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Introduction

In recent years, a lot of papers have been written on statistical
convergence and ideal convergence in metric and topological spaces
(see, for instance, [14, 15, 17, 18, 19, 20, 22, 23]).

Recently, several researchers have been working on sequences of real
functions and of functions between metric spaces by using the idea of
statistical and I-convergence (see, for instance, [2, 3, 6, 7, 8, 9]).

On the other hand, classical results about sequences and nets of
functions have been extended from metric to uniform spaces (see, for
example, [5, 16, 21]).
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Introduction

In this talk, we investigate the pointwise, uniform, quasi-uniform, and
the almost uniform I-convergence for a net (fd )d∈D of functions of an
arbitrary topological space X into a uniform space Y , where I is an
ideal on D. Particularly, the continuity of the limit of the net (fd )d∈D is
studied. Since each metric space is a uniform space, the results
remain valid in the case that Y is a metric space.
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Introduction

The rest of the talk is organized as follows. Section 1 contains
preliminaries. In section 2 we give the pointwise, uniform and
quasi-uniform I-convergence for nets of functions with values in
uniform spaces. In section 3 we present a modification of the classical
result which states that equicontinuity on a compact metric space turns
pointwise to uniform convergence. In section 4 we extend the classical
result of Arzelà [1] to the quasi uniform I-convergence of nets of
functions with values in uniform spaces. Finally, the concept of almost
uniform I-convergence of a net of function with values in a uniform
space is investigated in sections 5 and 6.
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Preliminaries

Uniformity
A uniformity on a set Y is a collection U of subsets of Y × Y satisfying
the following properties:
(U1) ∆ ⊆ U, for every U ∈ U , where ∆ = {(y , y) : y ∈ Y}.
(U2) If U ∈ U , then U−1 ∈ U , where U−1 = {(y1, y2) : (y2, y1) ∈ U}.
(U3) If U ∈ U and U ⊆ V ⊆ Y × Y , then V ∈ U .
(U4) If U1,U2 ∈ U , then U1 ∩ U2 ∈ U .
(U5) For every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U, where

V ◦V = {(y1, y2) : ∃ y ∈ Y such that (y1, y) ∈ V and (y , y2) ∈ V}.
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Preliminaries

Uniform space
A uniform space is a pair (Y ,U) consisting of a set Y and a uniformity
U on the set Y . The elements of U are called entourages. An
entourage V is called symmetric if V−1 = V . For every U ∈ U and
y0 ∈ Y we use the following notation:

U[y0] = {y ∈ Y : (y0, y) ∈ U}.

Lemma
Let (Y ,U) be a uniform space and U ∈ U . Then, there exists a
symmetric entourage V ∈ U such that V ◦ V ◦ V ⊆ U.

7 / 42



Preliminaries

Uniform topology
For every uniform space (Y ,U) the uniform topology τU on Y is family
consisting of the empty set and all subsets O of Y such that for each
y ∈ O there is U ∈ U with U[y ] ⊆ O.

If (Y , ρ) is a metric space, then the collection Uρ of all U ⊆ Y × Y for
which there is ε > 0 such that

{(y1, y2) : ρ(y1, y2) < ε} ⊆ U

is a uniformity on Y which generates a uniform space with the same
topology as the topology induced by ρ.

For the special case in which Y = [0,1] and ρ(y1, y2) = |y1 − y2|, then
we call Uρ the usual uniformity for [0,1].
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Preliminaries

Lemma
Let (X ,U) be a uniform space and U ∈ U . Then, there exists a
symmetric entourage W ∈ U such that:

1 W ⊆ U.
2 W is open in the product topology τU × τU of Y × Y .

Lemma
Let (X ,U) be a uniform space and U ∈ U . Then, there exists a
symmetric entourage K ∈ U such that:

1 K ⊆ U.
2 K is closed in the product topology τU × τU of Y × Y .
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Preliminaries

Continuous mapping
A mapping f of a topological space X into a uniform space (Y ,U) is
called continuous at x0 if for each U ∈ U there exists an open
neighbourhood Ox0 of x0 such that

f (Ox0) ⊆ U[f (x0)]

or equivalently

(f (x0), f (x)) ∈ U, for every x ∈ Ox0 .

The mapping f is called continuous if it is continuous at every point of
X .
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Preliminaries

Ideal
Let D be a nonempty set. A family I of subsets of D is called an ideal
on D if I has the following properties:

1 ∅ ∈ I.
2 If A ∈ I and B ⊆ A, then B ∈ I.
3 If A,B ∈ I, then A ∪ B ∈ I.

Non-trivia Ideal
An ideal I on D is said to be non-trivial if I 6= {∅} and D /∈ I. The ideal
I is called admissible if it contains all finite subsets of D.
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Preliminaries

Directed set
A partially ordered set D is called directed if every two elements of D
have an upper bound in D.

Let (D,6) be a directed set. We consider the family

{A ⊆ D : A ⊆ {d ∈ D : d � d0} for some d0 ∈ D}.

This family is an ideal on D which will be denoted by ID.

Net

A net in the set Y X of all functions f : X → Y is an arbitrary function s
from a nonempty directed set D to Y X . If s(d) = fd , for all d ∈ D, then
the net s will be denoted by the symbol (fd )d∈D.
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Preliminaries

Semi-subnet

If (fd )d∈D is a net in Y X , then a net (gλ)λ∈Λ in Y X is said to be a
semi-subnet of (fd )d∈D if there exists a function ϕ : Λ→ D such that
gλ = fϕ(λ), for every λ ∈ Λ. We write (gλ)ϕλ∈Λ to indicate the fact that ϕ
is the function mentioned above.

Suppose that (gλ)ϕλ∈Λ is a semi-subnet of the net (fd )d∈D. For every
ideal I of the directed set D, we consider the family

{A ⊆ Λ : ϕ(A) ∈ I}.

This family is an ideal on Λ which will be denoted by IΛ(ϕ).
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Preliminaries

I-convergence
Let (fn)n∈N be a sequence of functions of a nonempty set X into a
metric space (Y , ρ), and let I be an ideal on D.

1 (fn)n∈N is said to I-pointwise converge to f on X if for every x ∈ X
and for every ε > 0 there exists A ∈ I such that for every n /∈ A we
have ρ(f (x), fn(x)) < ε.

2 (fn)n∈N is said to I-uniform converge to f on X if for every ε > 0
there exists A ∈ I such that for every x ∈ X and for every n /∈ A
we have ρ(f (x), fn(x)) < ε.
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Preliminaries

Quasi uniform convergence
A net (fd )d∈D of functions of a nonempty set X into a metric space
(Y , ρ) is said to converge quasi uniformly to f on X if it converges
pointwise to f , and for every ε > 0 and for every d0 ∈ D, there exists a
finite number of indices d1, . . . ,dk > d0 such that for each x ∈ X at
least one of the following inequalities holds:

ρ(f (x), fdi (x)) < ε, i = 1, . . . , k .
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Preliminaries

Almost uniform convergence
A net (fd )d∈D of functions of a nonempty set X into a metric space
(Y , ρ) is said to converge almost uniformly to f on X if for every x ∈ X ,
for every ε > 0, and for every d ∈ D, there exist dx > d and an open
neighbourhood Ox of x such that for every t ∈ Ox we have
ρ(f (t), fdx (t)) < ε.
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Preliminaries

Completely regular space
A topological space X is called completely regular if X is a T1-space
and for every closed subset F of X and for every point x ∈ X \ F there
exists a continuous function f : X → [0,1] such that f (x) = 0 and
f (F ) = {1}.

Locally compact space
A topological space X (not necessarily Hausdorff) is called locally
compact if for each x ∈ X there exist an open neighbourhood U of x
and a compact subset C of X such that U ⊆ C.
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Preliminaries

Pseudocompact space
A topological space X (not necessarily completely regular) is called
pseudocompact if every continuous real-valued function on X is
bounded.

A completely regular space X is pseudocompact if and only if every
locally finite collection of nonempty open subsets of X is finite.
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Basic concepts

In this section we consider a net (fd )d∈D of functions of a topological
space X into a uniform space (Y ,U), and an ideal I on D.

Pointwise I-convergence
The net (fd )d∈D is said to I-converge pointwise to f on X if for every
x ∈ X and for every U ∈ U there exists A ∈ I such that for every d /∈ A
we have (f (x), fd (x)) ∈ U. In this case we write (fd )d∈D

I−→ f . We shall
say that the net (fd )d∈D I-converges pointwise on X if there is a
function to which the net I-converges pointwise.

Proposition 2.1

If (fd )d∈D
I−→ f , then for every semi-subnet (gλ)ϕλ∈Λ of (fd )d∈D we have

(gλ)ϕλ∈Λ

IΛ(ϕ)−−−→ f .
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Basic concepts

Uniform I-convergence
The net (fd )d∈D is said to I-converge uniformly to f on X if for every
U ∈ U there exists A ∈ I such that for every x ∈ X and for every d /∈ A
we have (f (x), fd (x)) ∈ U. In this case we write (fd )d∈D

I-u−−→ f . We
shall say that the net (fd )d∈D I-converges uniformly on X if there is a
function to which the net I-converges uniformly.

Proposition 2.2

If (fd )d∈D
I-u−−→ f , then for every semi-subnet (gλ)ϕλ∈Λ of (fd )d∈D we have

(gλ)ϕλ∈Λ

IΛ(ϕ)-u−−−−−→ f .

Proposition 2.3

If (fd )d∈D
I-u−−→ f , the functions fd , d ∈ D are continuous, and the ideal I

is non-trivial, then the function f is continuous.
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Basic concepts

Quasi-uniform I-convergence
The net (fd )d∈D is said to I-converge quasi-uniformly to f on X if
(fd )d∈D

I−→ f and for every U ∈ U and for every A ∈ I \ {D}, there
exists a finite subset {d1, . . . ,dn} of D \ A such that for each x ∈ X at
least one of the following relations holds:

(f (x), fdi (x)) ∈ U, i = 1, . . . ,n.

In this case we write (fd )d∈D
I-qu−−−→ f . We shall say that the net (fd )d∈D

I-converges quasi uniformly on X if there is a function to which the net
I-converges quasi-uniformly.
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Basic concepts

Proposition 2.4

If (fd )d∈D
I−→ f and (gλ)ϕλ∈Λ

IΛ(ϕ)-qu−−−−−→ f for some semi-subnet (gλ)ϕλ∈Λ of

(fd )d∈D, where IΛ(ϕ) is a non-trivial ideal on Λ, then (fd )d∈D
I-qu−−−→ f .
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I-equicontinuity and uniform I-convergence

Equicontinuous family [16]
A family {fi : i ∈ I} of functions of a topological space X into a uniform
space (Y ,U) is called equicontinuous at a point x0 of X if for every
U ∈ U there exists an open neighbourhood Ox0 of x0 such that
(fi(x0), fi(x)) ∈ U for all i ∈ I and for all x ∈ Ox0 .

The family {fi : i ∈ I} is called equicontinuous if it is equicontinuous at
each point of X .
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I-equicontinuity and uniform I-convergence

I-equicontinuous family
Let (fd )d∈D be a net of functions of a topological space X into a
uniform space (Y ,U) and let I be a non-trivial ideal on D. The family
{fd : d ∈ D} is called I-equicontinuous at a point x0 of X if for every
U ∈ U there exist A ∈ I and an open neighbourhood Ox0 of x0 such
that (fd (x0), fd (x)) ∈ U for all d ∈ D \ A and for all x ∈ Ox0 .

The family {fd : d ∈ D} is called I-equicontinuous if it is
equicontinuous at each point of X .
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I-equicontinuity and uniform I-convergence

Theorem 3.1
Let (fd )d∈D be a net of functions of a topological space X into a
uniform space (Y ,U) and let I be a non-trivial ideal on D such that the
family {fd : d ∈ D} is I-equicontinuous. If (fd )d∈D

I−→ f , then the
function f is continuous. Moreover, the I-convergence is uniform on
every compact subset of X .

Corollary 3.1
Let (fd )d∈D be a net of functions of a topological space X into a
uniform space (Y ,U), where the family {fd : d ∈ D} is equicontinuous
and let I be a non-trivial ideal on D. If (fd )d∈D

I−→ f , then the function f
is continuous. Moreover, the I-convergence is uniform on every
compact subset of X .
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Ideal version of Arzelà’s theorem for uniform spaces

Lemma 4.1
Let f and g be two continuous functions of a topological space X into a
uniform space (Y ,U). The following statements are true:

1 The function m : X → (Y × Y , τU × τU ) defined by
m(x) = (f (x),g(x)), for every x ∈ X is continuous.

2 If W is open in the product topology τU × τU of Y × Y , then the set
{x ∈ X : (f (x),g(x)) ∈W} is open.
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Ideal version of Arzelà’s theorem for uniform spaces

Lemma 4.2
Let f be a continuous function of a topological space X into a uniform
space (Y ,U) and let x0 ∈ X .

1 The function m : X → (Y × Y , τU × τU ) defined by
m(x) = (f (x), f (x0)), for every x ∈ X is continuous.

2 If W is open in the product topology τU × τU of Y × Y , then the set
{x ∈ X : (f (x0), f (x)) ∈W} is open.
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Ideal version of Arzelà’s theorem for uniform spaces

Theorem 4.1
Let (fd )d∈D be a net of continuous functions of a topological space X
into a uniform space (Y ,U) and let I be a non-trivial ideal on D. If the
net (fd )d∈D I-converges pointwise to a continuous limit, then the
I-convergence is quasi-uniform on every compact subset of X .
Conversely, if the net (fd )d∈D I-converges quasi-uniformly on a subset
of X , then the limit is continuous on this subset.
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Ideal version of Arzelà’s theorem for uniform spaces

Corollary 4.1
On a compact topological space, the limit of a pointwise I-convergent
net (fd )d∈D of continuous functions from a topological space into a
uniform space is continuous if and only if the I-convergence is
quasi-uniform, when I is a non-trivial ideal on D.

Corollary 4.2
Let X be a compact topological space, and suppose that the net
(fd )d∈D of continuous functions of the topological space X into a
uniform space (Y ,U) I-converges pointwise to a continuous function f ,
where I is a non-trivial ideal on D. Then, f is continuous in any
topology on X in which all the functions fd , d ∈ D are continuous.
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Ideal version of Arzelà’s theorem for uniform spaces

Theorem 4.2
Let M be a dense subset of a compact topological space X , and
suppose that the net (fd )d∈D of continuous functions of X into the
uniform space (Y ,U) I-converges pointwise to a continuous limit f on
M, where I is a non-trivial ideal on D. The following statements are
true:

1 If (fd )d∈D I-converges pointwise to f on X , then every
semi-subnet (gλ)ϕλ∈Λ of (fd )d∈D IΛ(ϕ)-converges quasi-uniformly
to f on X , in the case where IΛ(ϕ) is a non-trivial ideal on Λ.

2 If every semi-subnet (gλ)ϕλ∈Λ of (fd )d∈D IΛ(ϕ)-converges
quasi-uniformly to f on M, then (fd )d∈D I-converges pointwise to f
on X .
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Almost uniform I-convergence

Almost uniform I-convergence
A net (fd )d∈D of functions of a topological space X with values in a
uniform space (Y ,U) is said to I-converge almost uniformly to f on X
if for every x ∈ X and for every U ∈ U there exist A ∈ I and an open
neighbourhood Ox of x such that for every d /∈ A and for every t ∈ Ox

we have (f (t), fd (t)) ∈ U. In this case we write (fd )d∈D
I-au−−−→ f . We

shall say that the net (fd )d∈D I-converges almost uniformly on X if
there is a function to which the net I-converges almost uniformly.
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Almost uniform I-convergence

Theorem 5.1
Let (fd )d∈D be a net of continuous functions of a topological space X
into a uniform space (Y ,U) and let I be a non-trivial ideal on D. If
(fd )d∈D

I-au−−−→ f , then the function f is continuous.

Theorem 5.2
Let (fd )d∈D be a net of functions of a topological space X into a
uniform space (Y ,U) and let I be a non-trivial ideal on D such that the
family {fd : d ∈ D} is I-equicontinuous. If (fd )d∈D

I−→ f , where the
function f is continuous, then the I-convergence is almost uniform.
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Almost uniform I-convergence

Corollary 5.1
Let (fd )d∈D be a net of functions of a topological space X into a
uniform space (Y ,U), where the family {fd : d ∈ D} is equicontinuous
and let I be a non-trivial ideal on D. If (fd )d∈D

I−→ f , where the function
f is continuous, then the I-convergence is almost uniform.
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Comparison of the uniform and almost uniform I-convergence

Proposition 6.1
Let (fd )d∈D be a net of functions from a topological space X into a
uniform space (Y ,U). If (fd )d∈D

I-u−−→ f , then (fd )d∈D
I-au−−−→ f .

Theorem 6.1
Let (fd )d∈D be a net of functions from a compact space X into a
uniform space (Y ,U) and let I be a non-trivial ideal on D. If
(fd )d∈D

I-au−−−→ f , then (fd )d∈D
I-u−−→ f .
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Comparison of the uniform and almost uniform I-convergence

Example 6.1
Let X be a completely regular non-pseudocompact space. Since X is
not pseudocompact, there exists a locally finite family F of nonempty
open sets which is not finite. Let � be a well-order in F and let α be
the order type of (F ,�). By D we denote the directed set of all ordinal
numbers less than α. Hence, the family F can be presented as
{Ud : d ∈ D}. For each d ∈ D we select a point xd ∈ Ud . Since X is
completely regular, there exists a continuous function fd : X → [0,1]
such that fd (xd ) = 0 and fd (X \ Ud ) = {1}.

Consider the function f : X → [0,1] defined by f (t) = 1, for every t ∈ X .

Let I be an admissible non-trivial ideal on D and U be the usual
uniformity for [0,1].

(fd )d∈D
I-au−−−→ f .

(fd )d∈D does not I-converge uniformly to f .
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Example 6.2
Let X be a completely regular space which is not locally compact.
Since X is not locally compact, there exists x ∈ X such that for each
open neighbourhood O of x and for each compact set C we have
O * C. Let O(x) be the family of all open neighbourhoods of x and let
C be the family of all nonempty compact subsets of X . We consider the
directed set (D,6), where D = O(x)× C and

(O1,C1) 6 (O2,C2) if and only if O2 ⊆ O1 and C1 ⊆ C2.

For each d = (O,C) ∈ D we select a point xd ∈ O \ C. Since X is
completely regular, there exists a continuous function fd : X → [0,1]
such that fd (xd ) = 0 and fd ((X \O) ∪ C) = {1}.
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Example 6.2 (cont.)
Consider the function f : X → [0,1] defined by f (t) = 1, for every t ∈ X .

Let
ID = {A ⊆ D : A ⊆ {d ∈ D : d � d0} for some d0 ∈ D}

and U be the usual uniformity for [0,1].

(fd )d∈D
ID-u−−−→ f on every compact subset of X .

(fd )d∈D does not ID-converge almost uniformly to f .
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