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Background
Main Results

Open Problems

Abstract

Let 〈X , d〉 be a metric space. We compare ten classes of
continuous self-maps f : X → X . All of these self-maps are
proved to have fixed or periodic points for spaces X with certain
topological properties. We will assume X to be

1. complete

2. complete and connected

3. complete and rectifiably path connected

4. complete and d-convex

5. compact

6. compact and connected

7. compact and rectifiably path connected

8. compact and d-convex
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Background
Main Results

Open Problems

The Classics

Definition (#1)

A function f : X → X is called Contractive, (C), if there exists a
constant 0 ≤ λ < 1 such that for any two elements x , y ∈ X we
have d(f (x), f (y)) ≤ λd(x , y).

Theorem (Banach, 1922)

If (X , d) is a complete metric space and f : X → X is (C), then f
has a unique fixed point, that is, there exists a unique ξ ∈ X
such that f (ξ) = ξ.
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Background
Main Results

Open Problems

The Classics

Definition (#2)

A function f : X → X is called Shrinking, (S), if for any two
elements x , y ∈ X , x 6= y we have d(f (x), f (y)) < d(x , y).

Theorem (Edelstein, 1962)

If 〈X , d〉 is compact and f : X → X is (S), then it has a unique
fixed point.
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Background
Main Results

Open Problems

The Classics

Definition (#3)

A function f : X → X is called Locally Shrinking, (LS), if for any
element z ∈ X there exists an εz > 0 such that f |̀B(z, ε) is
shrinking, i.e. for any two x 6= y ∈ B(z, εz) we have
d(f (x), f (y)) < d(x , y).

Theorem (Edelstein, 1962)

Let 〈X , d〉 be compact and let f : X → X.

(i) If f is (LS), then f has a periodic point. ♠

(ii) If f is (LS) and X is connected, then f has a unique fixed
point.
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Main Results

Open Problems

The Classics

Definition (#4)

A function f : X → X is called Pointwise Contracting, (PC), if for
every z ∈ X there exists a λz ∈ [0, 1) and an εz > 0 such that
for any element x ∈ B(z, εz) we have d(f (x), f (z)) ≤ λzd(x , z).

Definition (#5)

A function f : X → X is called uniformly Pointwise Contracting,
(uPC), if there exists a λ ∈ [0, 1) such that for every z ∈ X there
exists an εz > 0 such that for any element x ∈ B(z, εz) we have
d(f (x), f (z)) ≤ λd(x , z).

Theorem (Hu and Kirk, 1978; proof corrected by Jungck, 1982)

If 〈X , d〉 is a rectifiably path connected complete metric space
and a map f : X → X is (uPC), then f has a unique fixed point.
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Main Results

Open Problems

Classics/Recent

Definition (#6)

A function f : X → X is called Uniformly Locally Contracting,
(ULC), if there exist a λ ∈ [0, 1) and an ε > 0 such that for every
z ∈ X the restriction f |̀B(z, ε) is contractive with the same
λz = λ.

Theorem

Assume that 〈X , d〉 is complete and that f : X → X is (ULC)

(i) (Edelstein, 1961)If X is connected, then f has a unique
fixed point.

(ii) (C & J, 2016)If X has a finite number of components , then
f has a periodic point.
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Open Problems

Recent

Recall,

Definition (#4)

A function f : X → X is called Pointwise Contractive, (PC), if for
every z ∈ X there exist λz ∈ [0, 1) and an εz > 0 such that
d(f (x), f (z)) ≤ λzd(x , z) whenever x ∈ B(z, εz).

Theorem (C & J, Top. and its App. 204 2016 70-78)

Assume that 〈X , d〉 is compact and rectifiably path connected.
If f : X → X is (PC), then f has a unique fixed point.

Example (C & J, J. Math. Anal. Appl. 434 2016 1267 - 1280 )

There exists a Cantor set X ⊂ R and a (PC) self-map f : X→ X
without periodic points.
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Background
Main Results

Open Problems

The Ten Contracting/Shrinking Properties

Global Properties. f : X → X is

(C) contractive if

∃λ ∈ [0, 1)∀x , y ∈ X (d(f (x), f (y)) ≤ λd(x , y)) ,

(S) shrinking if

∀x 6= y ∈ X (d(f (x), f (y)) < d(x , y)) .

Clearly (C) =⇒ (S).

Each global property gives rise to two kinds of local properties,
named local and pointwise, as follows:
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Background
Main Results

Open Problems

The Ten Contracting/Shrinking Properties

Local Properties:

(LC) f is locally contractive if ∀z ∈ X∃λz ∈ [0, 1)∃εz > 0∀x , y ∈
B(z, εz) (d(f (x), f (y)) ≤ λzd(x , y)),

(LS) f is locally shrinking if
∀z ∈ X∃εz > 0∀x 6= y ∈ B(z, εz) (d(f (x), f (y)) < d(x , y)),

Pointwise Properties (we fix y=z):

(PC) f is pointwise contractive if ∀z ∈ X∃λz ∈ [0, 1)∃εz > 0∀x ∈
B(z, εz) (d(f (x), f (z)) ≤ λzd(x , z)),

(PS) f is pointwise shrinking if
∀z ∈ X∃εz > 0∀x ∈ B(z, εz) (d(f (x), f (z)) < d(x , z)),

Pointwise properties are also known as radial.

Clearly (Locally) =⇒ (Pointwise).
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Main Results

Open Problems

The Ten Contracting/Shrinking Properties

The following implications follow from the definitions:

(C) (LC)

(S) (LS)

(PC)

(PS)
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Background
Main Results

Open Problems

The Ten Contracting/Shrinking Properties

Local properties can be made stronger by requiring uniformity,
i.e. that the same λ ∈ [0, 1) and/or the same ε > 0 work for all
z ∈ X .
Local Properties:

(LC) f is locally contractive if ∀z ∈ X∃λz ∈ [0, 1)∃εz > 0∀x , y ∈
B(z, εz) (d(f (x), f (y)) ≤ λzd(x , y)),

(uLC) f is (weakly) uniformly locally contractive if ∃λ ∈ [0, 1)∀z ∈
X∃εz > 0∀x , y ∈ B(z, εz) (d(f (x), f (y)) ≤ λd(x , y)),

(ULC) f is (strongly) Uniformly locally contractive if
∃λ ∈ [0, 1)∃ε > 0∀z ∈ X∀x , y ∈
B(z, ε) (d(f (x), f (y)) ≤ λd(x , y)),

(LS) f is locally shrinking if
∀z ∈ X∃εz > 0∀x , y ∈ B(z, εz) (d(f (x), f (y)) < d(x , y)),

(ULS) f is Uniformly locally shrinking if
∃ε > 0∀z ∈ X∀x , y ∈ B(z, ε) (d(f (x), f (y)) < d(x , y)).
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Similarly, pointwise properties can be made stronger by
requiring uniformity, i.e. that the same λ ∈ [0, 1) and/or the
same ε > 0 works for all z ∈ X .
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(PS) f is pointwise shrinking if
∀z ∈ X∃εz > 0∀x ∈ B(z, εz) (d(f (x), f (z)) < d(x , z)),

(UPS) f is Uniformly pointwise shrinking if
∃ε > 0∀z ∈ X∀x , y ∈ B(z, ε) (d(f (x), f (y)) < d(x , y)).
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Background
Main Results

Open Problems

The Ten Contracting/Shrinking Properties or is it 12?

The following implications follow from the definitions:

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(UPC) (uPC) (PC)

(UPS) (PS)

Remark: (ULS)=(UPS) and (ULC)=(UPC). Any (λ, ε)-(UPC)
function is (λ, ε

2)-(ULC) and (ε)-(UPS) is
(

ε
2

)
-(ULS).
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Background
Main Results

Open Problems

The Ten Contracting/Shrinking Properties

The following diagram

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)

shows the essential classes and implications.
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Background
Main Results

Open Problems

Fixed and Periodic Points

Theorem (Complete Spaces)

Assume X is complete. No combination of any of the properties
shown imply any other property, unless the graph forces such
implication. Neither does any combination of them imply the
existence of a periodic point unless it contains (C).

(C)F
B (ULC) (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)
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Background
Main Results

Open Problems

Fixed and Periodic Points

Theorem (Complete Spaces cont.)

Specifically, there exist 9 complete spaces X with self-maps
f : X → X without periodic points witnessing the following:

(PC): (PC) : (S)

(uPC): (uPC) : (S)&(LC)

(LS): (LS) : (uPC)

(ULS): (ULS) : (uLC)

(S): (S) : (ULC)

(LC): (LC) : (S)&(uPC)

(uLC): (uLC) : (S)&(LC)&(uPC)

(ULC): (ULC) : (S)&(uLC)

(C): (C) : (S)&(ULC)
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Background
Main Results

Open Problems

Fixed and Periodic Points, Blue does not imply yellow

Figure: (PC) : (S).
Remark: f is (PC) iff limsupx→z

d(f (x),f (z))
d(x,z) < 1 for all z ∈ X .

Take X = [0,∞) and f (x) = x + e−x2
so f ′(x) = 1 − 2xe−x2

.
We have f ′(0) = 1 so not-(PC) at z = 0. Also f ′[(0,∞)] ⊆ (0, 1) so f
is (S) by the MVT. For all x ∈ [0,∞),f (x) > x so no periodic points.
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Main Results

Open Problems

Fixed and Periodic Points, Blue does not imply yellow

Figure: (uPC) : (S)&(LC). Take X = R and f (x) = 1
2

(
x +

√
x2 + 1

)
.

Then f ′(x) = 1
2

(

1 + x√
x2+1

)

so for any a ∈ R, f ′[(−∞, a]] = (0, c] for

some c < 1 so MVT gives (S)&(LC). limx→∞ f ′(x) = 1 so ¬(uPC).
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Figure: (LS) : (uPC) There exists a compact perfect set X ⊆ R and
an autohomeomorphism f : X→ X with f′ ≡ 0. So f is (uPC) with any
λ ∈ (0, 1) and f has no periodic points, [C & J, 2015] so it is not (LS)
by the Edelstein’s Theorem ♠.
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Figure: (ULS) : (uLC) Take two increasing sequences: 0 < βn ↗ 1
and 0 = a0 < a1 < ... ↗ ∞, In = [an, an+1], such that

|I2n| = |I2n+1| = 1
n+1 . Define metrics ρn(x , y) = |In|

(
|x−y|
|In|

)βn

on In and

"make" a metric ρ on X =
⋃

n<ω In so that f : X → X , mapping linearly
and increasingly In onto In+1 has needed properties. For x ≤ y , n < m

ρ(x , y) =

{
ρn(x , y) if x , y ∈ In
ρn(x , an+1) + |am − an+1| + ρm(am, y) if x ∈ In,y ∈ Im
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Figure: (S) : (ULC) Remetrization.
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Figure: (LC) : (S)&(uPC) Remetrization.
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Figure: (uLC) : (S)&(LC)&(uPC) Remetrization.
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Figure: (ULC) : (S)&(uLC) Remetrization.
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Figure: (C) : (S)&(ULC) We have the following ...
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Example (A (S)&(ULC)&not(C) map f without periodic points)

Define sequences 〈cn〉 and 〈dn〉: c0 = 0, dn = cn + 2−(n+3) and
cn+1 = dn + 1

2 + 2−(n+1). Set X =
⋃

n<ω[cn, dn] and let
f : X → X , f (x) = cn+1 for x ∈ [cn, dn]. We have
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Theorem (Connected Spaces)

Assume X is complete and connected. No combination of any
of the properties shown imply any other property, unless the
graph forces such implication. Neither does any combination
imply the exitance of a periodic point unless it contains (C) or
(ULC).

(C)F
B (ULC)F

E (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)
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Fixed and Periodic Points - Connected Spaces

A sequence s = 〈x0, x1, ..., xn〉 ∈ X n+1 is an ε-chain between x0

and xn if d(xi , xi+1) ≤ ε. Let l(s) =
∑

i<n d(xi , xi+1). Define

D̂ : X 2 → [0,∞), D̂(x , y) = inf{l(s) : s is an ε-chain between x and y}.

Theorem ( <- - - - - - - )

Assume 〈X , d〉 is connected.

For any ε > 0 there is an ε-chain between any two points.

D̂ is a metric topologically equivalent to d.

If 〈X , d〉 is complete, than so is 〈X , D̂〉.

If f : 〈X , d〉 → 〈X , d〉 is (ULC), then f : 〈X , D̂〉 → 〈X , D̂〉 is
(C).

If 〈X , d〉 is also compact and f : 〈X , d〉 → 〈X , d〉 is (ULS),
then f : 〈X , D̂〉 → 〈X , D̂〉 is (S).
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Fixed and Periodic Points - Connected Spaces

Theorem (Rectifiably Path Connected Spaces)

Assume X is complete and rectifiably path connected. No
combination of any of the properties shown imply any other
property, unless the graph forces such implication. Neither
does any combination imply the exitance of a periodic point
unless it contains (C), (ULC), (uLC) or (uPC).

(C)F
B (ULC)F

E (uLC)F
HKJ (LC)

(S) (ULS) (LS)

(uPC)F
HKJ (PC)

(PS)
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Definition

A metric space 〈X , d〉 is d-convex provided for any distinct
points x , y ∈ X there exists a path p : [0, 1] → X from x to y
such that

d(p(t1), p(t3)) = d(p(t1), p(t2)) + d(p(t2), p(t3))

whenever 0 ≤ t1 < t2 < t3 ≤ 1.
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Fixed and Periodic Points - Connected Spaces

Theorem (d-convex Spaces)

Assume X is complete and d-convex. Jungck (1982) showed
(uPC) ⇒ (C) with the same λ. A modified argument shows that
(PS) ⇒ (S).

(C)F
B (ULC)F

B (uLC)F
B (LC)

(S) (ULS) (LS)

(uPC)F
B (PC)

(PS)

No combination of any of the properties shown imply any other
property, unless the graph forces such implication. Neither
does any combination imply the existence of a periodic point
unless it contains (C)=(ULC)=(uLC)=(uPC).
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Main Results

Open Problems

Fixed and Periodic Points - Compact Spaces

Theorem (Compact Spaces)

Assume 〈X , d〉 is compact. Ding and Nadler (2002) and C&J
2015 showed (LC) ⇒ (ULC) and (LS) ⇒ (ULS).

(C)F
B (ULC)P

E (uLC)P
E (LC)P

E

(S)F
E (ULS)P

E (LS)P
E

(uPC) (PC)

(PS)
No combination of any of the properties shown imply any other
property, unless the diagram forces such implication. Neither
does any combination imply the existence of a fixed or periodic
unless indicated on the diagram.
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E (LC)P

E

(S)F
E (ULS)P

E (LS)P
E

(uPC) (PC)

(PS)
No combination of any of the properties shown imply any other
property, unless the diagram forces such implication. Neither
does any combination imply the existence of a fixed or periodic
unless indicated on the diagram.
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Fixed and Periodic Points - Compact Spaces

Theorem (Compact Connected Spaces)

Assume X is compact and connected.

(C)F
B (ULC)F

E (uLC)F
E (LC)F

E

(S)F
E (ULS)F

E (LS)F
E

(uPC)?
CJ (PC)?

CJ

(PS)?
CJ

No combination of any of the properties shown imply any other
property, unless the diagram forces such implication.
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Fixed and Periodic Points - Compact Spaces

Theorem (Compact Rectifiably Path Connected Spaces)

Assume X is compact and rectifiably path connected.

(C)F
B (ULC)F

E (uLC)F
E (LC)F

E

(S)F
E (ULS)F

E (LS)F
E

(uPC)F
HKJ (PC)F

CJ

(PS)?
CJ

No combination of any of the properties shown imply any other
property, unless the diagram forces such implication.
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Fixed and Periodic Points - Compact Spaces

Theorem (Compact d-Convex Spaces)

Assume X is compact and d-convex.

(C)F
B (ULC)F

B (uLC)F
B (LC)F

B

(S)F
E (ULS)F

E (LS)F
E

(uPC)F
B (PC)F

CJ

(PS)F
E

No combination of any of the properties shown imply any other
property, unless the diagram forces such implication.
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Open Problems

1. Assume that 〈X , d〉 is compact and either connected or
path connected. If the map f : 〈X , d〉 → 〈X , d〉 is (PS),
must f have either fix or periodic point? What if f is (PC)?
or (uPC)?

2. Assume that 〈X , d〉 is compact and rectifiably path
connected. If the map f : 〈X , d〉 → 〈X , d〉 is (PS), does it
imply that f has a fixed or periodic point?
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Thank you
for your attention.
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Open Problems

3. Let X ⊂ R be compact perfect and let g be a function from
X onto X 2. Can g be differentiable?

If a differentiable g = 〈f , h〉 as in Problem 3 existed then
f : X → X would be a surjection with f ′(x) = 0 except for a
meager subset of X , [C&J, 2014].
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Theorem (C & J, 2015)

There exists a perfect compact set X ⊆ R and
autohomeomorphism f : X→ X with f′(x) = 0 for all x ∈ X.It
follows that f is λ − (uPC) with any λ ∈ [0, 1). Moreover, 〈X, f〉 is
a minimal dynamical system so f has no periodic points.

Figure: Action of f2 = 〈f, f〉 on X2.
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(C)F
B (ULC)P

E (uLC)P
E (LC)P

E

(S)F
E (ULS)P

E (LS)P
E

(uPC) (PC)

(PS)
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