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The concept of betweenness

• Given a linearly ordered set (X ,6), with a, b, c ∈ X , we say
that b is between a and c if either a 6 b 6 c or c 6 b 6 a.

• Natural to regard such a relation as a ternary predicate
[a, b, c ], where (a, b, c) ∈ X 3.

• Birkhoff (1948) defined the betweenness relation [·, ·, ·]o on a
partially ordered set (X ,6) as an extension of that given
above.
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Examples of betweenness: partial orders

Definition
In a partially ordered set (X ,6) with d 6 e ∈ X , define the order
interval [d , e]o = {x ∈ X : d 6 x 6 e}.

• If each pair of elements in X has a common lower bound and
a common upper bound in X , then say that [a, b, c ]o if b
belongs to each order interval that also contains a and c .

• Now [a, a, b]o and [a, b, b]o for any a, b in X .
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Beyond partial orders

• Vector space X over R with a, b ∈ X : define [a, c , b] if c is a
convex combination of a and b.

• Metric space (X , d) (1928):
define [a, c , b]M if d(a, c) + d(c , b) = d(a, b).

• Natural alliance between intervals [a, b] and ternary predicates
[a, c , b], in that we intend c ∈ [a, b] iff [a, c , b].
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Characteristics of betweenness

(R1) Reflexivity: [a, b, b].

(R2) Symmetry: [a, x , b] =⇒ [b, x , a].

(R3) Minimality: [a, b, a] =⇒ b = a.

(R4) Transitivity: ([a, x , c ]∧ [a, y , c ])∧ [x , b, y ]) =⇒ [a, b, c ].

Define a ternary relation to be an R-relation if it satisfies
conditions R1 - R4.

A very simple R-relation is 1 = ({1}, {(1, 1, 1)}).

For any set X , the smallest R-relation on it is
X⊥ := {[a, b, b], [b, b, a] | a, b ∈ X },

while the largest is X> := X 3 r {[a, b, a] | a 6= b}.
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Bankston’s insight: road systems

Definition
A road system on a nonempty set X is a family R of nonempty
subsets (roads) of X such that

(i) {a} ∈ R for all a ∈ X ,

(ii) for all a, b ∈ X , there is R ∈ R such that a, b ∈ R.

Each road system (X ,R) gives rise to a betweenness relation
[·, ·, ·]R as follows:
[a, b, c ]R holds if each road R containing a and c also contains b.

Define [a, c ]R = ∩{R ∈ R : a, c ∈ R}.
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Example

In a metric space (X , d), a natural road system is
R = {[a, b]M : a, b ∈ X }.

So for the unit circle S1 with a, b ∈ S1 , define a metric d on S1 as
follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points a and c on S1; then
[a, c ]M = S1 while for any third point b on S1, [a, b]M ∪ [b, c ]M is a
proper subset of S1.
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A road system characterization of betweenness

Theorem (Bankston, 2011)

A ternary relation [·, ·, ·] on a set X can be generated from a road
system if and only if [·, ·, ·] is an R-relation.
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Antisymmetric R-relations

A road system R is separative if for any a, b, c ∈ X with b 6= c ,
there is some R ∈ R such that either a, b ∈ R and c 6∈ R or
a, c ∈ R and b 6∈ R.

This implies the condition

Antisymmetry: [a, b, c ]∧ [a, c , b] =⇒ b = c .

Theorem
A road system is separative if and only if its associated R-relation
is antisymmetric.
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A category T of ternary relations

Let T denote the category whose objects are sets endowed with
ternary relations and whose morphisms are

monotone functions: for objects (X , [·, ·, ·]X ) and (Y , [·, ·, ·]Y ) then
f : X → Y is a morphism provided [a, b, c ]X ⇒ [f (a), f (b), f (c)]Y .
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Some notation and definitions

An R1-relation (resp. R2-relation, R3-relation, R4-relation) is a
ternary relation satisfying R1 (resp. R2, R3, R4).

Define R to be the full subcategory of T of all R-relations.
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The inclusion functor R1 ↪→ T

(R1) Reflexivity: [a, b, b]

The left adjoint is given by (X , [·, ·, ·]) 7→ (X , [·, ·, ·] ′) where

[·, ·, ·] ′ = [·, ·, ·] ∪ {[a, b, b] ∈ [·, ·, ·] | a, b ∈ X }.

Denote by L1.
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The inclusion functor R3 ↪→ T

(R3) Minimality: [a, b, a]⇒ a = b

The left adjoint exists - and is more involved. Call it L3.
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The inclusion functor R4 ↪→ T

(R4) Transitivity: [a, b, c ]∧ [a, d , c ]∧ [b, x , d ]⇒ [a, x , c ]

Has a left adjoint - call it L4.



Adjoints as operators

Notice that the compositions L1 ◦ L2 and L2 ◦ L1 are not the same.
The operator L2 (closure under symmetry) does not preserve R1
(reflexivity).

A less trivial example is given by L3 and L4.

In fact, L4 ◦ L3 ◦ L1 ◦ L2 defines the left adjoint to R ↪→ T.
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The subcategory A of antisymmetric R-relations

Antisymmetry: [a, b, c ]∧ [a, c , b] =⇒ b = c .

Question: does the inclusion functor A ↪→ R have a left adjoint?

Yes - demanding a change of underlying set; call it LA.

LA preserves R1, R2, and R3 in the presence of R1
. . . but not necessarily R4.

And L4 may not preserve antisymmetry.

Theorem
The left adjoint is the direct limit of applying L4 after LA ω-many
times.
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Mar fhocal scoir

Given a lattice (X ,6), define [a, b]L = {x : a∧ b 6 x 6 a∨ b}.

Lemma
Let (X , [·, ·, ·]) be the R-relation generated from the lattice
intervals (roads) described above.

Then (X ,6) is distributive if and only if (X , [·, ·, ·]) is
antisymmetric.
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