pseudocompact and let *O* be an open set. If $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(O)$, then $f_{\{f_n:n\in\mathbb{N}\}}(x) \cap cl(O) \neq \emptyset$ for every $x \in \{0,1\}^{\omega}$

Fact III

Suppose that *X* is pseudocompact and $c(X) \leq c$. If *O* is an open subset contained in $\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}$ satisfying that $\mathcal{U}_{\xi}(V) \neq \emptyset$ for every nonempty open $V \subseteq O$ and every $\xi < \alpha$, then *O* is resolvable (c-resolvable)

		Main ideas	Bibliography.
Cruc	cial Facts:		

Fact I

By the definition of the tree, if $x, y \in \{0, 1\}^{\omega}$, then

$$f_{\{f_n:n\in\mathbb{N}\}}(x)\cap f_{\{f_n:n\in\mathbb{N}\}}(y)=\emptyset$$
 iff $x
eq y$

Fact II

Let *X* be pseudocompact and let *O* be an open set. If $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(O)$, then $f_{\{f_n : n \in \mathbb{N}\}}(x) \cap cl(O) \neq \emptyset$ for every $x \in \{0, 1\}^{\omega}$

Fact III

Suppose that X is pseudocompact and $c(X) \leq c$. If O is an open subset contained in $\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}$ satisfying that $\mathcal{U}_{\xi}(V) \neq \emptyset$ for every nonempty open $V \subseteq O$ and every $\xi < \alpha$, then O is resolvable (*c*-resolvable)

		Main ideas	Bibliography.
Cruc	cial Facts:		

Fact I

By the definition of the tree, if $x, y \in \{0, 1\}^{\omega}$, then

$$f_{\{f_n:n\in\mathbb{N}\}}(x)\cap f_{\{f_n:n\in\mathbb{N}\}}(y)=\emptyset$$
 iff $x
eq y$

Fact II

Let *X* be pseudocompact and let *O* be an open set. If $\{f_n : n \in \mathbb{N}\} \in \mathbb{C}_{\alpha}(O)$, then $f_{\{f_n : n \in \mathbb{N}\}}(x) \cap cl(O) \neq \emptyset$ for every $x \in \{0, 1\}^{\omega}$

Fact III

Suppose that *X* is pseudocompact and $c(X) \leq c$. If *O* is an open subset contained in $\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}$ satisfying that $\mathcal{U}_{\xi}(V) \neq \emptyset$ for every nonempty open $V \subseteq O$ and every $\xi < \alpha$, then *O* is resolvable (c-resolvable)

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Introduction	Trees of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita

Main ideas

Sketch of the proof

1 Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$

- **2** by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- inally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let *Y* be the family of open subsets *V* of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, *A* is resolvable by inductive hypothesis and the complement is dense by Fact III

ヘロン イロン イモン イモン

Main ideas

Bibliography

Sketch of the proof

1 Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$

- **2** by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- If inally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, A is resolvable by inductive

hypothesis and the complement is dense by Fact III

ヘロン イロン イモン イモン

Introduction		арпу
Sk	etch of the proof	
	Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$ by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$ if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable	
Yasser F. Ortiz	イロトイロドイモト モー Castillo and Artur H. Tomita	ର

The proof

				The proof	Bibliography.	
Ske	etch of the proof					
1	Consider the dense	subspace $\bigcup_{\alpha \in \Lambda} I$	α			
2	2 by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$					
3	if $int(F_{\alpha}) \neq \emptyset$, then <i>i</i> .	$nt(F_{lpha})$ is resolvable	ble			

 $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis

Case III: Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let *Y* be the family of open subsets *V* of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then

 $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A).$ So, A is resolvable by inductive hypothesis and the complement is dense by Fact III

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

- 1 Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$
- 2 by transfinite induction on Λ with the order type will be showed that *int*(⋃_{ξ∈Λ_α} F_ξ) is resolvable when *int*(⋃_{ξ∈Λ_α} F_ξ) ≠ Ø
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- 4 finally we must consider three cases

Case I: The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, A is resolvable by inductive hypothesis and the complement is dense by Fact III

	Trees of open refinements			The proof	Bibliography.
CI/	otob of the proof				
SK	etch of the proof				
E	Consider the dense	subspace $\bigcup_{\alpha \in \Lambda} I$	Ξ _α		
2	by transfinite induction that $int(\bigcup_{\epsilon \in \Lambda} F_{\epsilon})$ is	on on Λ with the α resolvable wher	order type w	$vill \ be \ showe \ F_{\varepsilon}) eq \emptyset$	əd
3	if $int(F_{\alpha}) \neq \emptyset$, then in	$nt(F_{lpha})$ is resolvab	$\langle \mathbf{O}_{\zeta \in \Lambda_{\alpha}} \rangle$	5) /	
2	finally we must cons	ider three cases			
	Case I: The success	or case follows fi	rom the indu	ctive hypotl	nesis

hypothesis and the complement is dense by Fact III

さと くさと

Introduction	Trees of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.
Sketc	h of the proof				
1 C	Consider the dense	subspace $\bigcup_{\alpha\in\Lambda}$ /	Ξα		

- 2 by transfinite induction on Λ with the order type will be showed that int(∪_{ξ∈Λ_α} F_ξ) is resolvable when int(∪_{ξ∈Λ_α} F_ξ) ≠ Ø
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- 4 finally we must consider three cases
 Case I: The successor case follows from the inductive hypothesis
 Case II: α = sup{ξ ∈ Λ_α : ξ < α}. If int(∪_{ξ ≤ α}, F_ξ) ≠ Ø, then

 $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi}) \text{ is dense in } int(\bigcup_{\xi < \alpha} F_{\xi}). \text{ So procede by inductive hypothesis}$ **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let *Y* be the family of open subsets *V* of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, *A* is resolvable by inductive hypothesis and the complement is dense by Fact III

Introduct	n Trees of open refinements	van Mill's construction	Main ideas	The proof	Bibliography.
	Sketch of the proof				
	1 Consider the dense	e subspace $igcup_{lpha\in \Lambda}$ /	F_{α}		
	2 by transfinite induct that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$	ion on Λ with the is resolvable wher	order type who int $(igcup_{\xi\in {\sf A}_lpha})$	vill be showe $F_{\xi}ig) eq \emptyset$	ed
	3 if $int(F_{\alpha}) \neq \emptyset$, then	$int(F_{lpha})$ is resolvable	ole		
	finally we must con	sider three cases	rom tho indu	uctivo hvpotk	

Case II: $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So proceed by

Case III: Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then

 $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, A is resolvable by inductive hypothesis and the complement is dense by Fact III

Crowded pseudocompact Tychonoff spaces of cellularity at most the continuum are resolvable

- 1 Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$
- 2 by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- 4 finally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis

Case III: Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let *Y* be the family of open subsets *V* of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, *A* is resolvable by inductive hypothesis and the complement is dense by Fact III

- 1 Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$
- 2 by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- 4 finally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then

 $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, *A* is resolvable by inductive hypothesis and the complement is dense by Fact III

- **1** Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$
- 2 by transfinite induction on Λ with the order type will be showed that $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi})$ is resolvable when $int(\bigcup_{\xi \in \Lambda_{\alpha}} F_{\xi}) \neq \emptyset$
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- **4** finally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, A is resolvable by inductive hypothesis and the complement is dense by Fact III

- **1** Consider the dense subspace $\bigcup_{\alpha \in \Lambda} F_{\alpha}$
- 2 by transfinite induction on Λ with the order type will be showed that *int*(⋃_{ξ∈Λ_α} F_ξ) is resolvable when *int*(⋃_{ξ∈Λ_α} F_ξ) ≠ Ø
- **3** if $int(F_{\alpha}) \neq \emptyset$, then $int(F_{\alpha})$ is resolvable
- **4** finally we must consider three cases **Case I:** The successor case follows from the inductive hypothesis **Case II:** $\alpha = \sup\{\xi \in \Lambda_{\alpha} : \xi < \alpha\}$. If $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$, then $\bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ is dense in $int(\bigcup_{\xi < \alpha} F_{\xi})$. So procede by inductive hypothesis **Case III:** Let $A = \bigcup_{\eta < \alpha} int(\bigcup_{\xi \in \Lambda_{\eta}} F_{\xi})$ and let Y be the family of open subsets V of $int(\bigcup_{\xi < \alpha} F_{\xi}) \neq \emptyset$ such that $\mathcal{U}_{\xi}(W) \neq \emptyset$ for every open $W \subseteq V$ and every $\xi < \lambda$. Then $\bigcup Y = int(int(\bigcup_{\xi < \alpha} F_{\xi}) \setminus A)$. So, A is resolvable by inductive hypothesis and the complement is dense by Fact III

		Bibliography.
,		

1 Introduction

- 2 Trees of open refinements
- 3 The van Mill's construction
- 4 Main ideas
- 5 The proof
- 6 Bibliography.

IME-USP

		Bibliography.

- F. Casarrubias-Segura, F. Hernández-Hernández, Á. Tamariz-Mascarúa, *Martin's axiom and ω-resolvability of Baire spaces*, Comment, Math. Univ. Carol. **51** (3), (2010) 519–540.
- A. Dorantes-Aldama *Baire irresolvable spaces with countable Souslin number*, Topology Appl. **188**, (2015) 16–26.
- K. Kunen, A. Szymański and F. Tall, *Baire irresolvable spaces and ideal theory*, Ann. Math. Sil. (1986), no. 14, 98–107.
- V. I. Malykhin, *Resolvability of A-, CA- and PCA-sets in compacta*, Topology Appl. **80**, (1997), no. 1-2, 161–167.
- J. C. Oxtoby, *Cartesian products of Baire spaces*, Fundam. Math. **49** (1961), 157–166.
- O. Pavlov, On resolvability of topological spaces, Topology Appl. 126, (2002), no. 1-2, 37–47.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

		Bibliography.

Thank you.

<ロ> < 団> < 団> < 国> < 国> < 国> < 国</p>

IME-USP

Yasser F. Ortiz-Castillo and Artur H. Tomita