Squares of function spaces and function spaces on squares

Mikołaj Krupski University of Warsaw

 ${\rm TOPOSYM},\ 2016$

Mikołaj Krupski University of Warsaw Squares of function spaces and function spaces on squares

伺 ト イ ヨ ト イ ヨ ト

Borsuk-Dugundji Extension Theorem

If X is metrizable and $A \subseteq X$ is closed, then there exists a linear continuous function $\phi : C_p(A) \to C_p(X)$ such that $\phi(f) \upharpoonright A = f$, for any $f \in C_p(A)$.

Borsuk-Dugundji Extension Theorem

If X is metrizable and $A \subseteq X$ is closed, then there exists a linear continuous function $\phi : C_p(A) \to C_p(X)$ such that $\phi(f) \upharpoonright A = f$, for any $f \in C_p(A)$.

Corollary

If X is metrizable and $A \subseteq X$ is closed, then $C_p(X) \approx C_p(A) \times \{f \in C_p(X) \colon f \upharpoonright A = 0\} \approx C_p(A) \times C_p(X/A)$

伺 ト イ ヨ ト イ ヨ ト

Borsuk-Dugundji Extension Theorem

If X is metrizable and $A \subseteq X$ is closed, then there exists a linear continuous function $\phi : C_p(A) \to C_p(X)$ such that $\phi(f) \upharpoonright A = f$, for any $f \in C_p(A)$.

Corollary

If X is metrizable and $A \subseteq X$ is closed, then $C_p(X) \approx C_p(A) \times \{f \in C_p(X) \colon f \upharpoonright A = 0\} \approx C_p(A) \times C_p(X/A)$

It follows that, e.g.

$$egin{aligned} &\mathcal{C}_{m{
ho}}([0,1]) pprox \mathcal{C}_{m{
ho}}([0,1]) imes \mathcal{C}_{m{
ho}}([0,1]) \ &\mathcal{C}_{m{
ho}}(\mathbb{R}) pprox \mathcal{C}_{m{
ho}}(\mathbb{R}) imes \mathcal{C}_{m{
ho}}(\mathbb{R}) \end{aligned}$$

伺 ト イ ヨ ト イ ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

伺 ト く ヨ ト く ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

伺 ト く ヨ ト く ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

 Related to a more general question: Does C_p(X) space has 'good' factorization properties?

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

- Related to a more general question: Does $C_p(X)$ space has 'good' factorization properties?
 - Many natural examples of infinite-dimensional linear topological spaces possess good factorization properties.

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

- Related to a more general question: Does $C_p(X)$ space has 'good' factorization properties?
 - Many natural examples of infinite-dimensional linear topological spaces possess good factorization properties.
 - Factorization properties help constructing homeomorphisms between function spaces.

伺 ト イ ヨ ト イ ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

- Related to a more general question: Does $C_p(X)$ space has 'good' factorization properties?
 - Many natural examples of infinite-dimensional linear topological spaces possess good factorization properties.
 - Factorization properties help constructing homeomorphisms between function spaces.
- Related to another important question: Which topological properties of $C_p(X)$ are productive?

伺 ト イ ヨ ト イ ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is an infinite 'nice' topological space, e.g. is compact or metrizable?

Some motivations:

- Related to a more general question: Does $C_p(X)$ space has 'good' factorization properties?
 - Many natural examples of infinite-dimensional linear topological spaces possess good factorization properties.
 - Factorization properties help constructing homeomorphisms between function spaces.
- Related to another important question: Which topological properties of $C_p(X)$ are productive?
 - **Open question:** Suppose that $C_p(X)$ is Lindelöf. Is it true that $C_p(X) \times C_p(X)$ is Lindelöf?

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite compact?

3

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite compact?

Theorem (Gul'ko / Marciszewski, 1988)

No, there exists an infinite compact (nonmetrizable) space X such that $C_p(X)$ is not homeomorphic to $C_p(X) \times C_p(X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite compact?

Theorem (Gul'ko / Marciszewski, 1988)

No, there exists an infinite compact (nonmetrizable) space X such that $C_p(X)$ is not homeomorphic to $C_p(X) \times C_p(X)$.

Gul'ko example

Consider $X = [0, \omega_1]$, then $C_p(X) \not\approx C_p(X) \times C_p(X)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite compact?

Theorem (Gul'ko / Marciszewski, 1988)

No, there exists an infinite compact (nonmetrizable) space X such that $C_p(X)$ is not homeomorphic to $C_p(X) \times C_p(X)$.

Gul'ko example

Consider
$$X = [0, \omega_1]$$
, then $C_p(X) \not\approx C_p(X) \times C_p(X)$.

Marciszewski example

 $X = \omega \cup \{p_A : A \in A\} \cup \{\infty\}$, where A is a suitable almost disjoint family on ω . Points in ω are isolated, neighborhoods of p_A are of the form $\{p_A\} \cup (A \setminus F)$, where F is finite.

Is it true $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite metrizable?

伺 ト く ヨ ト く ヨ ト

Is it true $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite metrizable?

Theorem (Pol, 1995)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **linearly** homeomorphic to $C_p(X) \times C_p(X)$.

伺 ト イ ヨ ト イ ヨ ト

Is it true $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite metrizable?

Theorem (Pol, 1995)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **linearly** homeomorphic to $C_p(X) \times C_p(X)$.

Theorem (van Mill, Pelant, Pol, 2003)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **uniformly** homeomorphic to $C_p(X) \times C_p(X)$.

くほし くほし くほし

Is it true $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite metrizable?

Theorem (Pol, 1995)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **linearly** homeomorphic to $C_p(X) \times C_p(X)$.

Theorem (van Mill, Pelant, Pol, 2003)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **uniformly** homeomorphic to $C_p(X) \times C_p(X)$.

van Mill, Pelant, Pol example

X = Cook continuum

・ 同 ト ・ ヨ ト ・ ヨ ト

Is it true $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$ provided X is infinite metrizable?

Theorem (Pol, 1995)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **linearly** homeomorphic to $C_p(X) \times C_p(X)$.

Theorem (van Mill, Pelant, Pol, 2003)

There is an infinite metrizable (compact) space X with $C_p(X)$ not **uniformly** homeomorphic to $C_p(X) \times C_p(X)$.

van Mill, Pelant, Pol example

X = Cook continuum

A nontrivial metrizable continuum M is a *Cook continuum* if it is rigid, i.e. for any subcontinuum $C \subseteq M$, each continuous function $f: C \to M$ is either the identity or f = const.

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

白 ト イ ヨ ト イ ヨ

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

The rigid Bernstein set B

伺 ト イヨト イヨト

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

The rigid Bernstein set B

Let {(C_α, f_α) : α < 2^ω} be the collection of all pairs (C, f), where C is a copy of the Cantor set in ℝ and f : C → ℝ is a continuous map with uncountable range f(C) disjoint from C.

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

The rigid Bernstein set B

- Let {(C_α, f_α) : α < 2^ω} be the collection of all pairs (C, f), where C is a copy of the Cantor set in ℝ and f : C → ℝ is a continuous map with uncountable range f(C) disjoint from C.
- Choose inductively distinct points $x_0, y_0, \ldots, x_\alpha, y_\alpha, \ldots$ with $x_\alpha \in C_\alpha$ and $y_\alpha = f_\alpha(x_\alpha)$

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

The rigid Bernstein set B

- Let {(C_α, f_α) : α < 2^ω} be the collection of all pairs (C, f), where C is a copy of the Cantor set in ℝ and f : C → ℝ is a continuous map with uncountable range f(C) disjoint from C.
- Choose inductively distinct points $x_0, y_0, \ldots, x_\alpha, y_\alpha, \ldots$ with $x_\alpha \in C_\alpha$ and $y_\alpha = f_\alpha(x_\alpha)$
- We put $B = \{x_{\alpha} : \alpha < 2^{\omega}\}.$

通 と イ ヨ と イ ヨ と

There is an infinite zero-dimensional subspace B of the real line (a rigid Bernstein set), such that $C_p(B)$ is not homeomorphic to $C_p(B) \times C_p(B)$.

The rigid Bernstein set B

- Let {(C_α, f_α) : α < 2^ω} be the collection of all pairs (C, f), where C is a copy of the Cantor set in ℝ and f : C → ℝ is a continuous map with uncountable range f(C) disjoint from C.
- Choose inductively distinct points $x_0, y_0, \ldots, x_\alpha, y_\alpha, \ldots$ with $x_\alpha \in C_\alpha$ and $y_\alpha = f_\alpha(x_\alpha)$

• We put
$$B = \{x_{\alpha} : \alpha < 2^{\omega}\}.$$

B is rigid in the following sense: If *G* is an uncountable G_{δ} -subset of *B*, then for each continuous function $f : G \to B$ there exists an uncountable G_{δ} -subset *G'* of *G* such that the restriction $f \upharpoonright G'$ is either the identity or is constant.

Suppose that X and Y are metrizable. Let $n \in \mathbb{N}$ and suppose that $\Psi : C_p(X) \to C_p(Y)$ is a homeomorphism with $\Psi(\underline{0}) = \underline{0}$.

▶ < □ ▶ < □</p>

Suppose that X and Y are metrizable. Let $n \in \mathbb{N}$ and suppose that $\Psi : C_p(X) \to C_p(Y)$ is a homeomorphism with $\Psi(\underline{0}) = \underline{0}$. Then $Y = \bigcup_{r \in \mathbb{N}} G_r$ for some G_{δ} -subsets G_r such that:

伺 ト く ヨ ト く ヨ ト

Suppose that X and Y are metrizable. Let $n \in \mathbb{N}$ and suppose that $\Psi : C_p(X) \to C_p(Y)$ is a homeomorphism with $\Psi(\underline{0}) = \underline{0}$. Then $Y = \bigcup_{r \in \mathbb{N}} G_r$ for some G_{δ} -subsets G_r such that: For every $r \in \mathbb{N}$ there are continuous maps $f_1^r, \ldots, f_{p_r}^r : G_r \to X$ and $m \in \mathbb{N}$ such that, for any $y \in G_r$, $\Psi(O_X(A, \frac{1}{m})) \subseteq \overline{O}_Y(y, \frac{1}{n})$, where $A = \{f_1^r(y), \ldots, f_{p_r}^r(y)\}$.

Suppose that X and Y are metrizable. Let $n \in \mathbb{N}$ and suppose that $\Psi : C_p(X) \to C_p(Y)$ is a homeomorphism with $\Psi(\underline{0}) = \underline{0}$. Then $Y = \bigcup_{r \in \mathbb{N}} G_r$ for some G_{δ} -subsets G_r such that: For every $r \in \mathbb{N}$ there are continuous maps $f_1^r, \ldots, f_{p_r}^r : G_r \to X$ and $m \in \mathbb{N}$ such that, for any $y \in G_r$, $\Psi(O_X(A, \frac{1}{m})) \subseteq \overline{O}_Y(y, \frac{1}{n})$, where $A = \{f_1^r(y), \ldots, f_{p_r}^r(y)\}$.

• We can identify $C_p(B) imes C_p(B)$ with $C_p(B \oplus B)$

Suppose that X and Y are metrizable. Let $n \in \mathbb{N}$ and suppose that $\Psi : C_p(X) \to C_p(Y)$ is a homeomorphism with $\Psi(\underline{0}) = \underline{0}$. Then $Y = \bigcup_{r \in \mathbb{N}} G_r$ for some G_{δ} -subsets G_r such that: For every $r \in \mathbb{N}$ there are continuous maps $f_1^r, \ldots, f_{p_r}^r : G_r \to X$ and $m \in \mathbb{N}$ such that, for any $y \in G_r$, $\Psi(O_X(A, \frac{1}{m})) \subseteq \overline{O}_Y(y, \frac{1}{n})$, where $A = \{f_1^r(y), \ldots, f_{p_r}^r(y)\}$.

- We can identify $C_p(B) imes C_p(B)$ with $C_p(B \oplus B)$
- Using rigidity of B we can conclude that the mapping in the above theorem, restricted to an uncountable G_{δ} , are either the identity or are constant

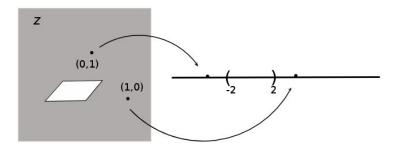
Define a mapping φ : ℝ × ℝ → ℝ
 φ(t₁, t₂) = Φ⁻¹(t₁v₁ + t₂v₂)(c), where v₁, v₂ ∈ C_p(B ⊕ B) and c ∈ B are suitably chosen.

伺 と く ヨ と く ヨ と

-

- Define a mapping φ : ℝ × ℝ → ℝ
 φ(t₁, t₂) = Φ⁻¹(t₁v₁ + t₂v₂)(c), where v₁, v₂ ∈ C_p(B ⊕ B) and c ∈ B are suitably chosen.
- φ maps a connected set onto a set which is not connected, a contradiction.

- Define a mapping φ : ℝ × ℝ → ℝ
 φ(t₁, t₂) = Φ⁻¹(t₁v₁ + t₂v₂)(c), where v₁, v₂ ∈ C_p(B ⊕ B) and c ∈ B are suitably chosen.
- φ maps a connected set onto a set which is not connected, a contradiction.



通 と イ ヨ と イ ヨ と

Open questions

★聞▶ ★理▶ ★理

Question

Let X be an infinite *compact metrizable* space. Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$?

Question

Let X be an infinite compact metrizable space. Is it true that $C_p(X)$ is homeomorphic to $C_p(X) \times C_p(X)$?

A natural candidate for a counterexample is the Cook continuum M used in the context of linear and uniform homeomorphisms.

伺 ト イヨト イヨト

<ロ> <同> <同> < 同> < 同>

э

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$.

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$. It follows that if X is countable metrizable then $C_p(X) \approx C_p(X \oplus X) = C_p(X) \times C_p(X)$

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$. It follows that if X is countable metrizable then $C_p(X) \approx C_p(X \oplus X) = C_p(X) \times C_p(X)$

What happens if we drop the metrizability assumption? More precisely:

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$. It follows that if X is countable metrizable then $C_p(X) \approx C_p(X \oplus X) = C_p(X) \times C_p(X)$

What happens if we drop the metrizability assumption? More precisely:

Question

Suppose that X is an infinite countable space. Is it true that $C_p(X) \approx C_p(X) \times C_p(X)$?

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$. It follows that if X is countable metrizable then $C_p(X) \approx C_p(X \oplus X) = C_p(X) \times C_p(X)$

What happens if we drop the metrizability assumption? More precisely:

Question

Suppose that X is an infinite countable space. Is it true that $C_p(X) \approx C_p(X) \times C_p(X)$?

Question

Suppose that X is an infinite countable metrizable space. Is it true that $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$?

It is well known that, for any countable metrizable nondiscrete spaces X and Y we have $C_p(X) \approx C_p(Y)$. It follows that if X is countable metrizable then $C_p(X) \approx C_p(X \oplus X) = C_p(X) \times C_p(X)$

What happens if we drop the metrizability assumption? More precisely:

Question

Suppose that X is an infinite countable space. Is it true that $C_p(X) \approx C_p(X) \times C_p(X)$?

Question

Suppose that X is an infinite countable metrizable space. Is it true that $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$?

'Yes' if X is either non-scattered or is scattered of height $\leq \omega$ (Baars, de Groot, 1992).

Suppose that X is an infinite Polish zero-dimensional space which is either compact or not σ -compact.

Suppose that X is an infinite Polish zero-dimensional space which is either compact or not σ -compact. Then $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$.

Suppose that X is an infinite Polish zero-dimensional space which is either compact or not σ -compact. Then $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$.

Corollary

If X is a metrizable space with $C_p(X) \not\approx C_p(X) \times C_p(X)$, then X cannot be simultaneously compact and zero-dimensional.

Suppose that X is an infinite Polish zero-dimensional space which is either compact or not σ -compact. Then $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$.

Corollary

If X is a metrizable space with $C_p(X) \approx C_p(X) \times C_p(X)$, then X cannot be simultaneously compact and zero-dimensional.

What happens if a Polish zero-dimensional space X is σ -compact:

Suppose that X is an infinite Polish zero-dimensional space which is either compact or not σ -compact. Then $C_p(X)$ is linearly homeomorphic to $C_p(X) \times C_p(X)$.

Corollary

If X is a metrizable space with $C_p(X) \approx C_p(X) \times C_p(X)$, then X cannot be simultaneously compact and zero-dimensional.

What happens if a Polish zero-dimensional space X is σ -compact:

Question

Suppose that X is a Polish zero-dimensional σ -compact space. Is it true that $C_p(X)$ is (linearly) homeomorphic to $C_p(X) \times C_p(X)$?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

(a)

э

The following old problem remains open:

・ 同 ト ・ ヨ ト ・ ヨ ト

The following old problem remains open:

Problem (Arhangel'skii, 1990)

Is it true that $C_p(X)$ can always be continuously mapped onto its own square $C_p(X) \times C_p(X)$?

伺 ト イヨト イヨト

The following old problem remains open:

Problem (Arhangel'skii, 1990)

Is it true that $C_p(X)$ can always be continuously mapped onto its own square $C_p(X) \times C_p(X)$?

Examples given by Gul'ko and Marciszewki in the context of homeomorphisms cannot serve as a counterexample here.

The following old problem remains open:

Problem (Arhangel'skii, 1990)

Is it true that $C_p(X)$ can always be continuously mapped onto its own square $C_p(X) \times C_p(X)$?

Examples given by Gul'ko and Marciszewki in the context of homeomorphisms cannot serve as a counterexample here.

Theorem (Marciszewski, 1987 / Okunev, 2011)

If X is a compact zero-dimensional space, then $C_p(X) \times C_p(X)$ is a continuous image of $C_p(X)$.

The following old problem remains open:

Problem (Arhangel'skii, 1990)

Is it true that $C_p(X)$ can always be continuously mapped onto its own square $C_p(X) \times C_p(X)$?

Examples given by Gul'ko and Marciszewki in the context of homeomorphisms cannot serve as a counterexample here.

Theorem (Marciszewski, 1987 / Okunev, 2011)

If X is a compact zero-dimensional space, then $C_p(X) \times C_p(X)$ is a continuous image of $C_p(X)$.

Theorem (Marciszewski, 1987)

If X is a compact metrizable space, then $C_p(X) \times C_p(X)$ is a continuous image of $C_p(X)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

Recall that a *Cook continuum* is a nontrivial metrizable continuum M such that for every subcontinuum $C \subseteq M$, every continuous mapping $f : C \to M$ is either the identity or is constant.

Recall that a *Cook continuum* is a nontrivial metrizable continuum M such that for every subcontinuum $C \subseteq M$, every continuous mapping $f : C \to M$ is either the identity or is constant.

Theorem (K. & Marciszewski, 2015)

If X = M or X = B, then there is no linear continuous surjection of $C_p(X)$ onto $C_p(X) \times C_p(X)$.

Recall that a *Cook continuum* is a nontrivial metrizable continuum M such that for every subcontinuum $C \subseteq M$, every continuous mapping $f : C \to M$ is either the identity or is constant.

Theorem (K. & Marciszewski, 2015)

If X = M or X = B, then there is no linear continuous surjection of $C_p(X)$ onto $C_p(X) \times C_p(X)$.

Question (Leiderman)

Is it true that for a compact metric space X the space $C_p(X \times X)$ is always a linear continuous image of $C_p(X)$?

通 と イ ヨ と イ ヨ と

Recall that a *Cook continuum* is a nontrivial metrizable continuum M such that for every subcontinuum $C \subseteq M$, every continuous mapping $f : C \to M$ is either the identity or is constant.

Theorem (K. & Marciszewski, 2015)

If X = M or X = B, then there is no linear continuous surjection of $C_p(X)$ onto $C_p(X) \times C_p(X)$.

Question (Leiderman)

Is it true that for a compact metric space X the space $C_p(X \times X)$ is always a linear continuous image of $C_p(X)$?

Corollary (K. & Marciszewski)

No, If *M* is a Cook continuum, then there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$.

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

□ > < □ > < □ >

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P \oplus P) = C_p(P) \times C_p(P)$.

伺 ト く ヨ ト く ヨ ト

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P\oplus P) = C_p(P) \times C_p(P)$.

The reason why there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$ (even onto $C_p(M \oplus M)$) is rigidity of the Cook continuum M.

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P\oplus P) = C_p(P) \times C_p(P)$.

The reason why there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$ (even onto $C_p(M \oplus M)$) is rigidity of the Cook continuum M.

The product of two pseudoarcs $P \times P$ is also rigid in some sense.

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P\oplus P) = C_p(P) \times C_p(P)$.

The reason why there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$ (even onto $C_p(M \oplus M)$) is rigidity of the Cook continuum M.

The product of two pseudoarcs $P \times P$ is also rigid in some sense.

Theorem (Sobolewski, 2007)

Let $F : P \times P \rightarrow P$ be a continuous.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P\oplus P) = C_p(P) \times C_p(P)$.

The reason why there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$ (even onto $C_p(M \oplus M)$) is rigidity of the Cook continuum M.

The product of two pseudoarcs $P \times P$ is also rigid in some sense.

Theorem (Sobolewski, 2007)

Let $F : P \times P \to P$ be a continuous. Suppose that $f = F \upharpoonright \{x_0\} \times P$ is 1-1, for some $x_0 \in P$ or $g = F \upharpoonright P \times \{y_0\}$ is 1-1, for some $y_0 \in P$.

▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶

Let P be a pseudoarc. Is it true that $C_p(P \times P)$ is a linear continuous image of $C_p(P)$?

Remark

 $C_p(P)$ is linearly homeomorphic to $C_p(P\oplus P) = C_p(P) \times C_p(P)$.

The reason why there is no linear continuous surjection of $C_p(M)$ onto $C_p(M \times M)$ (even onto $C_p(M \oplus M)$) is rigidity of the Cook continuum M.

The product of two pseudoarcs $P \times P$ is also rigid in some sense.

Theorem (Sobolewski, 2007)

Let $F : P \times P \to P$ be a continuous. Suppose that $f = F \upharpoonright \{x_0\} \times P$ is 1-1, for some $x_0 \in P$ or $g = F \upharpoonright P \times \{y_0\}$ is 1-1, for some $y_0 \in P$. Then $F \upharpoonright \{x\} \times P = f$, for all $x \in P$ or $F \upharpoonright P \times \{y\} = g$, for all $y \in P$.

イロト イポト イヨト イヨト

A continuum X is *pseudo-rigid* if for any continuum C and continuous map $F : X \times C \to X$ we have $(\forall c \in C) F \upharpoonright X \times \{c\} = F \upharpoonright X \times \{c_0\}$, for some $c_0 \in C$ or $(\forall x \in X) F \upharpoonright \{x\} \times C = F \upharpoonright \{x_0\} \times C$, for some $x_0 \in X$.

A continuum X is *pseudo-rigid* if for any continuum C and continuous map $F : X \times C \to X$ we have $(\forall c \in C) F \upharpoonright X \times \{c\} = F \upharpoonright X \times \{c_0\}$, for some $c_0 \in C$ or $(\forall x \in X) F \upharpoonright \{x\} \times C = F \upharpoonright \{x_0\} \times C$, for some $x_0 \in X$.

Question

Is *P* pseudo-rigid?

A continuum X is *pseudo-rigid* if for any continuum C and continuous map $F : X \times C \to X$ we have $(\forall c \in C) F \upharpoonright X \times \{c\} = F \upharpoonright X \times \{c_0\}$, for some $c_0 \in C$ or $(\forall x \in X) F \upharpoonright \{x\} \times C = F \upharpoonright \{x_0\} \times C$, for some $x_0 \in X$.

Question

Is P pseudo-rigid? What if in addition C = P?

A continuum X is *pseudo-rigid* if for any continuum C and continuous map $F : X \times C \to X$ we have $(\forall c \in C) F \upharpoonright X \times \{c\} = F \upharpoonright X \times \{c_0\}$, for some $c_0 \in C$ or $(\forall x \in X) F \upharpoonright \{x\} \times C = F \upharpoonright \{x_0\} \times C$, for some $x_0 \in X$.

Question

Is P pseudo-rigid? What if in addition C = P?

Remark

If yes, then there is no linear continuous surjection $\varphi : C_p(P) \to C_p(P \times P).$

伺 ト く ヨ ト く ヨ ト

A continuum X is *pseudo-rigid* if for any continuum C and continuous map $F : X \times C \to X$ we have $(\forall c \in C) F \upharpoonright X \times \{c\} = F \upharpoonright X \times \{c_0\}$, for some $c_0 \in C$ or $(\forall x \in X) F \upharpoonright \{x\} \times C = F \upharpoonright \{x_0\} \times C$, for some $x_0 \in X$.

Question

Is P pseudo-rigid? What if in addition C = P?

Remark

If yes, then there is no linear continuous surjection $\varphi : C_p(P) \to C_p(P \times P).$

Question (Łysko, 2007)

Let $r : P \times P \to \Delta = \{(x, y) \in P \times P : x = y\}$ be a continuous retraction. Must r be of the form r(x, y) = (x, x) or r(x, y) = (y, y) for all $(x, y) \in P \times P$?

Free (abelian) topological groups

Mikołaj Krupski University of Warsaw Squares of function spaces and function spaces on squares

- * E > * E >

(i) X is a subspace of F(X)(A(X)) and

- (i) X is a subspace of F(X)(A(X)) and
- (ii) For any (abelian) topological group G and any continuous mapping $f : X \to G$, there exists a unique continuous homomorphism $\tilde{f} : F(X) \to G$ ($\tilde{f} : A(X) \to G$), such that $\tilde{f} \upharpoonright X = f$.

伺い イラト イラト

- (i) X is a subspace of F(X)(A(X)) and
- (ii) For any (abelian) topological group G and any continuous mapping $f : X \to G$, there exists a unique continuous homomorphism $\tilde{f} : F(X) \to G$ ($\tilde{f} : A(X) \to G$), such that $\tilde{f} \upharpoonright X = f$.

As a set, A(X) consists of elements of the form $\sum_{i=1}^{n} a_i x_i$, where $a_i \in \mathbb{Z}$, $x_i \in X$ and $n \in \mathbb{N}$.

伺い イラト イラト

Theorem (Nickolas, 1976)

If X is infinite compact, then $F(X \times X)$ embeds into F(X) as a subgroup.

Theorem (Nickolas, 1976)

If X is infinite compact, then $F(X \times X)$ embeds into F(X) as a subgroup.

Theorem (Leiderman, Morris & Pestov, 1997)

 $A(I \times I)$ embeds into A(I) as a subgroup.

Theorem (Nickolas, 1976)

If X is infinite compact, then $F(X \times X)$ embeds into F(X) as a subgroup.

Theorem (Leiderman, Morris & Pestov, 1997)

 $A(I \times I)$ embeds into A(I) as a subgroup.

Theorem (K. & Leiderman, 2016)

If *M* is a Cook continuum, then $A(M \times M)$ does not embed into A(M) as a subgroup.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you!

(日)