Turning ternary relations into antisymmetric betweenness relations

Jorge Bruno, Aisling McCluskey, Paul Szeptycki
University of Bath, NUI Galway, York University Toronto

TOPOSYM 2016

NUI Galway OÉ Gaillimh

The concept of betweenness

- Given a linearly ordered set (X, \leqslant), with $a, b, c \in X$, we say that b is between a and c if either $a \leqslant b \leqslant c$ or $c \leqslant b \leqslant a$.

The concept of betweenness

- Given a linearly ordered set (X, \leqslant), with $a, b, c \in X$, we say that b is between a and c if either $a \leqslant b \leqslant c$ or $c \leqslant b \leqslant a$.

The concept of betweenness

- Given a linearly ordered set (X, \leqslant), with $a, b, c \in X$, we say that b is between a and c if either $a \leqslant b \leqslant c$ or $c \leqslant b \leqslant a$.
- Natural to regard such a relation as a ternary predicate $[a, b, c]$, where $(a, b, c) \in X^{3}$.

The concept of betweenness

- Given a linearly ordered set (X, \leqslant), with $a, b, c \in X$, we say that b is between a and c if either $a \leqslant b \leqslant c$ or $c \leqslant b \leqslant a$.
- Natural to regard such a relation as a ternary predicate $[a, b, c]$, where $(a, b, c) \in X^{3}$.
- Birkhoff (1948) defined the betweenness relation $[\cdot, \cdot, \cdot]_{o}$ on a partially ordered set (X, \leqslant) as an extension of that given above.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leqslant) with $d \leqslant e \in X$, define the order interval $[d, e]_{o}=\{x \in X: d \leqslant x \leqslant e\}$.

- If each pair of elements in X has a common lower bound and a common upper bound in X, then say that $[a, b, c]_{o}$ if b belongs to each order interval that also contains a and c.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leqslant) with $d \leqslant e \in X$, define the order interval $[d, e]_{o}=\{x \in X: d \leqslant x \leqslant e\}$.

- If each pair of elements in X has a common lower bound and a common upper bound in X, then say that $[a, b, c]_{0}$ if b belongs to each order interval that also contains a and c.
- Now $[a, a, b]_{\circ}$ and $[a, b, b]_{o}$ for any a, b in X.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leqslant) with $d \leqslant e \in X$, define the order interval $[d, e]_{o}=\{x \in X: d \leqslant x \leqslant e\}$.

- If each pair of elements in X has a common lower bound and a common upper bound in X, then say that $[a, b, c]_{0}$ if b belongs to each order interval that also contains a and c.
- Now $[a, a, b]_{\circ}$ and $[a, b, b]_{o}$ for any a, b in X.

Beyond partial orders

- Vector space X over \mathbb{R} with $a, b \in X$: define $[a, c, b]$ if c is a convex combination of a and b.

Beyond partial orders

- Vector space X over \mathbb{R} with $a, b \in X$: define $[a, c, b]$ if c is a convex combination of a and b.
- Metric space (X, d) (1928): define $[a, c, b]_{M}$ if $d(a, c)+d(c, b)=d(a, b)$.

Beyond partial orders

- Vector space X over \mathbb{R} with $a, b \in X$: define $[a, c, b]$ if c is a convex combination of a and b.
- Metric space $(X, d)(1928)$: define $[a, c, b]_{M}$ if $d(a, c)+d(c, b)=d(a, b)$.
- Natural alliance between intervals $[a, b]$ and ternary predicates $[a, c, b]$, in that we intend $c \in[a, b]$ iff $[a, c, b]$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.
Define a ternary relation to be an R-relation if it satisfies conditions R1 - R4.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.
Define a ternary relation to be an R-relation if it satisfies conditions R1 - R4.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.
Define a ternary relation to be an R-relation if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1}=(\{1\},\{(1,1,1)\})$.

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.
Define a ternary relation to be an R-relation if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1}=(\{1\},\{(1,1,1)\})$.

For any set X, the smallest R -relation on it is $X_{\perp}:=\{[a, b, b],[b, b, a] \mid a, b \in X\}$,

Characteristics of betweenness

(R1) Reflexivity: $[a, b, b]$.
(R2) Symmetry: $[a, x, b] \Longrightarrow[b, x, a]$.
(R3) Minimality: $[a, b, a] \Longrightarrow b=a$.
(R4) Transitivity: $([a, x, c] \wedge[a, y, c]) \wedge[x, b, y]) \Longrightarrow[a, b, c]$.
Define a ternary relation to be an R-relation if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1}=(\{1\},\{(1,1,1)\})$.

For any set X, the smallest R -relation on it is $X_{\perp}:=\{[a, b, b],[b, b, a] \mid a, b \in X\}$,
while the largest is $X_{\top}:=X^{3} \backslash\{[a, b, a] \mid a \neq b\}$.

Bankston's insight: road systems

Definition
A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (roads) of X such that
(i) $\{a\} \in \mathcal{R}$ for all $a \in X$,
(ii) for all $a, b \in X$, there is $R \in \mathcal{R}$ such that $a, b \in R$.

Bankston's insight: road systems

Definition
A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (roads) of X such that
(i) $\{a\} \in \mathcal{R}$ for all $a \in X$,
(ii) for all $a, b \in X$, there is $R \in \mathcal{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:

Bankston's insight: road systems

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (roads) of X such that
(i) $\{a\} \in \mathcal{R}$ for all $a \in X$,
(ii) for all $a, b \in X$, there is $R \in \mathcal{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:
$[a, b, c]_{\mathcal{R}}$ holds if each road R containing a and c also contains b.

Bankston's insight: road systems

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (roads) of X such that
(i) $\{a\} \in \mathcal{R}$ for all $a \in X$,
(ii) for all $a, b \in X$, there is $R \in \mathcal{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:
$[a, b, c]_{\mathcal{R}}$ holds if each road R containing a and c also contains b.
Define $[a, c]_{\mathcal{R}}=\cap\{R \in \mathcal{R}: a, c \in R\}$.

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Consider now two antipodal points a and c on \mathbb{S}^{1};

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Consider now two antipodal points a and c on \mathbb{S}^{1}; then $[a, c]_{M}=\mathbb{S}^{1}$

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Consider now two antipodal points a and c on \mathbb{S}^{1}; then $[a, c]_{M}=\mathbb{S}^{1}$ while for any third point b on $\mathbb{S}^{1},[a, b]_{M} \cup[b, c]_{M}$ is a proper subset of \mathbb{S}^{1}.

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Consider now two antipodal points a and c on \mathbb{S}^{1}; then $[a, c]_{M}=\mathbb{S}^{1}$ while for any third point b on $\mathbb{S}^{1},[a, b]_{M} \cup[b, c]_{M}$ is a proper subset of \mathbb{S}^{1}.

Example

In a metric space (X, d), a natural road system is
$\mathcal{R}=\left\{[a, b]_{M}: a, b \in X\right\}$.

So for the unit circle \mathbb{S}^{1} with $a, b \in \mathbb{S}^{1}$, define a metric d on \mathbb{S}^{1} as follows: $d(a, b)=$ shortest arc distance between a and b.

Consider now two antipodal points a and c on \mathbb{S}^{1}; then $[a, c]_{M}=\mathbb{S}^{1}$ while for any third point b on $\mathbb{S}^{1},[a, b]_{M} \cup[b, c]_{M}$ is a proper subset of \mathbb{S}^{1}.

A road system characterization of betweenness

Theorem (Bankston, 2011)
A ternary relation $[\cdot, \cdot, \cdot]$ on a set X can be generated from a road system if and only if $[\cdot, \cdot, \cdot]$ is an R-relation.

A road system characterization of betweenness

Theorem (Bankston, 2011)
A ternary relation $[\cdot, \cdot, \cdot]$ on a set X can be generated from a road system if and only if $[\cdot, \cdot, \cdot]$ is an R-relation.

Antisymmetric R-relations

A road system \mathcal{R} is separative if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$.

Antisymmetric R-relations

A road system \mathcal{R} is separative if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

$$
\text { Antisymmetry: }[a, b, c] \wedge[a, c, b] \Longrightarrow b=c
$$

Antisymmetric R-relations

A road system \mathcal{R} is separative if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.
Theorem
A road system is separative if and only if its associated R-relation is antisymmetric.

Antisymmetric R-relations

A road system \mathcal{R} is separative if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.
Theorem
A road system is separative if and only if its associated R-relation is antisymmetric.

A category \mathbf{T} of ternary relations

Let \mathbf{T} denote the category whose objects are sets endowed with ternary relations and whose morphisms are

A category \mathbf{T} of ternary relations

Let \mathbf{T} denote the category whose objects are sets endowed with ternary relations and whose morphisms are
monotone functions: for objects $\left(X,[\cdot, \cdot, \cdot]_{X}\right)$ and $\left(Y,[\cdot, \cdot, \cdot]_{Y}\right)$ then $f: X \rightarrow Y$ is a morphism provided $[a, b, c]_{X} \Rightarrow[f(a), f(b), f(c)]_{Y}$.

Some notation and definitions

An R_{1}-relation (resp. R_{2}-relation, R_{3}-relation, R_{4}-relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

Some notation and definitions

An R_{1}-relation (resp. R_{2}-relation, R_{3}-relation, R_{4}-relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

Define \mathbf{R} to be the full subcategory of \mathbf{T} of all R-relations.

Some notation and definitions

An R_{1}-relation (resp. R_{2}-relation, R_{3}-relation, R_{4}-relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

Define \mathbf{R} to be the full subcategory of \mathbf{T} of all R-relations.

The inclusion functor $\mathbf{R}_{\mathbf{1}} \hookrightarrow \mathbf{T}$

(R1) Reflexivity: $[a, b, b]$
The left adjoint is given by $(X,[\cdot, \cdot, \cdot]) \mapsto\left(X,[\cdot, \cdot, \cdot]^{\prime}\right)$ where

$$
[\cdot, \cdot, \cdot]^{\prime}=[\cdot, \cdot, \cdot] \cup\{[a, b, b] \in[\cdot, \cdot, \cdot] \mid a, b \in X\} .
$$

Denote by L_{1}.

The inclusion functor $\mathbf{R}_{\mathbf{2}} \hookrightarrow \mathbf{T}$

(R2) Symmetry: $[a, b, c] \Rightarrow[c, b, a]$

The inclusion functor $\mathbf{R}_{2} \hookrightarrow \mathbf{T}$

(R2) Symmetry: $[a, b, c] \Rightarrow[c, b, a]$
The left adjoint is given by $(X,[\cdot, \cdot, \cdot]) \mapsto\left(X,[\cdot, \cdot, \cdot]^{\prime}\right)$ with

$$
[\cdot, \cdot, \cdot]^{\prime}=[\cdot, \cdot, \cdot] \cup\{(c, b, a) \in[\cdot, \cdot, \cdot] \mid(a, b, c) \in[\cdot, \cdot, \cdot]\}
$$

Denote by L_{2}.

The inclusion functor $\mathbf{R}_{2} \hookrightarrow \mathbf{T}$

(R2) Symmetry: $[a, b, c] \Rightarrow[c, b, a]$
The right adjoint is given by $(X,[\cdot, \cdot, \cdot]) \mapsto\left(X,[\cdot, \cdot,]^{\prime}\right)$ where

$$
[\cdot, \cdot, \cdot]^{\prime}=[\cdot, \cdot, \cdot] \backslash\{(a, b, c) \in[\cdot, \cdot, \cdot] \mid(c, b, a) \notin[\cdot, \cdot, \cdot]\}
$$

The inclusion functor $\mathbf{R}_{\mathbf{3}} \hookrightarrow \mathbf{T}$
(R3) Minimality: $[a, b, a] \Rightarrow a=b$

The inclusion functor $\mathbf{R}_{\mathbf{3}} \hookrightarrow \mathbf{T}$

(R3) Minimality: $[a, b, a] \Rightarrow a=b$
The left adjoint exists - and is more involved. Call it L_{3}.

The inclusion functor $\mathbf{R}_{4} \hookrightarrow \mathbf{T}$

(R4) Transitivity: $[a, b, c] \wedge[a, d, c] \wedge[b, x, d] \Rightarrow[a, x, c]$
Has a left adjoint - call it L_{4}.

Adjoints as operators

Notice that the compositions $L_{1} \circ L_{2}$ and $L_{2} \circ L_{1}$ are not the same. The operator L_{2} (closure under symmetry) does not preserve R1 (reflexivity).

Adjoints as operators

Notice that the compositions $L_{1} \circ L_{2}$ and $L_{2} \circ L_{1}$ are not the same. The operator L_{2} (closure under symmetry) does not preserve R1 (reflexivity).

A less trivial example is given by L_{3} and L_{4}.

Adjoints as operators

Notice that the compositions $L_{1} \circ L_{2}$ and $L_{2} \circ L_{1}$ are not the same. The operator L_{2} (closure under symmetry) does not preserve R1 (reflexivity).

A less trivial example is given by L_{3} and L_{4}.
In fact, $L_{4} \circ L_{3} \circ L_{1} \circ L_{2}$ defines the left adjoint to $\mathbf{R} \hookrightarrow \mathbf{T}$.

The subcategory \mathbf{A} of antisymmetric R-relations

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.

Question: does the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{R}$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_{A}.

The subcategory \mathbf{A} of antisymmetric R-relations

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.

Question: does the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{R}$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_{A}.
L_{A} preserves $\mathrm{R} 1, \mathrm{R} 2$, and R 3 in the presence of R 1

The subcategory \mathbf{A} of antisymmetric R-relations

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.

Question: does the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{R}$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_{A}.
L_{A} preserves $R 1, R 2$, and $R 3$ in the presence of $R 1$
... but not necessarily R4.

The subcategory \mathbf{A} of antisymmetric R-relations

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.

Question: does the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{R}$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_{A}.
L_{A} preserves $R 1, R 2$, and $R 3$ in the presence of $R 1$
... but not necessarily R4.

And L_{4} may not preserve antisymmetry.

The subcategory \mathbf{A} of antisymmetric R-relations

Antisymmetry: $[a, b, c] \wedge[a, c, b] \Longrightarrow b=c$.

Question: does the inclusion functor $\mathbf{A} \hookrightarrow \mathbf{R}$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_{A}.
L_{A} preserves $R 1, R 2$, and $R 3$ in the presence of $R 1$
... but not necessarily R4.

And L_{4} may not preserve antisymmetry.

Theorem
The left adjoint is the direct limit of applying L_{4} after $L_{A} \omega$-many times.

Mar fhocal scoir

Given a lattice (X, \leqslant), define $[a, b]_{L}=\{x: a \wedge b \leqslant x \leqslant a \vee b\}$.
Lemma
Let $(X,[\cdot, \cdot, \cdot])$ be the R-relation generated from the lattice intervals (roads) described above.

Mar fhocal scoir

Given a lattice (X, \leqslant), define $[a, b]_{L}=\{x: a \wedge b \leqslant x \leqslant a \vee b\}$.
Lemma
Let $(X,[\cdot, \cdot, \cdot])$ be the R-relation generated from the lattice intervals (roads) described above.
Then (X, \leqslant) is distributive if and only if

Mar fhocal scoir

Given a lattice (X, \leqslant), define $[a, b]_{L}=\{x: a \wedge b \leqslant x \leqslant a \vee b\}$.
Lemma
Let $(X,[\cdot, \cdot, \cdot])$ be the R-relation generated from the lattice intervals (roads) described above.
Then (X, \leqslant) is distributive if and only if $(X,[\cdot, \cdot, \cdot])$ is antisymmetric.

