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Introduc4on	

•  In	general	topology,																	
given	a	space	X	there	are	several	
ways	to	construct	a	new	space	
K(X)	from	X.		



A	con;nuum	is	a	compact	
connected	metric	space	



2X = { A ⊂ X : A is closed and A ≠ ∅ }, 
 

C(X) = { A ∈ 2X 
 : A is connected }, 
 

Cn(X) = { A ∈ 2X 
 : A has at most n 

components } 
 Fn(X) = { A ∈ 2X 

 : A has at most n 
points }, 

 
F1(X) = { {p} : p ∈ X }.	



C(X),	Cn(X)	and	F1(X)	

• Note	that	C(X)=C1(X)	and	F1(X)	is	
homeomorphic	to	X.	

• The	hyperspaces	C(X),	Cn(X)	and	
Fn(X)	are	considered	with	the	
Vietoris	Topology		(Hausdorff	
Metric)	



Hyperspaces and Symmetric Products 

• C(X)=hyperspace of 
subcontinua  

• Cn(X)= n-fold hyperspace  
• Fn(X)=nth-symmetric product  

 



Hyperspaces and Symmetric 
Products	

• Given a hyperspace  
K(X) ∈ {2X, Cn (X), Fn(X)}  

there are several natural 
problems in the sructure of 
Hyperspaces.  
• We discuss  three in this talk: 



K(X) ∈ {2X, Cn (X), Fn(X)}	

•  (I)  For which continua X is the 
hyperspace K(X) a cone. 

•  (II) When does X have unique 
hyperspace K(X)? 

•  (III) Determine the homogeneity 
degree of a hyperspace K(X). 



PROBLEM	I	
HYPERSPACES	AND	CONES	



Hyperspaces	and	Cones	
	

• A continumm X is a cone 
provided that there exists 
a space Z such that X is 
homeomorphic to the 
cone of Z.  



C([0,1])	=	{	[a,b]	:	0	≤	a	≤	b	≤	1	}	
	~	{	(a,b)	∈	R2	:	0	≤	a	≤	b	≤	1	}.	



C(S1)	



	C(T)	

	n-od	 	Hyperspace	of	an	n-od			



Hyperspaces	and	Cones	

• Problem (I) has been widely 
study for the hyperspaces C(X) 
and not so much for Cn(X). 



Hyperspaces and Cones 

• Theorem(Rogers-Nadler 70´s) 
There are exactly 8 continua 
that are hereditarilly 
decomposable finite 
dimensional and satisfy that 
C(X)=Cone(X). 



Cone(X)=C(X)	(Rogers-Nadler)	



DEOMPOSABLE	CONTINUA	

• A	con4nuum	X	is	
DECOMPOSABLE	if	there	exist	
two	proper	nondegenerate	
subcon4nua	A,	B	of	X,	such	
that		X	=	A	U	B	



FINITE	GRAPHS	





INDECOMPOSABLE	CONTINUA	

• A	con4nuum	X	is	
INDECOMPOSABLE,	if	it	is	not	
decomposable	



	Knaster	Con4nuum	



Solenoid	



The Hyperspace	C(X)	and	Cones	

•  Theorem. (Illanes, López 2002) 
Let X be a finite dimensional 
hereditarily decomposable 
continuum. Then C(X) is a cone if 
and only if X is in one of the 
classes of continua described in 
(M1) to (M10) 



The Hyperspace	C(X)	and	Cones	

•  �	



The Hyperspace	C(X)	and	Cones	



The Hyperspace	C(X)	and	Cones	



The Hyperspace	C(X)	and	Cones	

•  Theorem (Lopez 2002) Let X be a finite 
dimensional non hereditarily 
decomposable continuumm. Suppose 
that C(X) is a cone.  Then there exists a 
unique indecomposable 
subcontinuum Y of X such that: 

•  (a)  C(Y) is a cone (cone=hyperspace 
property) 

•  (b)  X − Y is locally connected,  



•  (c)  X − Y has a finite number of 
components,  

•  (d)  each component of X − Y is 
homeomorphic either to [0,∞) or to the 
real line,  

•  (e) Y is an arc continuum (all its 
proper subcontinua are arcs or points) 



Cone=Hyperspace	

• A continuum has the 
cone=hyperspace property 
provided that there exists a 
homeomorphism 
h:C(X)àCone(X) such that 
h(F1(X))=Base(Cone(X)) and 
h(X)=vertex(Cone(X)). 

 
	



Ques4ons	remaining	for	C(X)		

• Question 1. Characterize all 
finite dimensional 
indecomposable continua with 
the cone=hyperspace property. 

 
************************************* 



	n-fold	hyperspaces	and	cones	

•  Theorem (VMV 2004) Let X be a finite 
graph If Cn(X) is a cone then X is an arc a 
circle or an n-od 



Ques4ons	remaining	for	Cn(X)		

•  Question 2. Is C3(S1) a cone? 
•  Question 3. Is Cn(S1) a cone for 

n≥3? 
•  Question 4. Is C2(Sin(1/x)) a cone? 
•  Question 5. Is C2(Knaster) a cone? 
•  Question 6. Is C2(Solenoid) a cone? 



Ques4ons	remaining	for	Cn(X)		

•  Question 7. Let X be a fan. Suppose 
that there exists n≥2 such that Cn(X) 
is a cone, does this imply that X is a 
cone? 

•  Question 8. Characterize finite 
dimensional continua X for which 
Cn(X) is a cone. 



Symmetric	Products	and	Cones	

The structure of the hyperspaces 
C(X), Cn(X) is richer than the 
structure of Fn(X). An important 
difference is that C(X), Cn(X) are 
always arcwise connected and they 
are always locally connected at X.  



Symmetric	Products	and	Cones	

• On the other hand Fn(X) is 
arcwise connected if and only 
if X is arcwise connected and 
Fn(X) has not necessarily 
points of local connectedness. 



F2([0,1])={	(a,b)	∈	R2	:	0	≤	a	≤	b	≤	1	}  



F2(S1)   

•   F2(S1) is a Möbius 
strip 



F2(T) 



Symmetric	Products	and	Cones	

• Theorem(VMV-Illanes 2015) 
Suppose that the continuum X 
is a cone. Then each of the 
hyperspaces 2X, C(X), Cn(X) 
and Fn(X) is a cone. 



Symmetric	Products	and	Cones	

•  Theorem (VMV-Illanes 2015) Let X 
be a finite graph . Then the following 
are equivalent 

(a)  X is a cone 
(b)  Fn(X) is a cone for every n≥2 and 
(c)  Fn(X) is a cone for some n≥2 



Symmetric	Products	and	Cones	

•  Theorem (VMV-Illanes 2015) Let X 
be a fan. Then the following are 
equivalent 

(a)  X is a cone 
(b)  Fn(X) is a cone for every n≥2 and 
(c)  Fn(X) is a cone for some n≥2 



Finite	graphs	that	are	fans	and	Cones	



Fω	is	a	fan,	but	not	a	cone	



Harmonic	Fan	



Cantor	Fan	



Symmetric	Products	and	Cones	

•  Question 9. Suppose that X is a 
continuum such that for some n≥2, 
Fn(X) is a cone, must X itself be a 
cone? 

•  Question 10. Suppose that X is a 
dendroid such that for some n≥2, 
Fn(X) is a cone, must X itself be a 
cone? 



PROBLEM	II	
UNIQUENESS	OF	HYPERSPACES	



Uniqueness	of	Hyperspaces	

• For a metric continuum X we 
say that X has unique 
hyperspace K(X) provided 
that, if Y is a continuum and 
K(X) is homeomorphic to K(Y), 
then X is homeomorphic to Y .  



Uniqueness of Hyperspaces 

• Theorem 1 (Curtis-Schori 
1978). If X is a locally 
connected continuum, then 
2X is homeomorphic to the 
Hilbert cube. 



Uniqueness of Hyperspaces	

Theorem 2. (Curtis-Schori 1978) For a 
continuum X, the following are equivalent.  
•  (a) X is locally connected and each arc 

in X has empty interior,  
•  (b) C(X) is homeomorphic to the Hilbert 

cube 
•  (c) Cn(X) is homeomorphic to the Hilbert 

cube for each n.  



D4



Uniqueness of Hyperspaces	

• Theorem 3. (Duda 
1968-1970). Finite graphs G, 
different from an arc and a 
simple closed curve have 
unique hyperspace C(G).  



Uniqueness of Hyperspaces	

•  Theorem 4.(Illanes 2003)  Finite 
graphs G have unique hyperspace 
Cn(G) for each n≥2.  

•  Theorem 5 (Eberhart-Nadler 1979). If 
X is a smooth fan with infinitely many 
end points, then X does not have 
unique hyperspace C(X).  



Uniqueness of Hyperspaces	



Uniqueness of Hyperspaces	

• A dendrite is a locally connected 
continuum without simple closed 
curves. Define 

•   D = {X : X is a dendrite with 
closed set of end points}.  



UNIQUENESS	OF	HYPERSPACES	

•  It is known that a dendrite X ∈ D if and only 
if X does not contain neither a copy of Fω 
nor a copy of the enlarged null comb.  



UNIQUENESS	OF	HYPERSPACES	

•  Gehman dendrite is a dendrite in class D. 
For this dendrite, the set of end points is 
the Cantor set.	



Uniqueness of Hyperspaces	

•  Theorem 6 (Herrera-Illanes-Macìas-
Romero and López). Let X ∈ D. Then  

•  (a) X has unique hyperspace Cn(X) 
for each n≥2, 
(b) if X is not an arc, then X has 
unique hyperspace C(X).  



UNIQUENESS	OF	HYPERSPACES	

• Theorem 7. (Herrera-Macias 
2011). Continua with a base of 
neighborhoods belonging to 
class D have unique 
hyperspace Cn(X) for all n≠ 2.  



UNIQUENESS	OF	HYPERSPACES	

	

• Theorem 8 (Acosta, Herrera 
2010). If a dendrite X does not 
belong to D, then X does not 
have unique hyperspace C(X).  



UNIQUENESS	OF	HYPERSPACES	



UNIQUENESS	OF	HYPERSPACES	

•  Example (Hernandez-G, Illanes,VMV 
2013)There exists a dendrite containing 
the extended null comb and having unique 
hyperspace C2(X) 



• A locally connected continuum X is 
almost framed provided that  

U {J ⊂	 X : J is a free arc in X }  
is dense in X.  
• G(X) = {p ∈ X : p has a 

neighborhood K in X such that K is a 
finite graph}.  

• A locally connected continuum X is 
almost framed if and only if G(X) is 
dense in X. 
 



UNIQUENESS	OF	HYPERSPACES	

•  A continuum X is framed if: 
(i)  it is not a simple closed curve,  
(ii)  is almost framed and  
(iii)  has a base of neighborhoods B 

such that for each U∈ B, U Π  G(X) 
is connected.  



•  Finite graphs, dendrites in class D 
and locally class-D dendrites are 
framed continua. 





Hernandez-G, Illanes, VMV 2013	
•  Theorem 9 Framed continua have unique 

hyperspace Cn(X) for all n ∈ N.  
•  Theorem 10  If X is a locally connected 

continuum and X is not almost framed, 
then X does not have unique hyperspace 
Cn(X) for each n ∈ N.  

•  Theorem 11 If X is almost framed and    
X-G(X) is not connected, then X does not 
have unique hyperspace C(X).  



UNIQUENESS	OF	HYPERSPACES	

•  Theorem 12 (Acosta 2002)). If X is a 
compactification of the ray and X is 
not an arc, then X has unique 
hyperspace C(X).   

•   If X is a compactification of the 
real line, X is not an arc and its 
remainder is disconnected, then X 
has unique hyperspace C(X).  



UNIQUENESS	OF	HYPERSPACES	

•  Theorem 13 (Macas 2002) If X is a 
hereditarily indecomposable 
continuum, then X has unique 
hyperspaces 2X and Cn(X) for all n ∈ 
N.  

•  Theorem 14 (Acosta 2002) 
Indecomposable arc continua have 
unique hyperspace C(X). 



UNIQUENESS	OF	HYPERSPACES	

•  Theorem 15 (HG-I-MV 2013) 
Indecomposable arc continua X have 
unique hyperspace Cn(X), for each   
n ≠ 2, the case  n = 2 remains 
unsolved.  



Ques4ons	on	n-fold	hyperspaces		

•  Question 1. If X is a smooth fan with 
infinitely many end points, does X not 
have unique hyperspace Cn(X) for n≥2? 

•  Question 2. Characterize locally 
connected continua X which have unique 
hyperspace Cn(X).  

•  Question 3. Do compactifications of the 
ray have unique hyperspace Cn(X) for 
each n ≥ 2?  



Ques4ons	on	n-fold	hyperspaces	

•  Question 4. Do compactifications of the 
real line with disconnected remainder have 
unique hyperspace C2(X)?  

•  Question 5. Let X be a compactification of 
the real line. Does X have unique 
hyperspace C2(X)?  



•  Question 6. Find more classes of 
continua X having unique hyperspace 2X  

•  Question 7. Have indecomposable arc 
continua X unique hyperspaces 2X and 
C2(X)?  

•  Question 8. Do there exist two non-
homeomorphic fans X and Y such that 
C2(X) and C2(Y ) are homeomorphic? 
 



•  Question 9. Let n≥ 2 and X and Y be 
smooth fans such that Cn(X) is 
homeomorphic to Cn(Y ). Does it follow 
that X is homeomorphic to Y ?  

•  Question 10. Let X and Y be smooth 
fans such that 2X is homeomorphic to 2Y 
and X has infinitely many end points. 
Does it follow that X is homeomorphic to 
Y ?  



UNIQUENESS	OF	SYMMETRIC	
PRODUCTS	

•  Theorem 16 (HG-I-MV). 
•  (a) (Acosta-Herrera-Lopez) Finite 

graphs G have unique hyperspace 
Fn(G) for every n ∈ N.  

•  (b) (HG-I-MV) Dendrites X ∈ D have 
unique hyperspace Fn(X).  



UNIQUENESS	OF	SYMMETRIC	
PRODUCTS	

•  Theorem 17 (Illanes-J. Martinez 
2009).                    

•  (a) Compactifications X of the ray    
[0,1) have unique hyperspace Fn(X) 
for each n ≠ 3.  

•  (b) Compactifications X of the ray    
[0,1) such that the remainder is an 
ANR have unique hyperspace F3(X).  



UNIQUENESS	OF	SYMMETRIC	
PRODUCTS	

•  Theorem 18 (Illanes-Castañeda-
Anaya 2013). The following type of 
continua: 

•  Indecomposable arc continua,  
•  Fans or  
•  Arcwise connected continua with 

exactly only one ramification p   
   have unique hyperspace F2(X). 



	Rigidity	of	Hyperspaces	

• A useful technique is to find a 
topological property that 
characterizes the elements of 
F1(X) in the hyperspace K(X). 

• When this is possible the 
hyperspace K(X) is rigid, so both 
topics are closely related.  

 



Rigidity	of	Hyperspaces	

• A hyperspace K(X)of X is said 
to be rigid provided that for 
every homeomorphism  

h : K(X) → K(X)  
we have that 

 h(F1(X)) = F1(X).  



• A wire in a continuum X is a subset α 
of X such that α is a component of an 
open subset of X and is 
homeomorphic to one of the spaces 
(0,1), [0,1), [0,1] or S1 

• Given a continuum X, let  
W ( X ) = {α � X : α is a wire in X }.  

•  The continuum X is said to be wired 
provided that W(X) is dense in X.  



Rigidity	and	uniqueness	of	Symmetric	
Products	

•  HG-MV	2013	
•  Theorem 19. Let n ≥ 4 and let X be a 

wired continuum. Then: 
  (a) X has unique hyperspace Fn(X) 
  (b) Fn(X) is rigid.  
 
•  Corollary 20 Compactifications of the 

ray, Smooth Fans, indecomposable arc 
continua are wired continua. 



UNIQUENESS	AND	RIGIDITY	OF	
SYMMETRIC	PRODUCTS	(HG-MV	2013)	
•  Theorem 21. If a continuum X contains a tail, 

then F2(X) is not rigid.  
•  Theorem 22. Let X be an almost meshed. 

Then F2(X) is rigid if and only if X does not 
contain tails.  

•  Corollary 23. A finite graph X has rigid 
hyperspace F2(X) if and only if X does not 
have end points.  

•  Theorem 24. If a continuum X contains a free 
arc, then F3(X) is not rigid.  



Ques4ons	on	Symmetric	Products	

•  Question 11. Have all dendrites X 
unique hyperspace Fn(X)?  

•  Question 12. Have all 
compactifications X of the ray [0,1) 
unique hyperspace F3(X)?  

•  Question 13. Have all chainable 
(circle-like) continua X unique 
hyperspace Fn(X)?  



Ques4ons	on	Symmetric	Products	

•  Question 14. Have all fans X unique 
hyperspace Fn(X)? 

•  Question 15. Have all 
indecomposable arc continua X 
unique hyperspace  F3(X)? 



Ques4ons	on	Symmetric	Products	

•  Question 16. Does there exist a finite 
dimensional continuum X without 
unique hyperspace Fn(X)? 

•  Question 17. Do hereditarily 
indecomposable continua X have 
unique hyperspace F2(X)?  

•  Question 18. Does the Pseudo-arc 
have unique hyperspace F2(X)?  



PROBLEM	III	
HOMOGENEITY	DEGREE	OF	HYPERSPACES	



Homogeneity Degree 

The	homogeneity	degree,	hd(X),	of	
X	is	the	number	of	orbits	in	X	for	
the	ac4on	of	the	group	of	
homeomorphisms	of	X	onto	itself.	
Given	a	con4nuum	X,	let			H(X)				
denote	the	group	of	
homeomorphisms	of	X	onto	itself.	
	



Homogeneity Degree	

An orbit in X is a class of the equivalence 
relation in X given by p is equivalent to q if 
there exists h in H(X) such that h(p)=q. 
 
•  The homogeneity degree, hd(X), of the 

continuum X is defined as 
 hd(X)=number of orbits in X 

	



Homogeneity Degree	

•  When hd(X)=n the continuum X is 
known to be 1/n-homogeneous  

•  and when hd(X)=1, X is 
homogeneous. 



Previous	Results	

•  In	2008	Pellicer	studied	con4nua	for	which	
hd(F2(X))=2.	

•  Theorem	(2015	I.	Calderón,	R.	Hernández-
Gu4érrez	and	A.	Illanes	)	

If	P	is	the	pseudo-arc,	then	hd(F2(P))=3	



•  Theorem(HG-MV 2015) Let X be an m-
manifold without boundary and n a 
natural number. Then 

(a)  If either m=2 and n≠2 or m=1 and n≠3 
then hd(Fn(X))=n. 

(b)  If m=2 (X is a surface), then 
hd(F2(X))=1 and 

(c)  If m=1 (X is a simple closed curve) and 
n=3, then hd(Fn(X))=1. 



•  Theorem (HG-MV 2015). Let n be 
a natural number. Then: 

(a)  If n ≥ 4, then hd(Fn([0,1])=2n, 
and 

(b)  If n ∈ {2,3}, then hd(Fn([0,1])=2. 






