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Definition

A subset E of a space X is resolvable if it can be represented in
the following form:

E = (F1 \ F2) ∪ (F3 \ F4) ∪ . . . ∪ (Fξ \ Fξ+1) ∪ . . . ,

where 〈Fξ〉 forms a decreasing transfinite sequence of closed sets in
X .
Notice that every resolvable subset of a metrizable space X is a
∆0

2-set, i.e., a set that is both Fσ and Gδ in X .
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Definitions

A mapping f : X → Y is said to be

• resolvable-measurable if f −1(U) is a resolvable subset of X for
every open set U ⊂ Y ;

• ∆0
2-measurable if f −1(U) ∈ ∆0

2(X ) for every open set U ⊂ Y ;

• Gδ-measurable if f −1(U) ∈ Gδ(X ) for every open set U ⊂ Y ;

• countably continuous if X has a countable cover C such that the
restriction f � C is continuous for every C ∈ C;

• piecewise continuous if X has a countable closed cover C such
that the restriction f � C is continuous for every C ∈ C.
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Historical notes

Decomposition of a mapping f : X → Y into a countable sum of
continuous mappings was studied in many works. The first
significant result is the following

Theorem 1.[J.E. Jayne, C.A. Rogers (1982)]

Let f : X → Y be a mapping of an absolute Souslin-F set X to a
metric space Y .
Then f is ∆0

2-measurable if and only if it is piecewise continuous.

Kačena, Motto Ros, and Semmes (2012) showed that Theorem 1
holds for a regular space Y .
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Historical notes

Theorem 2. [J. Pawlikowski, M. Sabok (2012)]

Let f : X → Y be a Borel function from an analytic space X to a
separable metrizable space Y .
Then either f is countably continuous, or else there is topological
embedding of the Pawlikowski function P into f .

Theorem 3. [A.V. Ostrovsky, 2016]

Let X and Y be separable zero-dimensional metrizable spaces.
Then every resolvable-measurable mapping f : X → Y is countably
continuous.
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The main result

1 Theorem 4.

Every resolvable-measurable mapping f : X → Y of a metrizable
space X to a regular space Y is piecewise continuous.

2 Corollary 5.

Let f : X → Y be a bijection between metrizable spaces X and Y
such that f and f −1 are both resolvable-measurable mappings.
Then:
1) dimX = dimY ;
2) X is an absolute Fσ-set ⇔ Y is an absolute Fσ-set.
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Completely Baire space

Definition

A space X is completely Baire (or hereditarily Baire) if every
closed subset of X is a Baire space.

Lemma 6.

For a metrizable space X the following conditions are equivalent:

(i) no closed subspace of X is homeomorphic to the space Q of
rational numbers,

(ii) X is a completely Baire space,

(iii) the family of ∆0
2(X )-sets coincides with the family of

resolvable sets in X .
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Completely Baire space

Theorem 7.

Let f : X → Y be a mapping of a metrizable completely Baire
space X to a regular space Y . Then the following conditions are
equivalent:

(i) f is resolvable-measurable;

(ii) f is piecewise continuous;

(iii) f is Gδ-measurable.

Equivalence (ii) ⇔ (iii) was obtained by T. Banakh and B. Bokalo
(2010).
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Completely Baire space

The following statement shows that in the study of Fσ-measurable
mappings sometimes it suffices to consider separable spaces.

Theorem 8.

Let f : X → Y be an Fσ-measurable mapping of a metrizable
completely Baire space X to a regular space Y . If the restriction
f � Z is piecewise continuous for any zero-dimensional separable
closed subset Z of X , then f is piecewise continuous.
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