Carlos Martinez Ranero

Universidad de Concepción Research Supported by Fondecyt Iniciacion 11130490

Twelfth Symposium on General Topology an its relations to Modern Analysis and Algebra.

UdeC

Definition

An *interval algebra* is a Boolean algebra that has a linearly ordered, in the Boolean order, set of generators.

UdeC

Definition

An *interval algebra* is a Boolean algebra that has a linearly ordered, in the Boolean order, set of generators.

UdeC

These were introduced by Mostowski and Tarski in 1939.

Definition

An *interval algebra* is a Boolean algebra that has a linearly ordered, in the Boolean order, set of generators.

These were introduced by Mostowski and Tarski in 1939.

Example

Given a linearly ordered set (L, <) define Int(L) by

 $\{[a_0, b_0) \cup ... \cup [a_n, b_n) : -\infty \le a_0 < b_0 < ... < a_n < b_n \le \infty \in L\}.$

Carlos Martinez Ranero

・ロト ・回ト ・ヨト ・ヨト

This class has been studied extensively and it is well behaved with respect to several properties:

<ロ> (四) (四) (三) (三)

UdeC

This class has been studied extensively and it is well behaved with respect to several properties:

Theorem (Rubin, 1983)

If A is a subalgebra of Int(L), of cardinality κ uncountable regular, then A has a chain or an anti chain of size κ .

・ロン ・回 と ・ ヨン・

This class has been studied extensively and it is well behaved with respect to several properties:

Theorem (Rubin, 1983)

If A is a subalgebra of Int(L), of cardinality κ uncountable regular, then A has a chain or an anti chain of size κ .

Theorem (Rubin, 1983)

Any subalgebra A of Int(L) is retractive.

<ロ> <同> <同> < 回> < 回>

This class has been studied extensively and it is well behaved with respect to several properties:

Theorem (Rubin, 1983)

If A is a subalgebra of Int(L), of cardinality κ uncountable regular, then A has a chain or an anti chain of size κ .

Theorem (Rubin, 1983)

Any subalgebra A of Int(L) is retractive.

The class of interval algebras is closed under homomorphic images and finite products.

<ロ> <同> <同> < 回> < 回>

The class of Interval Algebras is not closed under subalgebras.

<ロ> <同> <同> < 回> < 回>

UdeC

The class of Interval Algebras is not closed under subalgebras.

Example Let $L = \omega_1$ then Int(L) is not hereditary.

<ロ> <同> <同> < 回> < 回>

UdeC

The class of Interval Algebras is not closed under subalgebras.

Example Let $L = \omega_1$ then Int(L) is not hereditary.

Definition

An interval algebra is *hereditary* if every subalgebra is an interval algebra.

<ロ> <同> <同> < 回> < 回>

Mostowski and Tarski proved that all countable interval algebras are hereditary.

・ロト ・回ト ・ヨト

UdeC

Mostowski and Tarski proved that all countable interval algebras are hereditary.

・ロン ・回 と ・ ヨン・

UdeC

Question

Are there any uncountable hereditary interval algebras?

Mostowski and Tarski proved that all countable interval algebras are hereditary.

<ロ> (四) (四) (三) (三)

UdeC

Question

Are there any uncountable hereditary interval algebras?

Theorem (Bekkali-Todorcevic, 2015)

Every hereditary interval algebra is σ -centered.

Theorem (Nikiel, Purisch, Treybig, 1998)

There is σ -centered interval algebra of cardinality continuum that is not hereditary.

<ロ> (四) (四) (三) (三)

UdeC

Theorem (Nikiel, Purisch, Treybig, 1998)

There is σ -centered interval algebra of cardinality continuum that is not hereditary.

Theorem (Bekkali-Todorcevic, 2015)

Every subalgebra of a σ -centered subalgebra of cardinality $< \mathfrak{b}$ is an interval algebra itself. In particular, every interval algebra over a set of reals of cardinality $< \mathfrak{b}$ is hereditary.

There is a natural cardinal invariant associated to the σ -centered hereditary interval algebras:

<ロ> (四) (四) (三) (三)

UdeC

There is a natural cardinal invariant associated to the σ -centered hereditary interval algebras: Let μ be the minimal cardinality of a σ -centered interval algebra which is not hereditary.

A (1) > A (1) > A

UdeC

There is a natural cardinal invariant associated to the σ -centered hereditary interval algebras: Let μ be the minimal cardinality of a σ -centered interval algebra which is not hereditary.

Remark

It follows from the previous theorems that $\mathfrak{b} \leq \mu \leq \operatorname{non}(\mathcal{M})$.

For each $f \in 2^{\mathbb{Q}}$, let τ_f be the topology over [0, 1] where every irrational has its usual neighborhood basis and a basic neighborhood of a point $q \in \mathbb{Q}$ is of the form $[q, q + \frac{1}{n})$ if f(q) = 0 and $(-\frac{1}{n} + q, q]$ if f(q) = 1.

For each $f \in 2^{\mathbb{Q}}$, let τ_f be the topology over [0,1] where every irrational has its usual neighborhood basis and a basic neighborhood of a point $q \in \mathbb{Q}$ is of the form $[q, q + \frac{1}{n})$ if f(q) = 0 and $(-\frac{1}{n} + q, q]$ if f(q) = 1.

Definition

Let $A(X) = I \times \{0\} \cup (\mathbb{Q} \cup X) \times \{1\} \cup \mathbb{Q} \times \{2\}$ with the topology given by the lexicographical order.

イロト イポト イヨト イヨト

Theorem (M-R)

If \mathbb{Q} is not relatively G_{δ} in $X \cup \mathbb{Q}$ in the τ_f topology, for all $f \in 2^{\mathbb{Q}}$. Then clop(A(X)) is not hereditary.

э

UdeC

Theorem (M-R)

If \mathbb{Q} is not relatively G_{δ} in $X \cup \mathbb{Q}$ in the τ_f topology, for all $f \in 2^{\mathbb{Q}}$. Then clop(A(X)) is not hereditary.

Theorem (M-R)

It is consistent with ZFC that $\mu < \operatorname{non}(\mathcal{M})$.

▲□▶ ▲圖▶ ▲ 直▶ ▲ 直▶ ● 直● ● ● ● ●

UdeC

Carlos Martinez Ranero

Hereditary Interval Algebras

1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼ つへで

UdeC

- 1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.

э

UdeC

- 1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.
- Suppose A(X)/ ~ is orderable by some linear order ≺ then the elements of Q are either below the y₀ = min(Y), or between a jump in Y or above the y₁ = max(Y).

- 1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.
- Suppose A(X)/ ~ is orderable by some linear order ≺ then the elements of Q are either below the y₀ = min(Y), or between a jump in Y or above the y₁ = max(Y).
- 4 $f: Q \to Q \cup X$ without fixed points s.t. f(q) is a jump and $q \in (f(q), f(q)^+)_{\prec}$ or $q \in (f(q)^+, f(q))_{\prec}$.

- 1 $\pi : A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.
- Suppose A(X)/ ~ is orderable by some linear order ≺ then the elements of Q are either below the y₀ = min(Y), or between a jump in Y or above the y₁ = max(Y).
- 4 $f: Q \to Q \cup X$ without fixed points s.t. f(q) is a jump and $q \in (f(q), f(q)^+)_{\prec}$ or $q \in (f(q)^+, f(q))_{\prec}$.
- 5 $A \subset Q$ then $A' = f(A) \cup f(A)'$.

- 1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.
- Suppose A(X)/ ~ is orderable by some linear order ≺ then the elements of Q are either below the y₀ = min(Y), or between a jump in Y or above the y₁ = max(Y).
- 4 $f: Q \to Q \cup X$ without fixed points s.t. f(q) is a jump and $q \in (f(q), f(q)^+)_{\prec}$ or $q \in (f(q)^+, f(q))_{\prec}$.
- 5 $A \subset Q$ then $A' = f(A) \cup f(A)'$.
- 6 $\forall x \in X \ F_x = \{q : x \in (q, f(q))\}$ is finite.

イロン 不同 とくほう イロン

- 1 $\pi: A(X) \rightarrow A(X) / \sim$, where $(q, 0) \sim (q, 2)$.
- 2 We can think of $A(X)/\sim$ as $Y \cup Q$, where $Y = I \times \{0\} \cup X \times \{1\}$ and $Q = \mathbb{Q} \cap (0, 1)$.
- Suppose A(X)/ ~ is orderable by some linear order ≺ then the elements of Q are either below the y₀ = min(Y), or between a jump in Y or above the y₁ = max(Y).
- 4 $f: Q \to Q \cup X$ without fixed points s.t. f(q) is a jump and $q \in (f(q), f(q)^+)_{\prec}$ or $q \in (f(q)^+, f(q))_{\prec}$.
- 5 $A \subset Q$ then $A' = f(A) \cup f(A)'$.
- 6 $\forall x \in X \ F_x = \{q : x \in (q, f(q))\}$ is finite.
- 7 $X_N = \{x \in X : |F_x| = N\}$ es G_{δ} in the τ_f topology.

イロン 不同 とくほう イロン

Thank you!

Carlos Martinez Ranero Hereditary Interval Algebras UdeC

2

・ロト ・回ト ・ヨト ・ヨト