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Interval Algebras

Definition

An interval algebra is a Boolean algebra that has a linearly ordered,
in the Boolean order, set of generators.

These were introduced by Mostowski and Tarski in 1939.

Example

Given a linearly ordered set (L, <) define Int(L) by

{[a0, b0)∪ ...∪ [an, bn) : −∞ ≤ a0 < b0 < ... < an < bn ≤ ∞ ∈ L}.
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Interval Algebras

This class has been studied extensively and it is well behaved with
respect to several properties:

Theorem (Rubin, 1983)

If A is a subalgebra of Int(L), of cardinality κ uncountable regular,
then A has a chain or an anti chain of size κ.

Theorem (Rubin, 1983)

Any subalgebra A of Int(L) is retractive.

The class of interval algebras is closed under homomorphic images
and finite products.
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Interval Algebras

The class of Interval Algebras is not closed under subalgebras.

Example

Let L = ω1 then Int(L) is not hereditary.

Definition

An interval algebra is hereditary if every subalgebra is an interval
algebra.
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Hereditary Interval Algebras

Mostowski and Tarski proved that all countable interval algebras
are hereditary.

Question

Are there any uncountable hereditary interval algebras?

Theorem (Bekkali-Todorcevic, 2015)

Every hereditary interval algebra is σ-centered.
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Theorem (Nikiel, Purisch, Treybig, 1998)

There is σ-centered interval algebra of cardinality continuum that
is not hereditary.

Theorem (Bekkali-Todorcevic, 2015)

Every subalgebra of a σ-centered subalgebra of cardinality < b is
an interval algebra itself. In particular, every interval algebra over a
set of reals of cardinality < b is hereditary.
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Cardinal Invariants

There is a natural cardinal invariant associated to the σ-centered
hereditary interval algebras:

Let µ be the minimal cardinality of a
σ-centered interval algebra which is not hereditary.

Remark

It follows from the previous theorems that b ≤ µ ≤ non(M).
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Cardinal Invariants

For each f ∈ 2Q, let τf be the topology over [0, 1] where every
irrational has its usual neighborhood basis and a basic
neighborhood of a point q ∈ Q is of the form [q, q + 1

n ) if f (q) = 0
and (− 1

n + q, q] if f (q) = 1.

Definition

Let A(X ) = I × {0} ∪ (Q ∪ X )× {1} ∪Q× {2} with the topology
given by the lexicographical order.
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Cardinal Invariants

Theorem (M-R)

If Q is not relatively Gδ in X ∪Q in the τf topology, for all f ∈ 2Q.
Then clop(A(X )) is not hereditary.

Theorem (M-R)

It is consistent with ZFC that µ < non(M).
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Sketch of proof

1 π : A(X )→ A(X )/ ∼, where (q, 0) ∼ (q, 2).

2 We can think of A(X )/ ∼ as Y ∪ Q, where
Y = I × {0} ∪ X × {1} and Q = Q ∩ (0, 1).

3 Suppose A(X )/ ∼ is orderable by some linear order ≺ then
the elements of Q are either below the y0 = min(Y ), or
between a jump in Y or above the y1 = max(Y ).

4 f : Q → Q ∪ X without fixed points s.t. f (q) is a jump and
q ∈ (f (q), f (q)+)≺ or q ∈ (f (q)+, f (q))≺.

5 A ⊂ Q then A′ = f (A) ∪ f (A)′.

6 ∀x ∈ X Fx = {q : x ∈ (q, f (q))} is finite.

7 XN = {x ∈ X : |Fx | = N} es Gδ in the τf topology.
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Thank you!
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