Lelek fan and Poulsen simplex as Fraïssé limits

Aleksandra Kwiatkowska

University of Bonn joint work with Wiesław Kubiś

July 26, 2016

Definitions

 $oldsymbol{\circ}$ C a category whose objects are non-empty compact second countable metric spaces

Definitions

- $m{\cdot}$ C a category whose objects are non-empty compact second countable metric spaces
- arrows are pairs of the form $\langle e,p\rangle$, where $e\colon K\to L$ is a continuous injection and $p\colon L\to K$ is a continuous surjection satisfying $p\circ e=\mathrm{id}_K$, and usually some additional properties

Definitions

- C a category whose objects are non-empty compact second countable metric spaces
- arrows are pairs of the form $\langle e, p \rangle$, where $e \colon K \to L$ is a continuous injection and $p \colon L \to K$ is a continuous surjection satisfying $p \circ e = \mathrm{id}_K$, and usually some additional properties
- so the arrows are retractions onto K

Definitions - metric

- Assume that each $K \in \mathrm{Ob}(\mathcal{C})$ is equipped with a metric d_K .
- Given two C-arrows $f,g:K\to L$, $f=\langle e,p\rangle$, $g=\langle i,q\rangle$, we define

$$d(f,g) = egin{cases} \max_{y \in L} d_K(p(y),q(y)) & ext{if } e = i, \ +\infty & ext{otherwise.} \end{cases}$$

Definitions - metric

- Assume that each $K \in \mathrm{Ob}(\mathcal{C})$ is equipped with a metric d_K .
- Given two \mathcal{C} -arrows $f,g\colon K\to L$, $f=\langle e,p\rangle$, $g=\langle i,q\rangle$, we define

$$d(f,g) = egin{cases} \max_{y \in L} d_{\mathcal{K}}(p(y),q(y)) & \text{if } e = i, \\ +\infty & \text{otherwise.} \end{cases}$$

• \mathcal{C} equipped with the metric d on each $\mathsf{Hom}(K,L)$ is a metric category if $d(f_0 \circ g, f_1 \circ g) \leq d(f_0, f_1)$ and $d(h \circ f_0, h \circ f_1) \leq d(f_0, f_1)$, whenever the composition makes sense.

Definitions - amalgamation

• C is directed if for every $A, B \in C$ there is $C \in C$ such that there exist arrows from A to C and from B to C.

Definitions - amalgamation

- C is directed if for every $A, B \in C$ there is $C \in C$ such that there exist arrows from A to C and from B to C.
- $\mathcal C$ has the almost amalgamation property if for every $\mathcal C$ -arrows $f\colon A\to B,\ g\colon A\to C$, for every $\varepsilon>0$, there exist $\mathcal C$ -arrows $f'\colon B\to D,\ g'\colon C\to D$ such that $d(f'\circ f,g'\circ g)<\varepsilon.$

Definitions - amalgamation

- C is directed if for every $A, B \in C$ there is $C \in C$ such that there exist arrows from A to C and from B to C.
- \mathcal{C} has the almost amalgamation property if for every \mathcal{C} -arrows $f: A \to B$, $g: A \to C$, for every $\varepsilon > 0$, there exist \mathcal{C} -arrows $f': B \to D$, $g': C \to D$ such that $d(f' \circ f, g' \circ g) < \varepsilon$.
- \mathcal{C} has the strict amalgamation property if we can have f' and g' as above satisfying $f' \circ f = g' \circ g$.

Definitions - separability

 ${\mathcal C}$ is separable if there is a countable subcategory ${\mathcal F}$ such that

- (1) for every $X \in \mathsf{Ob}(\mathcal{C})$ there are $A \in \mathsf{Ob}(\mathcal{F})$ and a \mathcal{C} -arrow $f: X \to A$;
- (2) for every \mathcal{C} -arrow $f:A\to Y$ with $A\in \mathrm{Ob}(\mathcal{F})$, for every $\varepsilon>0$ there exists an \mathcal{C} -arrow $g:Y\to B$ and an \mathcal{F} -arrow $u:A\to B$ such that $d(g\circ f,u)<\varepsilon$.

Definitions - Fraïssé sequence

C-sequence $\vec{U} = \langle U_m; u_m^n \rangle$ is a Fraïssé sequence if the following holds:

(F) Given $\varepsilon > 0$, $m \in \omega$, and an arrow $f: U_m \to F$, where $F \in \mathrm{Ob}(\mathcal{C})$, there exist m < n and an arrow $g: F \to U_n$ such that $d(g \circ f, u_m^n) < \varepsilon$.

Criterion for a Fraïssé sequence

Theorem (Kubiś)

Let $\mathcal C$ be a directed metric category with objects and arrows as before that has the almost amalgamation property. The following conditions are equivalent:

- (a) C is separable.
- (b) C has a Fraïssé sequence.

Theorem (Kubiś)

Under assumptions of the previous theorem and separability we have:

- Uniqueness There exists exactly one Fraissé sequence \vec{U} (up to an isomorphism).
- **2** Universality For every sequence \vec{X} in C there is an arrow $f: \vec{X} \to \vec{U}$.
- **3** Almost homogeneity For every $A, B \in Ob(C)$ and for all arrows $i: A \rightarrow \vec{U}, j: B \rightarrow \vec{U}$, for every arrow $f: A \rightarrow B$, for every $\varepsilon > 0$, there exists an isomorphism $H: \vec{U} \rightarrow \vec{U}$ such that $d(j \circ f, H \circ i) < \varepsilon$.

In our examples we will have almost homogeneity for sequences in $\mathcal C$ as well.

• C – the Cantor set

- C the Cantor set
- ullet Cantor fan V is the cone over the Cantor set:

$$C\times [0,1]/C\times \{1\}$$

- C − the Cantor set
- Cantor fan V is the cone over the Cantor set: $C \times [0,1]/C \times \{1\}$
- Lelek fan $\mathbb L$ is a non-trivial closed connected subset of V containing the top point, which has a dense set of endpoints in $\mathbb L$

About the Lelek fan

• Lelek fan was constructed by Lelek in 1960

About the Lelek fan

Lelek fan was constructed by Lelek in 1960

 Lelek fan is unique: any two are homeomorphic (Bula-Oversteegen 1990 and Charatonik 1989)

Geometric fans

Definition

A geometric fan is a closed connected subset of the Cantor fan containing the top point

The category $\mathfrak F$

• Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .

The category $\mathfrak F$

- Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .
- $f: F \to G$ is affine if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0,1)$.
- $f: F \to G$ is a stable embedding if it is a one-to-one affine map such that endpoints are mapped to endpoints.

The category $\mathfrak F$

- Objects are finite geometric fans, metric inherited from \mathbb{R}^2 .
- $f: F \to G$ is affine if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0,1)$.
- $f: F \to G$ is a stable embedding if it is a one-to-one affine map such that endpoints are mapped to endpoints.
- An arrow from F to G is a pair $\langle e, p \rangle$ such that $e \colon F \to G$ is a stable embedding, $p \colon G \to F$ is a 1-Lipschitz affine surjection and $p \circ e = \mathrm{id}_F$.

Properties

- ullet Geometric fans = inverse limits of sequences in ${\mathfrak F}$
- ullet The category ${\mathfrak F}$ is directed and has the strict amalgamation property
- ullet is a separable metric category

Fraïssé sequences

Theorem (Kubiś - K)

Let \vec{U} be a sequence in \mathfrak{F} and let U_{∞} be its inverse limit. The following properties are equivalent:

- (a) The set of endpoints $E(U_{\infty})$ is dense in U_{∞} .
- (b) \vec{U} is a Fraïssé sequence.

- uniqueness of a Fraïssé sequence
 The Lelek fan is a unique smooth fan whose set of end-points is dense.
- universality with respect to all geometric fans
 For every geometric fan F there are a stable embedding e into the Lelek fan $\mathbb L$ and a 1-Lipschitz affine retraction p from $\mathbb L$ onto F such that $p \circ e = \mathrm{id}_F$.

• almost homogeneity with respect to all geometric fans Let F be a geometric fan stably embedded in \mathbb{L} and let $f,g:\mathbb{L}\to F$ be continuous affine surjections. Then for every $\varepsilon>0$ there is a homeomorphism $h:\mathbb{L}\to\mathbb{L}$ such that for every $x\in\mathbb{L}$, $d_F(f\circ h(x),g(x))<\varepsilon$.

• almost homogeneity with respect to all geometric fans Let F be a geometric fan stably embedded in \mathbb{L} and let $f,g:\mathbb{L}\to F$ be continuous affine surjections. Then for every $\varepsilon>0$ there is a homeomorphism $h:\mathbb{L}\to\mathbb{L}$ such that for every $x\in\mathbb{L}$, $d_F(f\circ h(x),g(x))<\varepsilon$.

Remark

in 2015, Bartošová and Kwiatkowska obtained uniqueness, universality, and almost homogeneity of the Lelek fan in the context of the projective Fraïssé theory.

Extreme points

Definition

A point x in a compact convex set K of a topological vector space is an extreme point if whenever $x = \lambda y + (1 - \lambda)z$ for some $\lambda \in [0,1]$, $y,z \in K$, then $\lambda = 0$ or $\lambda = 1$.

The set of extreme points of K is denoted by ext K.

Simplices

Definition

A simplex is a non-empty compact convex and metrizable set K in a locally convex linear topological space such that every $x \in K$ has a unique probability measure μ supported on ext K and such that

$$f(x) = \int_{K} f \, d\mu$$

for every continuous affine function $f: K \to \mathbb{R}$.

Finite dimensional simplices

Example

Finite-dimensional simplex Δ_n

$$\{x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x(i) = 1 \text{ and } x(i) \ge 0 \text{ for every } i = 1, \dots, n+1\}$$

In particular, Δ_0 is a singleton, Δ_1 is a closed interval, and Δ_2 is a triangle.

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in '61.

The Poulsen simplex

Definition

The Poulsen simplex is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in '61.

Remark

Uniqueness was proved by Lindenstrauss, Olsen, and Sternfeld in '78.

The category $\mathfrak S$

• Objects are finite-dimensional simplices.

The category $\mathfrak S$

- Objects are finite-dimensional simplices.
- $p: L \to K$ is affine if for any $x, y \in L$ and $\lambda \in [0, 1]$ we have $p(\lambda x + (1 \lambda)y) = \lambda p(x) + (1 \lambda)p(y)$.
- Stable embedding is a one-to-one affine map such that extreme points are mapped to extreme points.

The category

The category $\mathfrak S$

- Objects are finite-dimensional simplices.
- $p: L \to K$ is affine if for any $x, y \in L$ and $\lambda \in [0, 1]$ we have $p(\lambda x + (1 \lambda)y) = \lambda p(x) + (1 \lambda)p(y)$.
- Stable embedding is a one-to-one affine map such that extreme points are mapped to extreme points.
- An arrow from K to L is a pair $\langle e,p\rangle$ such that $e\colon K\to L$ is a stable embedding, $p\colon L\to K$ is an affine projection and $p\circ e=\mathrm{id}_K.$

Properties

Theorem (Lazar-Lindenstrauss '71)

Metrizable simplices are, up to affine homeomorphisms, precisely the limits of inverse sequences in \mathfrak{S} .

- \bullet The category $\mathfrak S$ is directed and has the strict amalgamation property
- S is a separable metric category

Fraïssé sequences

Theorem (Kubiś - K)

Let \vec{U} be a sequence in \mathfrak{S} and let K be its inverse limit. The following properties are equivalent:

- (a) The set ext K is dense in K.
- (b) \vec{U} is a Fraïssé sequence.

Consequences

- uniqueness of a Fraïssé sequence
 The Poulsen simplex P is unique, up to affine homeomorphisms.
- universality with respect to all simplices
 Every metrizable simplex is affinely homeomorphic to a face of P.

Consequences

• almost homogeneity with respect to all simplices Let F be a simplex and let $f,g:\mathbb{P}\to F$ be affine and continuous. Then for every $\varepsilon>0$ there is an affine homeomorphism $H\colon\mathbb{P}\to\mathbb{P}$ such that for every $x\in\mathbb{P}$, $d_F(f\circ H(x),g(x))<\varepsilon$, where d_F is a fixed compatible metric on F.

Remark

Uniqueness, universality, and homogeneity of \mathbb{P} were proved by Lindenstrauss, Olsen, and Sternfeld in '78.

Homogeneity results

Remark

Let $S,T\subseteq E(\mathbb{L})$ be finite sets. Then there exists an affine homeomorphism $h\colon \mathbb{L}\to \mathbb{L}$ such that h[S]=T

Homogeneity results

Remark

Let $S,T\subseteq E(\mathbb{L})$ be finite sets. Then there exists an affine homeomorphism $h\colon \mathbb{L}\to \mathbb{L}$ such that h[S]=T

Theorem (Kubiś - K)

Let $A, B \subseteq E(\mathbb{L})$ be countable dense sets. Then there exists an affine homeomorphism $h \colon \mathbb{L} \to \mathbb{L}$ such that h[A] = B.

Comments

 Kawamura, Oversteegen, and Tymchatyn in '96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.

Comments

- Kawamura, Oversteegen, and Tymchatyn in '96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.
- There exists a homeomorphism $h \colon E(\mathbb{L}) \to E(\mathbb{L})$ such that for no homeomorphism $f \colon \mathbb{L} \to \mathbb{L}$, we have $f \upharpoonright E(\mathbb{L}) = h$.

Generalization of the category ${\mathfrak F}$

- F be a geometric fan
- E(F) the set of endpoints of F
- A skeleton in F is a convex set $D \subseteq F$ such that E(D) is countable, contained in E(F) and dense in E(F).

Generalization of the category $\mathfrak F$

• Let \mathfrak{F}^d be the category whose objects are pairs of finite geometric fans (F^1, F^2) with $F^1 = F^2$.

Generalization of the category $\mathfrak F$

- Let \mathfrak{F}^d be the category whose objects are pairs of finite geometric fans (F^1, F^2) with $F^1 = F^2$.
- An arrow from (F^1, F^2) to (G^1, G^2) is a pair $\langle e, p \rangle$ such that $e \colon F^1 \to G^1$ is a stable embedding, $p \colon G^2 \to F^2$ is a 1-Lipschitz affine retraction and $p \circ e = \mathrm{id}_F$.

Generalization of the category $\mathfrak F$

- \bullet The category \mathfrak{F}^d is directed and has the strict amalgamation property.
- $oldsymbol{\mathfrak{F}}^d$ is a separable metric category, therefore it has a unique up to isomorphism Fraı̈ssé sequence.
- Its limit is (D, \mathbb{L}) for some skeleton D in \mathbb{L} .

Generalization of the category \mathfrak{F}

To show the main theorem we need the following lemma:

Lemma

Let L be a geometric fan and let D be a skeleton in L. Then there exist a geometric fan L', a skeleton D' of L', and an affine (not necessarily 1-Lipschitz) homeomorphism $h\colon L\to L'$ with h(D)=D' such that there is a sequence \vec{F} in \mathfrak{F}^d satisfying $L'=\varprojlim \vec{F}$ and $D'=\varinjlim \vec{F}$.