Turning ternary relations into antisymmetric betweenness relations

Jorge Bruno, Aisling McCluskey, Paul Szeptycki

University of Bath, NUI Galway, York University Toronto

TOPOSYM 2016

Given a linearly ordered set (X, ≤), with a, b, c ∈ X, we say that b is between a and c if either a ≤ b ≤ c or c ≤ b ≤ a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Given a linearly ordered set (X, ≤), with a, b, c ∈ X, we say that b is between a and c if either a ≤ b ≤ c or c ≤ b ≤ a.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Given a linearly ordered set (X, ≤), with a, b, c ∈ X, we say that b is between a and c if either a ≤ b ≤ c or c ≤ b ≤ a.

Natural to regard such a relation as a ternary predicate [a, b, c], where (a, b, c) ∈ X³.

- Given a linearly ordered set (X, ≤), with a, b, c ∈ X, we say that b is between a and c if either a ≤ b ≤ c or c ≤ b ≤ a.
- Natural to regard such a relation as a ternary predicate [a, b, c], where $(a, b, c) \in X^3$.
- Birkhoff (1948) defined the betweenness relation [·, ·, ·]_o on a partially ordered set (X, ≤) as an extension of that given above.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leq) with $d \leq e \in X$, define the order interval $[d, e]_o = \{x \in X : d \leq x \leq e\}.$

 If each pair of elements in X has a common lower bound and a common upper bound in X, then say that [a, b, c]_o if b belongs to each order interval that also contains a and c.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leq) with $d \leq e \in X$, define the order interval $[d, e]_o = \{x \in X : d \leq x \leq e\}.$

 If each pair of elements in X has a common lower bound and a common upper bound in X, then say that [a, b, c]_o if b belongs to each order interval that also contains a and c.

(日) (同) (三) (三) (三) (○) (○)

• Now $[a, a, b]_o$ and $[a, b, b]_o$ for any a, b in X.

Examples of betweenness: partial orders

Definition

In a partially ordered set (X, \leq) with $d \leq e \in X$, define the order interval $[d, e]_o = \{x \in X : d \leq x \leq e\}.$

 If each pair of elements in X has a common lower bound and a common upper bound in X, then say that [a, b, c]_o if b belongs to each order interval that also contains a and c.

(日) (同) (三) (三) (三) (○) (○)

• Now $[a, a, b]_o$ and $[a, b, b]_o$ for any a, b in X.

Beyond partial orders

Vector space X over ℝ with a, b ∈ X: define [a, c, b] if c is a convex combination of a and b.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Beyond partial orders

Vector space X over ℝ with a, b ∈ X: define [a, c, b] if c is a convex combination of a and b.

 Metric space (X, d) (1928): define [a, c, b]_M if d(a, c) + d(c, b) = d(a, b).

Beyond partial orders

- Vector space X over ℝ with a, b ∈ X: define [a, c, b] if c is a convex combination of a and b.
- Metric space (X, d) (1928): define [a, c, b]_M if d(a, c) + d(c, b) = d(a, b).
- Natural alliance between intervals [a, b] and ternary predicates [a, c, b], in that we intend c ∈ [a, b] iff [a, c, b].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(R1) Reflexivity: [a, b, b].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$. (R3) Minimality: $[a, b, a] \implies b = a$.

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$. (R3) Minimality: $[a, b, a] \implies b = a$. (R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$. (R3) Minimality: $[a, b, a] \implies b = a$. (R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

Define a ternary relation to be an $\ensuremath{\textbf{R-relation}}$ if it satisfies conditions R1 - R4.

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$. (R3) Minimality: $[a, b, a] \implies b = a$. (R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

Define a ternary relation to be an $\ensuremath{\textbf{R-relation}}$ if it satisfies conditions R1 - R4.

(R1) Reflexivity: [a, b, b]. (R2) Symmetry: $[a, x, b] \implies [b, x, a]$. (R3) Minimality: $[a, b, a] \implies b = a$. (R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

Define a ternary relation to be an $\ensuremath{\textbf{R}}\xspace$ relation if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1} = (\{1\}, \{(1, 1, 1)\}).$

(R1) Reflexivity:
$$[a, b, b]$$
.
(R2) Symmetry: $[a, x, b] \implies [b, x, a]$.
(R3) Minimality: $[a, b, a] \implies b = a$.
(R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

Define a ternary relation to be an $\ensuremath{\text{R-relation}}$ if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1} = (\{1\}, \{(1, 1, 1)\}).$

For any set X, the smallest R-relation on it is $X_{\perp} := \{[a, b, b], [b, b, a] \mid a, b \in X\},\$

(R1) Reflexivity:
$$[a, b, b]$$
.
(R2) Symmetry: $[a, x, b] \implies [b, x, a]$.
(R3) Minimality: $[a, b, a] \implies b = a$.
(R4) Transitivity: $([a, x, c] \land [a, y, c]) \land [x, b, y]) \implies [a, b, c]$.

Define a ternary relation to be an $\ensuremath{\text{R-relation}}$ if it satisfies conditions R1 - R4.

A very simple R-relation is $\overline{1} = (\{1\}, \{(1, 1, 1)\}).$

For any set X, the smallest R-relation on it is $X_{\perp} := \{[a, b, b], [b, b, a] \mid a, b \in X\},\$

while the largest is $X_{\top} := X^3 \setminus \{[a, b, a] \mid a \neq b\}.$

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (*roads*) of X such that

(i) $\{a\} \in \mathcal{R}$ for all $a \in X$,

(ii) for all $a, b \in X$, there is $R \in \mathbb{R}$ such that $a, b \in R$.

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (*roads*) of X such that

(i)
$$\{a\} \in \mathcal{R}$$
 for all $a \in X$,

(ii) for all $a, b \in X$, there is $R \in \mathbb{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (*roads*) of X such that

(i)
$$\{a\} \in \mathcal{R}$$
 for all $a \in X$,

(ii) for all $a, b \in X$, there is $R \in \mathbb{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:

 $[a, b, c]_{\mathcal{R}}$ holds if each road R containing a and c also contains b.

Definition

A road system on a nonempty set X is a family \mathcal{R} of nonempty subsets (*roads*) of X such that

(i)
$$\{a\} \in \mathcal{R}$$
 for all $a \in X$,

(ii) for all $a, b \in X$, there is $R \in \mathbb{R}$ such that $a, b \in R$.

Each road system (X, \mathcal{R}) gives rise to a betweenness relation $[\cdot, \cdot, \cdot]_{\mathcal{R}}$ as follows:

 $[a, b, c]_{\mathcal{R}}$ holds if each road R containing a and c also contains b.

Define $[a, c]_{\mathcal{R}} = \cap \{R \in \mathcal{R} : a, c \in R\}.$

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points *a* and *c* on \mathbb{S}^1 ;

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points *a* and *c* on \mathbb{S}^1 ; then $[a, c]_M = \mathbb{S}^1$

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points *a* and *c* on \mathbb{S}^1 ; then $[a, c]_M = \mathbb{S}^1$ while for any third point *b* on \mathbb{S}^1 , $[a, b]_M \cup [b, c]_M$ is a proper subset of \mathbb{S}^1 .

(日) (同) (三) (三) (三) (三) (○) (○)

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points *a* and *c* on \mathbb{S}^1 ; then $[a, c]_M = \mathbb{S}^1$ while for any third point *b* on \mathbb{S}^1 , $[a, b]_M \cup [b, c]_M$ is a proper subset of \mathbb{S}^1 .

In a metric space (X, d), a natural road system is $\mathcal{R} = \{[a, b]_M : a, b \in X\}.$

So for the unit circle \mathbb{S}^1 with $a, b \in \mathbb{S}^1$, define a metric d on \mathbb{S}^1 as follows: d(a, b) = shortest arc distance between a and b.

Consider now two antipodal points *a* and *c* on \mathbb{S}^1 ; then $[a, c]_M = \mathbb{S}^1$ while for any third point *b* on \mathbb{S}^1 , $[a, b]_M \cup [b, c]_M$ is a proper subset of \mathbb{S}^1 .

A road system characterization of betweenness

Theorem (Bankston, 2011)

A ternary relation $[\cdot, \cdot, \cdot]$ on a set X can be generated from a road system if and only if $[\cdot, \cdot, \cdot]$ is an *R*-relation.

A road system characterization of betweenness

Theorem (Bankston, 2011)

A ternary relation $[\cdot, \cdot, \cdot]$ on a set X can be generated from a road system if and only if $[\cdot, \cdot, \cdot]$ is an *R*-relation.

Antisymmetric R-relations

A road system \mathcal{R} is *separative* if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$.

Antisymmetric R-relations

A road system \mathcal{R} is *separative* if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathcal{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

Antisymmetry: $[a, b, c] \land [a, c, b] \implies b = c$.

Antisymmetric R-relations

A road system \mathfrak{R} is *separative* if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathfrak{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

Antisymmetry: $[a, b, c] \land [a, c, b] \implies b = c$.

Theorem

A road system is separative if and only if its associated R-relation is antisymmetric.

Antisymmetric R-relations

A road system \mathfrak{R} is *separative* if for any $a, b, c \in X$ with $b \neq c$, there is some $R \in \mathfrak{R}$ such that either $a, b \in R$ and $c \notin R$ or $a, c \in R$ and $b \notin R$. This implies the condition

Antisymmetry: $[a, b, c] \land [a, c, b] \implies b = c$.

Theorem

A road system is separative if and only if its associated R-relation is antisymmetric.

A category **T** of ternary relations

Let ${\bf T}$ denote the category whose objects are sets endowed with ternary relations and whose morphisms are

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A category **T** of ternary relations

Let **T** denote the category whose objects are sets endowed with ternary relations and whose morphisms are

monotone functions: for objects $(X, [\cdot, \cdot, \cdot]_X)$ and $(Y, [\cdot, \cdot, \cdot]_Y)$ then $f: X \to Y$ is a morphism provided $[a, b, c]_X \Rightarrow [f(a), f(b), f(c)]_Y$.

Some notation and definitions

An R_1 -relation (resp. R_2 -relation, R_3 -relation, R_4 -relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some notation and definitions

An R_1 -relation (resp. R_2 -relation, R_3 -relation, R_4 -relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define \mathbf{R} to be the full subcategory of \mathbf{T} of all R-relations.

Some notation and definitions

An R_1 -relation (resp. R_2 -relation, R_3 -relation, R_4 -relation) is a ternary relation satisfying R1 (resp. R2, R3, R4).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define \mathbf{R} to be the full subcategory of \mathbf{T} of all R-relations.

The inclusion functor $\textbf{R}_1 \hookrightarrow \textbf{T}$

(R1) Reflexivity: [a, b, b]

The left adjoint is given by $(X, [\cdot, \cdot, \cdot]) \mapsto (X, [\cdot, \cdot, \cdot]')$ where

$$[\cdot, \cdot, \cdot]' = [\cdot, \cdot, \cdot] \cup \{[a, b, b] \in [\cdot, \cdot, \cdot] \mid a, b \in X\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Denote by L_1 .

The inclusion functor $R_2 \hookrightarrow T$

(R2) Symmetry: $[a, b, c] \Rightarrow [c, b, a]$

The inclusion functor $R_2 \hookrightarrow T$

(R2) Symmetry: $[a, b, c] \Rightarrow [c, b, a]$

The left adjoint is given by $(X, [\cdot, \cdot, \cdot]) \mapsto (X, [\cdot, \cdot, \cdot]')$ with

$$[\cdot,\cdot,\cdot]' = [\cdot,\cdot,\cdot] \cup \{(c,b,a) \in [\cdot,\cdot,\cdot] \mid (a,b,c) \in [\cdot,\cdot,\cdot]\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Denote by L_2 .

The inclusion functor $R_2 \hookrightarrow T$

(R2) Symmetry: $[a, b, c] \Rightarrow [c, b, a]$

The right adjoint is given by $(X, [\cdot, \cdot, \cdot]) \mapsto (X, [\cdot, \cdot, \cdot]')$ where

 $[\cdot,\cdot,\cdot]' = [\cdot,\cdot,\cdot] \setminus \{(a,b,c) \in [\cdot,\cdot,\cdot] \mid (c,b,a) \notin [\cdot,\cdot,\cdot]\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

The inclusion functor $R_3 \hookrightarrow T$

(R3) Minimality: $[a, b, a] \Rightarrow a = b$

The inclusion functor $R_3 \hookrightarrow T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(R3) Minimality: $[a, b, a] \Rightarrow a = b$

The left adjoint exists - and is more involved. Call it L_3 .

The inclusion functor $\mathbf{R_4} \hookrightarrow \mathbf{T}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(R4) Transitivity: $[a, b, c] \land [a, d, c] \land [b, x, d] \Rightarrow [a, x, c]$

Has a left adjoint - call it L_4 .

Adjoints as operators

Notice that the compositions $L_1 \circ L_2$ and $L_2 \circ L_1$ are not the same. The operator L_2 (closure under symmetry) does not preserve R1 (reflexivity).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Adjoints as operators

Notice that the compositions $L_1 \circ L_2$ and $L_2 \circ L_1$ are not the same. The operator L_2 (closure under symmetry) does not preserve R1 (reflexivity).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A less trivial example is given by L_3 and L_4 .

Adjoints as operators

Notice that the compositions $L_1 \circ L_2$ and $L_2 \circ L_1$ are not the same. The operator L_2 (closure under symmetry) does not preserve R1 (reflexivity).

A less trivial example is given by L_3 and L_4 .

In fact, $L_4 \circ L_3 \circ L_1 \circ L_2$ defines the left adjoint to $\mathbf{R} \hookrightarrow \mathbf{T}$.

Question: does the inclusion functor $A \hookrightarrow R$ have a left adjoint?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Yes - demanding a change of underlying set; call it L_A .

Question: does the inclusion functor $A \hookrightarrow R$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_A .

 L_A preserves R1, R2, and R3 in the presence of R1

Question: does the inclusion functor $A \hookrightarrow R$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_A .

 L_A preserves R1, R2, and R3 in the presence of R1 ... but not necessarily R4.

Question: does the inclusion functor $A \hookrightarrow R$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_A .

 L_A preserves R1, R2, and R3 in the presence of R1 ... but not necessarily R4.

And L₄ may not preserve antisymmetry.

Question: does the inclusion functor $A \hookrightarrow R$ have a left adjoint?

Yes - demanding a change of underlying set; call it L_A .

 L_A preserves R1, R2, and R3 in the presence of R1 ... but not necessarily R4.

And L₄ may not preserve antisymmetry.

Theorem

The left adjoint is the direct limit of applying L_4 after $L_A \omega$ -many times.

Mar fhocal scoir

Given a lattice (X, \leq) , define $[a, b]_L = \{x : a \land b \leq x \leq a \lor b\}$.

Lemma

Let $(X, [\cdot, \cdot, \cdot])$ be the *R*-relation generated from the lattice intervals (roads) described above.

Mar fhocal scoir

Given a lattice (X, \leq) , define $[a, b]_L = \{x : a \land b \leq x \leq a \lor b\}$.

Lemma

Let $(X, [\cdot, \cdot, \cdot])$ be the *R*-relation generated from the lattice intervals (roads) described above. Then (X, \leq) is distributive if and only if

Mar fhocal scoir

Given a lattice (X, \leq) , define $[a, b]_L = \{x : a \land b \leq x \leq a \lor b\}$.

Lemma

Let $(X, [\cdot, \cdot, \cdot])$ be the *R*-relation generated from the lattice intervals (roads) described above. Then (X, \leq) is distributive if and only if $(X, [\cdot, \cdot, \cdot])$ is antisymmetric.