On κ -metrizable spaces

Andrzej Kucharski, Sławomir Turek

Twelfth Symposium on General Topology and its Relations to Modern Analysis and Algebra

July 25-29, 2016, Prague

∃ → (∃ →

The concept of a κ -metrizable spaces was introduced by Shchepin 1976.

All topological spaces under consideration are assumed to be at least Tichonov.

A set $A \subseteq X$ is *regular closed* if clint A = A. For a topological space X let RC(X) denote the set of all regular closed sets and CO(X) denote the set of all closed and open sets .

Let (X, d) be a metrizable space. The distance

 $\rho(x,F) = \inf\{d(x,y) : y \in F\}$

has the following properties for any $F \in RC(X)$:

(K1) ρ(x, C) = 0 if and only if x ∈ C for any x ∈ X and C ∈ RC(X),
(K2) If C ⊆ D, then ρ(x, C) ≥ ρ(x, D) for any x ∈ X and C, D ∈ RC(X),
(K3) ρ(⋅, C) is a continuous function for any x ∈ X,
(K4) ρ(x, cl(U_{α<λ} C_α)) = inf_{α<λ} ρ(x, C_α) for any non-decreasing totally ordered sequence {C_α : α < λ} ⊆ RC(X) and any x ∈ X.

A topological space X is κ -metrizable if there exists a non-negative function $\rho: X \times RC(X) \rightarrow [0, \infty)$ satisfying the following axioms

(K1) $\rho(x, C) = 0$ if and only if $x \in C$ for any $x \in X$ and $C \in RC(X)$, (K2) If $C \subseteq D$, then $\rho(x, C) \ge \rho(x, D)$ for any $x \in X$ and $C, D \in RC(X)$, (K3) $\rho(\cdot, C)$ is a continuous function for any $x \in X$, (K4) $\rho(x, cl(\bigcup_{\alpha < \lambda} C_{\alpha})) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha})$ for any non-decreasing totally ordered sequence $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ and any $x \in X$.

Ve say that ρ is κ -metric if it satisfies condition (K1) - (K4)

A topological space X is κ -metrizable if there exists a non-negative function $\rho: X \times RC(X) \rightarrow [0, \infty)$ satisfying the following axioms

(K1) ρ(x, C) = 0 if and only if x ∈ C for any x ∈ X and C ∈ RC(X),
(K2) If C ⊆ D, then ρ(x, C) ≥ ρ(x, D) for any x ∈ X and C, D ∈ RC(X),
(K3) ρ(⋅, C) is a continuous function for any x ∈ X,
(K4) ρ(x, cl(U_{α<λ} C_α)) = inf_{α<λ} ρ(x, C_α) for any non-decreasing totally ordered sequence {C_α : α < λ} ⊆ RC(X) and any x ∈ X.

We say that ρ is κ -metric if it satisfies condition (K1) - (K4).

• all metrizable spaces are κ -metrizable,

- Sorgenfrey line with function ρ(x, C) = d(x, C ∩ [x, ∞)) is κ-metrizable space,
- a dense (open, regular closed) subspace of a κ-metrizable space is κ-metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

< 回 ト < 三 ト < 三 ト

- all metrizable spaces are κ -metrizable,
- Sorgenfrey line with function $\rho(x, C) = d(x, C \cap [x, \infty))$ is κ -metrizable space,
- a dense (open, regular closed) subspace of a κ -metrizable space is κ -metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

< 回 ト < 三 ト < 三 ト

- all metrizable spaces are κ -metrizable,
- Sorgenfrey line with function ρ(x, C) = d(x, C ∩ [x, ∞)) is κ-metrizable space,
- a dense (open, regular closed) subspace of a κ -metrizable space is κ -metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

くほと くほと くほと

- all metrizable spaces are κ -metrizable,
- Sorgenfrey line with function $\rho(x, C) = d(x, C \cap [x, \infty))$ is κ -metrizable space,
- a dense (open, regular closed) subspace of a κ -metrizable space is κ -metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

くほと くほと くほと

- all metrizable spaces are κ -metrizable,
- Sorgenfrey line with function $\rho(x, C) = d(x, C \cap [x, \infty))$ is κ -metrizable space,
- a dense (open, regular closed) subspace of a κ -metrizable space is κ -metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

イロト 不得下 イヨト イヨト

- all metrizable spaces are κ -metrizable,
- Sorgenfrey line with function $\rho(x, C) = d(x, C \cap [x, \infty))$ is κ -metrizable space,
- a dense (open, regular closed) subspace of a κ -metrizable space is κ -metrizable,
- Dugundji spaces (AE(0)),
- the product of any family of κ -metrizable spaces is κ -metrizable,
- every locally compact topological group is κ -metrizable.

If ρ fulfills condition (K1) – (K3)

(K1) $\rho(x, C) = 0$ if and only if $x \in C$ for any $x \in X$ and $C \in RC(X)$, (K2) If $C \subseteq D$, then $\rho(x, C) \ge \rho(x, D)$ for any $x \in X$ and $C, D \in RC(X)$, (K3) $\rho(\cdot, C)$ is a continuous function for any $x \in X$,

and

$$(K4_{\omega}) \rho(x, \mathsf{cl}(\bigcup_{n < \omega} C_n)) = \inf_{n < \omega} \rho(x, C_n)$$

for any chain $\{C_n : n < \omega\} \subseteq \mathsf{RC}(X)$ and any $x \in X$,

then we say that ρ is *countable* κ -*metric*.

We say that X is countable κ -metrizable if there exists countable κ -metric.

イロト イポト イヨト イヨト 二日

If ρ fulfills condition (K1) – (K3)

(K1) $\rho(x, C) = 0$ if and only if $x \in C$ for any $x \in X$ and $C \in RC(X)$, (K2) If $C \subseteq D$, then $\rho(x, C) \ge \rho(x, D)$ for any $x \in X$ and $C, D \in RC(X)$, (K3) $\rho(\cdot, C)$ is a continuous function for any $x \in X$,

and

$$(K4_{\omega}) \rho(x, \operatorname{cl}(\bigcup_{n < \omega} C_n)) = \inf_{n < \omega} \rho(x, C_n)$$

for any chain $\{C_n : n < \omega\} \subseteq \mathsf{RC}(X)$ and any $x \in X$,

then we say that ρ is *countable* κ -*metric*.

We say that X is countable κ -metrizable if there exists countable κ -metric.

If ρ fulfills condition (K1) – (K3)

(K1) $\rho(x, C) = 0$ if and only if $x \in C$ for any $x \in X$ and $C \in RC(X)$, (K2) If $C \subseteq D$, then $\rho(x, C) \ge \rho(x, D)$ for any $x \in X$ and $C, D \in RC(X)$, (K3) $\rho(\cdot, C)$ is a continuous function for any $x \in X$,

and

$$(K4_{\omega}) \rho(x, \operatorname{cl}(\bigcup_{n < \omega} C_n)) = \inf_{n < \omega} \rho(x, C_n)$$

for any chain $\{C_n : n < \omega\} \subseteq \mathsf{RC}(X)$ and any $x \in X$,

then we say that ρ is *countable* κ -*metric*.

We say that X is countable κ -metrizable if there exists countable κ -metric.

Let $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ be a non-decreasing totally ordered sequence and $\lambda > \aleph_0$.

By countable chain condition there exists $\alpha < \lambda$ such that $C_{\beta} = C_{\alpha}$ for all $\alpha \leq \beta$.

Hence we get

$$\rho(x, \operatorname{cl}(\bigcup_{\alpha < \lambda} C_{\alpha})) = \rho(x, C_{\alpha+1}) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha}).$$

If $\lambda = \aleph_0$ then we apply condition $(K4_\omega)$.

- 3

(日) (周) (三) (三)

Let $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ be a non-decreasing totally ordered sequence and $\lambda > \aleph_0$.

By countable chain condition there exists $\alpha < \lambda$ such that $C_{\beta} = C_{\alpha}$ for all $\alpha \leq \beta$.

Hence we get

$$\rho(x, \operatorname{cl}(\bigcup_{\alpha < \lambda} C_{\alpha})) = \rho(x, C_{\alpha+1}) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha}).$$

If $\lambda = \aleph_0$ then we apply condition $(K4_{\omega})$.

- 3

イロト イポト イヨト イヨト

Let $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ be a non-decreasing totally ordered sequence and $\lambda > \aleph_0$.

By countable chain condition there exists $\alpha < \lambda$ such that $C_{\beta} = C_{\alpha}$ for all $\alpha \leq \beta$.

Hence we get

$$\rho(x, \operatorname{cl}(\bigcup_{\alpha < \lambda} C_{\alpha})) = \rho(x, C_{\alpha+1}) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha}).$$

If $\lambda = \aleph_0$ then we apply condition $(K4_{\omega})$.

イロト イポト イヨト イヨト 二日

Let $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ be a non-decreasing totally ordered sequence and $\lambda > \aleph_0$.

By countable chain condition there exists $\alpha < \lambda$ such that $C_{\beta} = C_{\alpha}$ for all $\alpha \leq \beta$.

Hence we get

$$\rho(x, \operatorname{cl}(\bigcup_{\alpha < \lambda} C_{\alpha})) = \rho(x, C_{\alpha+1}) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha}).$$

If $\lambda = \aleph_0$ then we apply condition $(K4_{\omega})$.

イロト イポト イヨト イヨト 二日

Let $\{C_{\alpha} : \alpha < \lambda\} \subseteq RC(X)$ be a non-decreasing totally ordered sequence and $\lambda > \aleph_0$.

By countable chain condition there exists $\alpha < \lambda$ such that $C_{\beta} = C_{\alpha}$ for all $\alpha \leq \beta$.

Hence we get

$$\rho(x, \operatorname{cl}(\bigcup_{\alpha < \lambda} C_{\alpha})) = \rho(x, C_{\alpha+1}) = \inf_{\alpha < \lambda} \rho(x, C_{\alpha}).$$

If $\lambda = \aleph_0$ then we apply condition $(K4_{\omega})$.

・何・ ・ヨ・ ・ヨ・ ・ヨ

Example

Let τ be a measurable cardinal, i.e. an uncountable cardinal such that there exists a τ -complete nonprincipal ultrafilter ξ on τ . We consider $X = \tau \cup \{\xi\}$ with a topology inherit from Čech-Stone compactification of τ .

If τ is measurable cardinal (there exists \aleph_1 -complete ultrafilter on τ) then there exists countable κ -metric two-valued.

If τ is the least cardinal that carries a countable κ -metric two-valued, then τ is measurable cardinal.

Example

Let τ be a measurable cardinal, i.e. an uncountable cardinal such that there exists a τ -complete nonprincipal ultrafilter ξ on τ . We consider $X = \tau \cup \{\xi\}$ with a topology inherit from Čech-Stone compactification of τ .

If τ is measurable cardinal (there exists \aleph_1 -complete ultrafilter on τ) then there exists countable κ -metric two-valued.

If τ is the least cardinal that carries a countable κ -metric two-valued, then τ is measurable cardinal.

Example

Let τ be a measurable cardinal, i.e. an uncountable cardinal such that there exists a τ -complete nonprincipal ultrafilter ξ on τ . We consider $X = \tau \cup \{\xi\}$ with a topology inherit from Čech-Stone compactification of τ .

If τ is measurable cardinal (there exists \aleph_1 -complete ultrafilter on τ) then there exists countable κ -metric two-valued.

If au is the least cardinal that carries a countable κ -metric two-valued, then au is measurable cardinal.

Example

Let τ be a measurable cardinal, i.e. an uncountable cardinal such that there exists a τ -complete nonprincipal ultrafilter ξ on τ . We consider $X = \tau \cup \{\xi\}$ with a topology inherit from Čech-Stone compactification of τ .

If τ is measurable cardinal (there exists \aleph_1 -complete ultrafilter on τ) then there exists countable κ -metric two-valued.

If τ is the least cardinal that carries a countable κ -metric two-valued, then τ is measurable cardinal.

Define a countable $\kappa\text{-metric}$ by the followig condition

$$\rho(x, C) = \begin{cases} 1 & \text{if } x \notin C, \\ 0 & \text{if } x \in C \end{cases}$$

where $C \in RC(X)$.

The function ρ is the countable κ -metric.

(日) (周) (三) (三)

Define a countable κ -metric by the followig condition

$$\rho(x, C) = \begin{cases} 1 & \text{if } x \notin C, \\ 0 & \text{if } x \in C \end{cases}$$

where $C \in RC(X)$.

The function ρ is the countable κ -metric.

3

(日) (周) (三) (三)

Let $\{C_n : n \in \omega\} \subseteq RC(X)$ be an increasing sequence and $x \in X$. If there exists $n_0 \in \omega$ such that $x \in C_{n_0}$ then we get

$$\rho(x, \operatorname{cl} \bigcup_{n \in \omega} C_n) = 0 = \rho(x, C_{n_0}) = \inf \{ \rho(x, C_n) : n \in \omega \}.$$

Otherwise $x \notin C_n$ for every $n \in \omega$.

Assume that $x \in \operatorname{cl} \bigcup_{n \in \omega} C_n$

If $x \neq \xi$ then $\{x\} \cap \bigcup_{n \in \omega} C_n = \emptyset$, a contradiction.

If $x = \xi$ then $\tau \setminus C_n \in \xi$ for every $n \in \omega$. By \aleph_1 -completnes $D = \bigcap_{n \in \omega} (\tau \setminus C_n) \in \xi$. Hence

$(D \cup \{\xi\}) \cap \bigcup_{n \in \omega} C_n = \emptyset,$

a contradiction.

Let $\{C_n : n \in \omega\} \subseteq RC(X)$ be an increasing sequence and $x \in X$.

If there exists $n_0 \in \omega$ such that $x \in C_{n_0}$ then we get

$$\rho(x, \operatorname{cl} \bigcup_{n \in \omega} C_n) = 0 = \rho(x, C_{n_0}) = \inf \{ \rho(x, C_n) : n \in \omega \}.$$

Otherwise $x \notin C_n$ for every $n \in \omega$.

Assume that $x \in \operatorname{cl} \bigcup_{n \in \omega} C_n$

If $x \neq \xi$ then $\{x\} \cap \bigcup_{n \in \omega} C_n = \emptyset$, a contradiction.

If $x = \xi$ then $\tau \setminus C_n \in \xi$ for every $n \in \omega$. By \aleph_1 -completnes $D = \bigcap_{n \in \omega} (\tau \setminus C_n) \in \xi$. Hence

$$(D \cup \{\xi\}) \cap \bigcup_{n \in \omega} C_n = \emptyset,$$

a contradiction.

Let $\{C_n : n \in \omega\} \subseteq RC(X)$ be an increasing sequence and $x \in X$.

If there exists $n_0 \in \omega$ such that $x \in C_{n_0}$ then we get

$$\rho(x, \operatorname{cl} \bigcup_{n \in \omega} C_n) = 0 = \rho(x, C_{n_0}) = \inf \{ \rho(x, C_n) : n \in \omega \}.$$

Otherwise $x \notin C_n$ for every $n \in \omega$.

Assume that $x \in \operatorname{cl} \bigcup_{n \in \omega} C_n$.

If $x \neq \xi$ then $\{x\} \cap \bigcup_{n \in \omega} C_n = \emptyset$, a contradiction.

If $x = \xi$ then $\tau \setminus C_n \in \xi$ for every $n \in \omega$. By \aleph_1 -completnes $D = \bigcap_{n \in \omega} (\tau \setminus C_n) \in \xi$. Hence

$$(D \cup \{\xi\}) \cap \bigcup_{n \in \omega} C_n = \emptyset,$$

a contradiction.

But ρ is not κ -metric.

Let $C_{\alpha} = \alpha$ for $\alpha < \tau$. Then we have $\rho(\xi, cl \bigcup \{C_{\alpha} : \alpha < \tau\}) = 0$ but $\inf \{\rho(\xi, C_{\alpha}) : \alpha < \tau\} = 1$.

This space is not even κ -metrizable.

・ロン ・四 ・ ・ ヨン ・ ヨン

- 3

But ρ is not κ -metric.

Let $C_{\alpha} = \alpha$ for $\alpha < \tau$. Then we have $\rho(\xi, cl \bigcup \{C_{\alpha} : \alpha < \tau\}) = 0$ but $\inf \{\rho(\xi, C_{\alpha}) : \alpha < \tau\} = 1$.

This space is not even κ -metrizable.

(日) (周) (三) (三)

- 31

Let $\{D_n : n \in \omega\} \subset \xi$. Suppose that $\bigcap \{D_n : n \in \omega\} \notin \xi$.

Then $\tau \setminus \bigcap \{D_n : n \in \omega\} = \bigcup \{F_n : n \in \omega\} \in \xi$, where $\tau \setminus D_1 \cup \ldots \cup \tau \setminus D_n = F_n \in CO(X)$.

But $0 = \rho(\xi, cl \bigcup \{F_n : n \in \omega\}) = \inf \{\rho(x, F_n) : n \in \omega\} = 1$, a contradiction.

We proved that τ is \aleph_1 -complete. Since τ is the least \aleph_1 -complete cardinal, we get τ is measurable cardinal.

Let $\{D_n : n \in \omega\} \subset \xi$. Suppose that $\bigcap \{D_n : n \in \omega\} \notin \xi$.

Then $\tau \setminus \bigcap \{D_n : n \in \omega\} = \bigcup \{F_n : n \in \omega\} \in \xi$, where $\tau \setminus D_1 \cup \ldots \cup \tau \setminus D_n = F_n \in CO(X)$.

But $0 = \rho(\xi, \operatorname{cl} \bigcup \{F_n : n \in \omega\}) = \inf \{\rho(x, F_n) : n \in \omega\} = 1$, a contradiction.

We proved that τ is \aleph_1 -complete. Since τ is the least \aleph_1 -complete cardinal, we get τ is measurable cardinal.

Let $\{D_n : n \in \omega\} \subset \xi$. Suppose that $\bigcap \{D_n : n \in \omega\} \notin \xi$.

Then
$$\tau \setminus \bigcap \{D_n : n \in \omega\} = \bigcup \{F_n : n \in \omega\} \in \xi$$
, where $\tau \setminus D_1 \cup \ldots \cup \tau \setminus D_n = F_n \in CO(X)$.

But $0 = \rho(\xi, cl \bigcup \{F_n : n \in \omega\}) = \inf \{\rho(x, F_n) : n \in \omega\} = 1$, a contradiction.

We proved that τ is \aleph_1 -complete. Since τ is the least \aleph_1 -complete cardinal, we get τ is measurable cardinal.

イロト イポト イヨト イヨト

Let $\{D_n : n \in \omega\} \subset \xi$. Suppose that $\bigcap \{D_n : n \in \omega\} \notin \xi$.

Then $\tau \setminus \bigcap \{D_n : n \in \omega\} = \bigcup \{F_n : n \in \omega\} \in \xi$, where $\tau \setminus D_1 \cup \ldots \cup \tau \setminus D_n = F_n \in CO(X)$.

But $0 = \rho(\xi, cl \bigcup \{F_n : n \in \omega\}) = \inf \{\rho(x, F_n) : n \in \omega\} = 1$, a contradiction.

We proved that τ is \aleph_1 -complete. Since τ is the least \aleph_1 -complete cardinal, we get τ is measurable cardinal.

Let $\{D_n : n \in \omega\} \subset \xi$. Suppose that $\bigcap \{D_n : n \in \omega\} \notin \xi$.

Then $\tau \setminus \bigcap \{D_n : n \in \omega\} = \bigcup \{F_n : n \in \omega\} \in \xi$, where $\tau \setminus D_1 \cup \ldots \cup \tau \setminus D_n = F_n \in CO(X)$.

But $0 = \rho(\xi, cl \bigcup \{F_n : n \in \omega\}) = \inf \{\rho(x, F_n) : n \in \omega\} = 1$, a contradiction.

We proved that τ is \aleph_1 -complete. Since τ is the least \aleph_1 -complete cardinal, we get τ is measurable cardinal.

Question

Is there exist a countable κ -metrizable space which is not κ -metrizable in ZFC?

A B A A B A

A continuous surjection $f : X \to Y$ is said to be *d-open* if the image f[U] is dense in a non-empty open subset $V \subseteq Y$, whenever $U \subseteq X$ is open and non-empty, i.e. $f[U] \subseteq V$ and $cl_Y f[U] = cl_Y V$. The notion of d-open maps was introduced by M. G. Tkachenko 1981.

A function

 $f: \mathbb{R} \times \{0\} \cup \mathbb{Q} \times \{1\} \to \mathbb{R},$

defined by the formula f(x, i) = x for any $x \in \mathbb{R}, i \in \{0, 1\}$ is an example of d-open but not open map.

イロト イポト イヨト イヨト 二日

A continuous surjection $f : X \to Y$ is said to be *d-open* if the image f[U] is dense in a non-empty open subset $V \subseteq Y$, whenever $U \subseteq X$ is open and non-empty, i.e. $f[U] \subseteq V$ and $cl_Y f[U] = cl_Y V$. The notion of d-open maps was introduced by M. G. Tkachenko 1981.

A function

$$f: \mathbb{R} \times \{0\} \cup \mathbb{Q} \times \{1\} \to \mathbb{R},$$

defined by the formula f(x, i) = x for any $x \in \mathbb{R}, i \in \{0, 1\}$ is an example of d-open but not open map.

Main Theorem

We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Sigma$. We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$.

Theorem

If X is pseudocompact countable κ -metrizable space, then

$$X = a - \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\},\$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are open. Moreover the space $Y = \lim_{\varepsilon \to 0} \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is Čech-Stone compactification of X.

・ロト ・四ト ・ヨト ・ヨト

Main Theorem

We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Sigma$. We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$.

Theorem

If X is pseudocompact countable κ -metrizable space, then

$$X = a - \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\},\$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are open. Moreover the space $Y = \lim_{\varepsilon \to \infty} \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is Čech-Stone compactification of X.

イロト 不得下 イヨト イヨト 三日

Main Theorem

We say that a space X is an almost limit of the inverse system $S = \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$, if X can be embedded in $\varprojlim S$ such that $\pi_{\sigma}(X) = X_{\sigma}$ for each $\sigma \in \Sigma$. We denote this by $X = a - \varprojlim S$, and it implies that X is a dense subset of $\varprojlim S$.

Theorem

If X is pseudocompact countable κ -metrizable space, then

$$X = a - \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\},\$$

where $\{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is a σ -complete inverse system, all spaces X_{σ} are compact and metrizable, and all bonding maps π_{ϱ}^{σ} are open. Moreover the space $Y = \varprojlim \{X_{\sigma}, \pi_{\varrho}^{\sigma}, \Sigma\}$ is Čech-Stone compactification of X.

イロト 不得下 イヨト イヨト 三日

Corollary

If X is pseudocompact conutable κ -metrizable space, then X satisfies c.c.c.

Example

 ω_1 with the order topology is pseudocompact and not countable κ -metrizable.

If ω_1 will be countable κ -metrizable then by Corollary it satisfies c.c.c., a contradiction.

(日) (同) (三) (三)

Corollary

If X is pseudocompact conutable κ -metrizable space, then X satisfies c.c.c.

Example

 ω_1 with the order topology is pseudocompact and not countable κ -metrizable.

If ω_1 will be countable κ -metrizable then by Corollary it satisfies c.c.c., a contradiction.

Corollary

If X is pseudocompact conutable κ -metrizable space, then X satisfies c.c.c.

Example

 ω_1 with the order topology is pseudocompact and not countable κ -metrizable.

If ω_1 will be countable κ -metrizable then by Corollary it satisfies c.c.c., a contradiction.

< 回 ト < 三 ト < 三 ト

Next G. Dimov gave (1983) sufficient and necessary conditions that compact Hausdorff extension of κ -metrizable space is κ -metrizable.

We give a simple proof that Čech-Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable.

Assume that X is pseudocompact countable κ -metrizable space. We can extend each function $\rho(\cdot, F \cap X)$ to continuous function $\bar{\rho}(\cdot, F \cap X) : \beta X \to [0, \infty)$, where $F \in \text{RC}(\beta X)$.

Next we can prove that $\bar{\rho}$ satisfies condition (K1) - (K3) and $(K4_{\omega})$. Since pseudocompact countable κ -metrizable space satisfies c.c.c. $\bar{\rho}$ is κ -metric.

イロト イポト イヨト イヨト

Next G. Dimov gave (1983) sufficient and necessary conditions that compact Hausdorff extension of κ -metrizable space is κ -metrizable.

We give a simple proof that Čech-Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable.

Assume that X is pseudocompact countable κ -metrizable space. We can extend each function $\rho(\cdot, F \cap X)$ to continuous function $\bar{\rho}(\cdot, F \cap X) : \beta X \to [0, \infty)$, where $F \in \text{RC}(\beta X)$.

Next we can prove that $\bar{\rho}$ satisfies condition (K1) - (K3) and $(K4_{\omega})$. Since pseudocompact countable κ -metrizable space satisfies c.c.c. $\bar{\rho}$ is κ -metric.

イロト 不得下 イヨト イヨト 二日

Next G. Dimov gave (1983) sufficient and necessary conditions that compact Hausdorff extension of κ -metrizable space is κ -metrizable.

We give a simple proof that Čech-Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable.

Assume that X is pseudocompact countable κ -metrizable space. We can extend each function $\rho(\cdot, F \cap X)$ to continuous function $\bar{\rho}(\cdot, F \cap X) : \beta X \to [0, \infty)$, where $F \in \text{RC}(\beta X)$.

Next we can prove that $\bar{\rho}$ satisfies condition (K1) - (K3) and $(K4_{\omega})$. Since pseudocompact countable κ -metrizable space satisfies c.c.c. $\bar{\rho}$ is κ -metric.

Next G. Dimov gave (1983) sufficient and necessary conditions that compact Hausdorff extension of κ -metrizable space is κ -metrizable.

We give a simple proof that Čech-Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable.

Assume that X is pseudocompact countable κ -metrizable space. We can extend each function $\rho(\cdot, F \cap X)$ to continuous function $\bar{\rho}(\cdot, F \cap X) : \beta X \to [0, \infty)$, where $F \in \text{RC}(\beta X)$.

Next we can prove that $\bar{\rho}$ satisfies condition (K1) - (K3) and $(K4_{\omega})$. Since pseudocompact countable κ -metrizable space satisfies c.c.c. $\bar{\rho}$ is κ -metric.

Next G. Dimov gave (1983) sufficient and necessary conditions that compact Hausdorff extension of κ -metrizable space is κ -metrizable.

We give a simple proof that Čech-Stone compactification of pseudocompact countable κ -metrizable space is κ -metrizable.

Assume that X is pseudocompact countable κ -metrizable space. We can extend each function $\rho(\cdot, F \cap X)$ to continuous function $\bar{\rho}(\cdot, F \cap X) : \beta X \to [0, \infty)$, where $F \in \text{RC}(\beta X)$.

Next we can prove that $\bar{\rho}$ satisfies condition (K1) - (K3) and $(K4_{\omega})$. Since pseudocompact countable κ -metrizable space satisfies c.c.c. $\bar{\rho}$ is κ -metric.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●