Ideal convergence of nets of functions with values in uniform spaces

A. C. Megaritis *

*Technological Educational Institute of Western Greece, Department of Accounting and Finance, 302 00 Messolonghi, Greece In recent years, a lot of papers have been written on statistical convergence and ideal convergence in metric and topological spaces (see, for instance, [14, 15, 17, 18, 19, 20, 22, 23]).

Recently, several researchers have been working on sequences of real functions and of functions between metric spaces by using the idea of statistical and \mathcal{I} -convergence (see, for instance, [2, 3, 6, 7, 8, 9]).

On the other hand, classical results about sequences and nets of functions have been extended from metric to uniform spaces (see, for example, [5, 16, 21]).

In this talk, we investigate the pointwise, uniform, quasi-uniform, and the almost uniform \mathcal{I} -convergence for a net $(f_d)_{d\in D}$ of functions of an arbitrary topological space X into a uniform space Y, where \mathcal{I} is an ideal on D. Particularly, the continuity of the limit of the net $(f_d)_{d\in D}$ is studied. Since each metric space is a uniform space, the results remain valid in the case that Y is a metric space. The rest of the talk is organized as follows. Section 1 contains preliminaries. In section 2 we give the pointwise, uniform and quasi-uniform \mathcal{I} -convergence for nets of functions with values in uniform spaces. In section 3 we present a modification of the classical result which states that equicontinuity on a compact metric space turns pointwise to uniform convergence. In section 4 we extend the classical result of Arzelà [1] to the quasi uniform \mathcal{I} -convergence of nets of functions with values in uniform spaces. Finally, the concept of almost uniform \mathcal{I} -convergence of a net of function with values in a uniform space is investigated in sections 5 and 6.

2 Basic concepts

2 Basic concepts

3 \mathcal{I} -equicontinuity and uniform \mathcal{I} -convergence

- 2 Basic concepts
- **3** \mathcal{I} -equicontinuity and uniform \mathcal{I} -convergence
- Ideal version of Arzelà's theorem for uniform spaces

- 2 Basic concepts
- **3** \mathcal{I} -equicontinuity and uniform \mathcal{I} -convergence
 - Ideal version of Arzelà's theorem for uniform spaces
- **5** Almost uniform \mathcal{I} -convergence

- 2 Basic concepts
- 3 \mathcal{I} -equicontinuity and uniform \mathcal{I} -convergence
- Ideal version of Arzelà's theorem for uniform spaces
- **5** Almost uniform \mathcal{I} -convergence
- **6** Comparison of the uniform and almost uniform \mathcal{I} -convergence

- 2 Basic concepts
- **3** \mathcal{I} -equicontinuity and uniform \mathcal{I} -convergence
- Ideal version of Arzelà's theorem for uniform spaces
- **5** Almost uniform \mathcal{I} -convergence
- **6** Comparison of the uniform and almost uniform \mathcal{I} -convergence

Bibliography

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (U_2) If $U \in U$, then $U^{-1} \in U$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

- (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.
- (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.
- (\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}$

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (\mathcal{U}_2) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

 (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.

 (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.

 (\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}$

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (\mathcal{U}_2) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

 (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.

 (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.

(\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}$.

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (\mathcal{U}_2) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

 (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.

 (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.

(\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}$.

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (\mathcal{U}_2) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

- (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.
- (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.

 (\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}.$

A uniformity on a set Y is a collection \mathcal{U} of subsets of $Y \times Y$ satisfying the following properties:

 $(\mathcal{U}_1) \ \Delta \subseteq U$, for every $U \in \mathcal{U}$, where $\Delta = \{(y, y) : y \in Y\}$.

 (\mathcal{U}_2) If $U \in \mathcal{U}$, then $U^{-1} \in \mathcal{U}$, where $U^{-1} = \{(y_1, y_2) : (y_2, y_1) \in U\}$.

- (\mathcal{U}_3) If $U \in \mathcal{U}$ and $U \subseteq V \subseteq Y \times Y$, then $V \in \mathcal{U}$.
- (\mathcal{U}_4) If $U_1, U_2 \in \mathcal{U}$, then $U_1 \cap U_2 \in \mathcal{U}$.
- (\mathcal{U}_5) For every $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that $V \circ V \subseteq U$, where $V \circ V = \{(y_1, y_2) : \exists y \in Y \text{ such that } (y_1, y) \in V \text{ and } (y, y_2) \in V\}.$

Uniform space

A uniform space is a pair (Y, U) consisting of a set Y and a uniformity U on the set Y. The elements of U are called entourages. An entourage V is called symmetric if $V^{-1} = V$. For every $U \in U$ and $y_0 \in Y$ we use the following notation:

$$U[y_0] = \{y \in Y : (y_0, y) \in U\}.$$

Lemma

Let (Y, U) be a uniform space and $U \in U$. Then, there exists a symmetric entourage $V \in U$ such that $V \circ V \circ V \subseteq U$.

Uniform topology

For every uniform space (Y, U) the uniform topology τ_U on Y is family consisting of the empty set and all subsets O of Y such that for each $y \in O$ there is $U \in U$ with $U[y] \subseteq O$.

If (Y, ρ) is a metric space, then the collection \mathcal{U}_{ρ} of all $U \subseteq Y \times Y$ for which there is $\varepsilon > 0$ such that

$$\{(\mathbf{y}_1,\mathbf{y}_2):\rho(\mathbf{y}_1,\mathbf{y}_2)<\varepsilon\}\subseteq U$$

is a uniformity on *Y* which generates a uniform space with the same topology as the topology induced by ρ .

For the special case in which Y = [0, 1] and $\rho(y_1, y_2) = |y_1 - y_2|$, then we call U_ρ the usual uniformity for [0, 1].

Lemma

Let (X, U) be a uniform space and $U \in U$. Then, there exists a symmetric entourage $W \in U$ such that:

 $\bigcirc W \subseteq U.$

2 *W* is open in the product topology $\tau_{\mathcal{U}} \times \tau_{\mathcal{U}}$ of $Y \times Y$.

Lemma

Let (X, U) be a uniform space and $U \in U$. Then, there exists a symmetric entourage $K \in U$ such that:

 $\bigcirc K \subseteq U.$

2 *K* is closed in the product topology $\tau_{\mathcal{U}} \times \tau_{\mathcal{U}}$ of $Y \times Y$.

Continuous mapping

A mapping *f* of a topological space *X* into a uniform space (Y, U) is called continuous at x_0 if for each $U \in U$ there exists an open neighbourhood O_{x_0} of x_0 such that

 $f(O_{x_0}) \subseteq U[f(x_0)]$

or equivalently

$$(f(x_0), f(x)) \in U$$
, for every $x \in O_{x_0}$.

The mapping f is called continuous if it is continuous at every point of X.

Let *D* be a nonempty set. A family \mathcal{I} of subsets of *D* is called an ideal on *D* if \mathcal{I} has the following properties:

• $\emptyset \in \mathcal{I}$. • If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$ • If $A \in \mathcal{I}$ then $A \sqcup B \in \mathcal{I}$

Non-trivia Ideal

Let *D* be a nonempty set. A family \mathcal{I} of subsets of *D* is called an ideal on *D* if \mathcal{I} has the following properties:

- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

Non-trivia Ideal

Let *D* be a nonempty set. A family \mathcal{I} of subsets of *D* is called an ideal on *D* if \mathcal{I} has the following properties:

- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

Non-trivia Ideal

Let *D* be a nonempty set. A family \mathcal{I} of subsets of *D* is called an ideal on *D* if \mathcal{I} has the following properties:

- 2 If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- 3 If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

Non-trivia Ideal

Directed set

A partially ordered set *D* is called directed if every two elements of *D* have an upper bound in *D*.

Let (D, \leq) be a directed set. We consider the family

 $\{A \subseteq D : A \subseteq \{d \in D : d \not\ge d_0\}$ for some $d_0 \in D\}$.

This family is an ideal on D which will be denoted by \mathcal{I}_D .

Net

A net in the set Y^X of all functions $f : X \to Y$ is an arbitrary function s from a nonempty directed set D to Y^X . If $s(d) = f_d$, for all $d \in D$, then the net s will be denoted by the symbol $(f_d)_{d \in D}$.

Semi-subnet

If $(f_d)_{d\in D}$ is a net in Y^X , then a net $(g_\lambda)_{\lambda\in\Lambda}$ in Y^X is said to be a semi-subnet of $(f_d)_{d\in D}$ if there exists a function $\varphi : \Lambda \to D$ such that $g_\lambda = f_{\varphi(\lambda)}$, for every $\lambda \in \Lambda$. We write $(g_\lambda)_{\lambda\in\Lambda}^{\varphi}$ to indicate the fact that φ is the function mentioned above.

Suppose that $(g_{\lambda})_{\lambda \in \Lambda}^{\varphi}$ is a semi-subnet of the net $(f_d)_{d \in D}$. For every ideal \mathcal{I} of the directed set D, we consider the family

$$\{\mathbf{A}\subseteq \mathbf{\Lambda}: \varphi(\mathbf{A})\in \mathcal{I}\}.$$

This family is an ideal on Λ which will be denoted by $\mathcal{I}_{\Lambda}(\varphi)$.

\mathcal{I} -convergence

Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions of a nonempty set X into a metric space (Y, ρ) , and let \mathcal{I} be an ideal on D.

- $(f_n)_{n \in \mathbb{N}}$ is said to \mathcal{I} -pointwise converge to f on X if for every $x \in X$ and for every $\varepsilon > 0$ there exists $A \in \mathcal{I}$ such that for every $n \notin A$ we have $\rho(f(x), f_n(x)) < \varepsilon$.
- (*f_n*)_{n∈ℕ} is said to *I*-uniform converge to *f* on *X* if for every ε > 0 there exists *A* ∈ *I* such that for every *x* ∈ *X* and for every *n* ∉ *A* we have ρ(*f*(*x*), *f_n*(*x*)) < ε.

Quasi uniform convergence

A net $(f_d)_{d\in D}$ of functions of a nonempty set X into a metric space (Y, ρ) is said to converge quasi uniformly to f on X if it converges pointwise to f, and for every $\varepsilon > 0$ and for every $d_0 \in D$, there exists a finite number of indices $d_1, \ldots, d_k \ge d_0$ such that for each $x \in X$ at least one of the following inequalities holds:

 $\rho(f(\mathbf{x}), f_{d_i}(\mathbf{x})) < \varepsilon, \ i = 1, \dots, k.$

Almost uniform convergence

A net $(f_d)_{d\in D}$ of functions of a nonempty set X into a metric space (Y, ρ) is said to converge almost uniformly to f on X if for every $x \in X$, for every $\varepsilon > 0$, and for every $d \in D$, there exist $d_x \ge d$ and an open neighbourhood O_x of x such that for every $t \in O_x$ we have $\rho(f(t), f_{d_x}(t)) < \varepsilon$.

Completely regular space

A topological space X is called completely regular if X is a T₁-space and for every closed subset F of X and for every point $x \in X \setminus F$ there exists a continuous function $f : X \to [0, 1]$ such that f(x) = 0 and $f(F) = \{1\}$.

Locally compact space

A topological space X (not necessarily Hausdorff) is called locally compact if for each $x \in X$ there exist an open neighbourhood U of x and a compact subset C of X such that $U \subseteq C$.

Pseudocompact space

A topological space X (not necessarily completely regular) is called pseudocompact if every continuous real-valued function on X is bounded.

A completely regular space X is pseudocompact if and only if every locally finite collection of nonempty open subsets of X is finite.

In this section we consider a net $(f_d)_{d \in D}$ of functions of a topological space *X* into a uniform space (Y, U), and an ideal \mathcal{I} on *D*.

Pointwise *I*-convergence

The net $(f_d)_{d\in D}$ is said to \mathcal{I} -converge pointwise to f on X if for every $x \in X$ and for every $U \in \mathcal{U}$ there exists $A \in \mathcal{I}$ such that for every $d \notin A$ we have $(f(x), f_d(x)) \in U$. In this case we write $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$. We shall say that the net $(f_d)_{d\in D} \mathcal{I}$ -converges pointwise on X if there is a function to which the net \mathcal{I} -converges pointwise.

Proposition 2.1

If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$, then for every semi-subnet $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi}$ of $(f_d)_{d\in D}$ we have $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi} \xrightarrow{\mathcal{I}_{\Lambda}(\varphi)} f$.

Uniform *I*-convergence

The net $(f_d)_{d\in D}$ is said to \mathcal{I} -converge uniformly to f on X if for every $U \in \mathcal{U}$ there exists $A \in \mathcal{I}$ such that for every $x \in X$ and for every $d \notin A$ we have $(f(x), f_d(x)) \in U$. In this case we write $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-u} f$. We shall say that the net $(f_d)_{d\in D} \mathcal{I}$ -converges uniformly on X if there is a function to which the net \mathcal{I} -converges uniformly.

Proposition 2.2

If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-u} f$, then for every semi-subnet $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi}$ of $(f_d)_{d\in D}$ we have $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi} \xrightarrow{\mathcal{I}_{\Lambda}(\varphi)-u} f$.

Proposition 2.3

If $(f_d)_{d\in D} \xrightarrow{\mathcal{I} \cdot u} f$, the functions f_d , $d \in D$ are continuous, and the ideal \mathcal{I} is non-trivial, then the function f is continuous.

Quasi-uniform *I*-convergence

The net $(f_d)_{d\in D}$ is said to \mathcal{I} -converge quasi-uniformly to f on X if $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$ and for every $U \in \mathcal{U}$ and for every $A \in \mathcal{I} \setminus \{D\}$, there exists a finite subset $\{d_1, \ldots, d_n\}$ of $D \setminus A$ such that for each $x \in X$ at least one of the following relations holds:

$$(f(x), f_{d_i}(x)) \in U, \ i = 1, ..., n.$$

In this case we write $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-qu} f$. We shall say that the net $(f_d)_{d\in D}$ \mathcal{I} -converges quasi uniformly on X if there is a function to which the net \mathcal{I} -converges quasi-uniformly.

Proposition 2.4

If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$ and $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi} \xrightarrow{\mathcal{I}_{\Lambda}(\varphi)^{-}qu} f$ for some semi-subnet $(g_{\lambda})_{\lambda\in\Lambda}^{\varphi}$ of $(f_d)_{d\in D}$, where $\mathcal{I}_{\Lambda}(\varphi)$ is a non-trivial ideal on Λ , then $(f_d)_{d\in D} \xrightarrow{\mathcal{I}^{-}qu} f$.

Equicontinuous family [16]

A family $\{f_i : i \in I\}$ of functions of a topological space X into a uniform space (Y, U) is called equicontinuous at a point x_0 of X if for every $U \in U$ there exists an open neighbourhood O_{x_0} of x_0 such that $(f_i(x_0), f_i(x)) \in U$ for all $i \in I$ and for all $x \in O_{x_0}$.

The family $\{f_i : i \in I\}$ is called equicontinuous if it is equicontinuous at each point of *X*.

*I***-equicontinuous family**

Let $(f_d)_{d\in D}$ be a net of functions of a topological space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D. The family $\{f_d : d \in D\}$ is called \mathcal{I} -equicontinuous at a point x_0 of X if for every $U \in U$ there exist $A \in \mathcal{I}$ and an open neighbourhood O_{x_0} of x_0 such that $(f_d(x_0), f_d(x)) \in U$ for all $d \in D \setminus A$ and for all $x \in O_{x_0}$.

The family $\{f_d : d \in D\}$ is called \mathcal{I} -equicontinuous if it is equicontinuous at each point of X.

Theorem 3.1

Let $(f_d)_{d\in D}$ be a net of functions of a topological space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D such that the family $\{f_d : d \in D\}$ is \mathcal{I} -equicontinuous. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$, then the function f is continuous. Moreover, the \mathcal{I} -convergence is uniform on every compact subset of X.

Corollary 3.1

Let $(f_d)_{d\in D}$ be a net of functions of a topological space X into a uniform space (Y, U), where the family $\{f_d : d \in D\}$ is equicontinuous and let \mathcal{I} be a non-trivial ideal on D. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$, then the function f is continuous. Moreover, the \mathcal{I} -convergence is uniform on every compact subset of X.

Lemma 4.1

Let *f* and *g* be two continuous functions of a topological space X into a uniform space (Y, U). The following statements are true:

- The function $m: X \to (Y \times Y, \tau_{\mathcal{U}} \times \tau_{\mathcal{U}})$ defined by m(x) = (f(x), g(x)), for every $x \in X$ is continuous.
- ② If *W* is open in the product topology $\tau_{\mathcal{U}} \times \tau_{\mathcal{U}}$ of *Y* × *Y*, then the set {*x* ∈ *X* : (*f*(*x*), *g*(*x*)) ∈ *W*} is open.

Lemma 4.2

Let *f* be a continuous function of a topological space *X* into a uniform space (Y, U) and let $x_0 \in X$.

- The function $m: X \to (Y \times Y, \tau_{\mathcal{U}} \times \tau_{\mathcal{U}})$ defined by $m(x) = (f(x), f(x_0))$, for every $x \in X$ is continuous.
- ② If *W* is open in the product topology $\tau_{\mathcal{U}} \times \tau_{\mathcal{U}}$ of *Y* × *Y*, then the set {*x* ∈ *X* : (*f*(*x*₀), *f*(*x*)) ∈ *W*} is open.

Theorem 4.1

Let $(f_d)_{d\in D}$ be a net of continuous functions of a topological space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D. If the net $(f_d)_{d\in D} \mathcal{I}$ -converges pointwise to a continuous limit, then the \mathcal{I} -convergence is quasi-uniform on every compact subset of X. Conversely, if the net $(f_d)_{d\in D} \mathcal{I}$ -converges quasi-uniformly on a subset of X, then the limit is continuous on this subset.

Corollary 4.1

On a compact topological space, the limit of a pointwise \mathcal{I} -convergent net $(f_d)_{d\in D}$ of continuous functions from a topological space into a uniform space is continuous if and only if the \mathcal{I} -convergence is quasi-uniform, when \mathcal{I} is a non-trivial ideal on D.

Corollary 4.2

Let *X* be a compact topological space, and suppose that the net $(f_d)_{d\in D}$ of continuous functions of the topological space *X* into a uniform space (Y, U) \mathcal{I} -converges pointwise to a continuous function *f*, where \mathcal{I} is a non-trivial ideal on *D*. Then, *f* is continuous in any topology on *X* in which all the functions f_d , $d \in D$ are continuous.

Theorem 4.2

Let *M* be a dense subset of a compact topological space *X*, and suppose that the net $(f_d)_{d \in D}$ of continuous functions of *X* into the uniform space (Y, U) *I*-converges pointwise to a continuous limit *f* on *M*, where *I* is a non-trivial ideal on *D*. The following statements are true:

- If $(f_d)_{d\in D} \mathcal{I}$ -converges pointwise to f on X, then every semi-subnet $(g_\lambda)_{\lambda\in\Lambda}^{\varphi}$ of $(f_d)_{d\in D} \mathcal{I}_{\Lambda}(\varphi)$ -converges quasi-uniformly to f on X, in the case where $\mathcal{I}_{\Lambda}(\varphi)$ is a non-trivial ideal on Λ .
- If every semi-subnet (g_λ)^φ_{λ∈Λ} of (f_d)_{d∈D} I_Λ(φ)-converges quasi-uniformly to f on M, then (f_d)_{d∈D} I-converges pointwise to f on X.

Almost uniform *I*-convergence

A net $(f_d)_{d\in D}$ of functions of a topological space X with values in a uniform space (Y, U) is said to \mathcal{I} -converge almost uniformly to f on Xif for every $x \in X$ and for every $U \in U$ there exist $A \in \mathcal{I}$ and an open neighbourhood O_x of x such that for every $d \notin A$ and for every $t \in O_x$ we have $(f(t), f_d(t)) \in U$. In this case we write $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-au} f$. We shall say that the net $(f_d)_{d\in D} \mathcal{I}$ -converges almost uniformly on X if there is a function to which the net \mathcal{I} -converges almost uniformly.

Theorem 5.1

Let $(f_d)_{d\in D}$ be a net of continuous functions of a topological space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-au} f$, then the function f is continuous.

Theorem 5.2

Let $(f_d)_{d\in D}$ be a net of functions of a topological space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D such that the family $\{f_d : d \in D\}$ is \mathcal{I} -equicontinuous. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$, where the function f is continuous, then the \mathcal{I} -convergence is almost uniform.

Corollary 5.1

Let $(f_d)_{d\in D}$ be a net of functions of a topological space X into a uniform space (Y, U), where the family $\{f_d : d \in D\}$ is equicontinuous and let \mathcal{I} be a non-trivial ideal on D. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}} f$, where the function f is continuous, then the \mathcal{I} -convergence is almost uniform.

Proposition 6.1

Let $(f_d)_{d\in D}$ be a net of functions from a topological space X into a uniform space (Y, U). If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-u} f$, then $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-au} f$.

Theorem 6.1

Let $(f_d)_{d\in D}$ be a net of functions from a compact space X into a uniform space (Y, U) and let \mathcal{I} be a non-trivial ideal on D. If $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-au} f$, then $(f_d)_{d\in D} \xrightarrow{\mathcal{I}-u} f$.

Example 6.1

Let *X* be a completely regular non-pseudocompact space. Since *X* is not pseudocompact, there exists a locally finite family \mathcal{F} of nonempty open sets which is not finite. Let \leq be a well-order in \mathcal{F} and let α be the order type of (\mathcal{F}, \leq) . By *D* we denote the directed set of all ordinal numbers less than α . Hence, the family \mathcal{F} can be presented as $\{U_d : d \in D\}$. For each $d \in D$ we select a point $x_d \in U_d$. Since *X* is completely regular, there exists a continuous function $f_d : X \to [0, 1]$ such that $f_d(x_d) = 0$ and $f_d(X \setminus U_d) = \{1\}$.

Consider the function $f : X \rightarrow [0, 1]$ defined by f(t) = 1, for every $t \in X$.

Let \mathcal{I} be an admissible non-trivial ideal on D and \mathcal{U} be the usual uniformity for [0, 1].

•
$$(f_d)_{d\in D} \xrightarrow{\mathcal{I}\text{-}au} f.$$

• $(f_d)_{d \in D}$ does not \mathcal{I} -converge uniformly to f.

Example 6.2

Let *X* be a completely regular space which is not locally compact. Since *X* is not locally compact, there exists $x \in X$ such that for each open neighbourhood *O* of *x* and for each compact set *C* we have $O \nsubseteq C$. Let $\mathcal{O}(x)$ be the family of all open neighbourhoods of *x* and let *C* be the family of all nonempty compact subsets of *X*. We consider the directed set (D, \leq) , where $D = \mathcal{O}(x) \times C$ and

 $(O_1, C_1) \leqslant (O_2, C_2)$ if and only if $O_2 \subseteq O_1$ and $C_1 \subseteq C_2$.

For each $d = (O, C) \in D$ we select a point $x_d \in O \setminus C$. Since X is completely regular, there exists a continuous function $f_d : X \to [0, 1]$ such that $f_d(x_d) = 0$ and $f_d((X \setminus O) \cup C) = \{1\}$.

Example 6.2 (cont.)

Consider the function $f : X \rightarrow [0, 1]$ defined by f(t) = 1, for every $t \in X$.

Let

 $\mathcal{I}_D = \{ A \subseteq D : A \subseteq \{ d \in D : d \gneqq d_0 \} \text{ for some } d_0 \in D \}$

and \mathcal{U} be the usual uniformity for [0, 1].

- $(f_d)_{d \in D} \xrightarrow{\mathcal{I}_D \cdot u} f$ on every compact subset of *X*.
- $(f_d)_{d \in D}$ does not \mathcal{I}_D -converge almost uniformly to f.

- [1] C. Arzelà, Intorno alla continuità della somma d'infinità di funzioni continue. Rend. dell'Accad. di Bologna (1883-1884) pp. 79–84.
- [2] E. Athanassiadou, A. Boccuto, X. Dimitriou, N. Papanastassiou, Ascoli-type theorems and ideal (α)-convergence. Filomat 26 (2012), no. 2, 397–405.
- [3] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl. 328 (2007), no. 1, 715–729.
- [4] R. G. Bartle, On compactness in functional analysis. Trans. Amer. Math. Soc. 79 (1955), 35–57.
- [5] T. Bînzar, On some convergences for nets of functions with values in generalized uniform spaces. Novi Sad J. Math. 39 (2009), no. 1, 69–80.

- [6] A. Caserta, G. Di Maio, L. Holá, Arzelà's theorem and strong uniform convergence on bornologies. J. Math. Anal. Appl. 371 (2010), no. 1, 384–392.
- [7] A. Caserta, G. Di Maio, L. D. R. Kočinac, Statistical convergence in function spaces. Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
- [8] A. Caserta, L. D. R. Kočinac, On statistical exhaustiveness. Appl. Math. Lett. 25 (2012), no. 10, 1447–1451.
- [9] P. Das, S. Dutta, On some types of convergence of sequences of functions in ideal context. Filomat 27 (2013), no. 1, 157–164.
- [10] R. Drozdowski, J. Jędrzejewski, A. Sochaczewska, On the almost uniform convergence. Pr. Nauk. Akad. Jana Dlugosza Czest. Mat. 18 (2013), 11–17.

- [11] R. Engelking, General topology. Translated from the Polish by the author. Second edition. Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.
- [12] J. Ewert, Almost uniform convergence. Period. Math. Hungar. 26 (1993), no. 1, 77–84.
- [13] J. Ewert, Generalized uniform spaces and almost uniform convergence. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 42(90) (1999), no. 4, 315–329.
- [14] H. Fast, Sur la convergence statistique. (French) Colloquium Math. 2 (1951), 241–244.
- [15] J. A. Fridy, On statistical convergence. Analysis 5 (1985), no. 4, 301–313.

Bibliography 4

- [16] J. L. Kelley, General topology. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin, 1975. xiv+298 pp.
- [17] P. Kostyrko, T. Šalát, W. Wilczyński, *I*-convergence. Real Anal. Exchange 26 (2000/01), no. 2, 669–685.
- [18] B. K. Lahiri, P. Das, *I* and *I**-convergence in topological spaces. Math. Bohem. 130 (2005), no. 2, 153–160.
- [19] B. K. Lahiri, P. Das, *I* and *I**-convergence of nets. Real Anal. Exchange 33 (2008), no. 2, 431–442.
- [20] G. Di Maio, L. D. R. Kočinac, Statistical convergence in topology. Topology Appl. 156 (2008), no. 1, 28–45.
- [21] M. Marjanović, A note on uniform convergence. Publ. Inst. Math. (Beograd) (N.S.) 1 (15) (1962), 109–110.

- [22] T. Šalát, On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), no. 2, 139–150.
- [23] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [24] S. Willard, General topology. Reprint of the 1970 original. Dover Publications, Inc., Mineola, NY, 2004. xii+369 pp.