Resolvable-measurable mappings of metrizable spaces

Sergey Medvedev

TOPOSYM 2016 Prague, 25 – 27 July 2016 A subset E of a space X is *resolvable* if it can be represented in the following form:

$$E = (F_1 \setminus F_2) \cup (F_3 \setminus F_4) \cup \ldots \cup (F_{\xi} \setminus F_{\xi+1}) \cup \ldots,$$

where $\langle F_{\xi} \rangle$ forms a decreasing transfinite sequence of closed sets in *X*.

Notice that every resolvable subset of a metrizable space X is a Δ_2^0 -set, i.e., a set that is both F_{σ} and G_{δ} in X.

A mapping $f: X \to Y$ is said to be

- resolvable-measurable if f⁻¹(U) is a resolvable subset of X for every open set U ⊂ Y;
- Δ_2^0 -measurable if $f^{-1}(U) \in \Delta_2^0(X)$ for every open set $U \subset Y$;
- G_δ-measurable if f⁻¹(U) ∈ G_δ(X) for every open set U ⊂ Y;
- countably continuous if X has a countable cover C such that the restriction f ↾ C is continuous for every C ∈ C;
- piecewise continuous if X has a countable closed cover C such that the restriction f ↾ C is continuous for every C ∈ C.

Decomposition of a mapping $f: X \to Y$ into a countable sum of continuous mappings was studied in many works. The first significant result is the following

Theorem 1.[J.E. Jayne, C.A. Rogers (1982)]

Let $f: X \to Y$ be a mapping of an absolute Souslin- \mathcal{F} set X to a metric space Y. Then f is Δ_2^0 -measurable if and only if it is piecewise continuous.

Kačena, Motto Ros, and Semmes (2012) showed that Theorem 1 holds for a regular space Y.

Theorem 2. [J. Pawlikowski, M. Sabok (2012)]

Let $f: X \to Y$ be a Borel function from an analytic space X to a separable metrizable space Y.

Then either f is countably continuous, or else there is topological embedding of the Pawlikowski function P into f.

Theorem 3. [A.V. Ostrovsky, 2016]

Let X and Y be separable zero-dimensional metrizable spaces. Then every resolvable-measurable mapping $f: X \to Y$ is countably continuous.

1 Theorem 4.

Every resolvable-measurable mapping $f: X \to Y$ of a metrizable space X to a regular space Y is piecewise continuous.

1 Theorem 4.

Every resolvable-measurable mapping $f: X \to Y$ of a metrizable space X to a regular space Y is piecewise continuous.

2 Corollary 5.

Let $f: X \to Y$ be a bijection between metrizable spaces X and Y such that f and f^{-1} are both resolvable-measurable mappings. Then:

1) dim $X = \dim Y$;

2) X is an absolute F_{σ} -set \Leftrightarrow Y is an absolute F_{σ} -set.

Definition

A space X is completely Baire (or hereditarily Baire) if every closed subset of X is a Baire space.

Lemma 6.

For a metrizable space X the following conditions are equivalent:

- (i) no closed subspace of X is homeomorphic to the space \mathbb{Q} of rational numbers,
- (ii) X is a completely Baire space,
- (iii) the family of $\Delta_2^0(X)$ -sets coincides with the family of resolvable sets in X.

Theorem 7.

Let $f: X \to Y$ be a mapping of a metrizable completely Baire space X to a regular space Y. Then the following conditions are equivalent:

- (i) f is resolvable-measurable;
- (ii) *f* is piecewise continuous;
- (iii) f is G_{δ} -measurable.

Equivalence (ii) \Leftrightarrow (iii) was obtained by T. Banakh and B. Bokalo (2010).

The following statement shows that in the study of F_{σ} -measurable mappings sometimes it suffices to consider separable spaces.

Theorem 8.

Let $f: X \to Y$ be an F_{σ} -measurable mapping of a metrizable completely Baire space X to a regular space Y. If the restriction $f \upharpoonright Z$ is piecewise continuous for any zero-dimensional separable closed subset Z of X, then f is piecewise continuous. J.E. Jayne and C.A. Rogers, *First level Borel functions and isomorphisms*, J. Math. pures et appl., 61 (1982), 177–205.
T. Banakh and B. Bokalo, *On scatteredly continuous maps between topological spaces*, Topol. Applic., 157 (2010), 108–122.
M. Kačena, L. Motto Ros, and B. Semmes, *Some observations on "A new proof of a theorem of Jayne and Rogers"*, Real Analysis Exchange, 38 (2012/2013), no. 1, 121–132.
A. Ostrovsky, *Luzin's topological problem*, preprint,2016.

5) J. Pawlikowski and M. Sabok, *Decomposing Borel functions and structure at finite levels of the Baire hierarchy*, Annals of Pure and Applied Logic, 163 (2012) 1784–1764.