Weak diamonds and topology

Michael Hrušák

CCM UNAM michael@matmor.unam.mx

> Praha July 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

There are two powerful paradigms in set theory for solving (e.g. topological) problems

- The Axiom of constructibility V=L, and
- forcing axioms (MA, PFA, MM,...)

We shall look at problems not settled by these (or rather "settled in the same way"). Usually problems of the form:

Is there a topological space (or a family of spaces, or a combinatorial object) with property P?

A (1) × (2) × (2) ×

There are two powerful paradigms in set theory for solving (e.g. topological) problems

- The Axiom of constructibility V=L, and
- forcing axioms (MA, PFA, MM,...)

We shall look at problems not settled by these (or rather "settled in the same way"). Usually problems of the form:

Is there a topological space (or a family of spaces, or a combinatorial object) with property P?

▲圖 → ▲ 国 → ▲ 国 →

Typical analysis of such a problem

- $CH \Rightarrow Yes$
- $MA \Rightarrow Yes$
- "Optimize" the above proofs to get $\mathfrak{inv} = \mathfrak{c} \Rightarrow YES$.

Cardinal invariants of the continuum serve primarily as a scale against which we measure the complexity (or strength) of our LONG (c-many tasks in c-many steps) recursive constructions.

There is typically a companion SHORT (c-many tasks in ω_1 -many steps) recursive construction using a parametrized (weak) \Diamond -principle.

The intention being to EITHER split the problem into manageable cases to produce a ZFC result, OR to obtain more information for the search of a suitable forcing model to prove a consistency result.

▲圖▶ ▲ 厘▶ ▲ 厘▶

Typical analysis of such a problem

- $CH \Rightarrow Yes$
- $MA \Rightarrow Yes$
- "Optimize" the above proofs to get $\mathfrak{inv} = \mathfrak{c} \Rightarrow YES$.

Cardinal invariants of the continuum serve primarily as a scale against which we measure the complexity (or strength) of our LONG (c-many tasks in c-many steps) recursive constructions.

There is typically a companion SHORT (c-many tasks in ω_1 -many steps) recursive construction using a parametrized (weak) \Diamond -principle.

The intention being to EITHER split the problem into manageable cases to produce a ZFC result, OR to obtain more information for the search of a suitable forcing model to prove a consistency result.

"...The cardinal characteristics are simply the smallest cardinals for which various results true for \aleph_0 become false...."

- A. Blass: Combinatorial Cardinal Characteristics of the Continuum

• $\mathfrak{b} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \ \forall g \in \omega^{\omega} \ \exists f \in \mathcal{F} \ |\{n : f(n) > g(n)\}| = \omega\}$ • $\mathfrak{s} = \min\{|\mathcal{S}| : \mathcal{S} \subseteq [\omega]^{\omega} \ \forall A \in [\omega]^{\omega} \ \exists S \in \mathcal{S} \ |S \cap A| = |A \setminus S| = \omega\}$

向下 イヨト イヨト

"...The cardinal characteristics are simply the smallest cardinals for which various results true for \aleph_0 become false...."

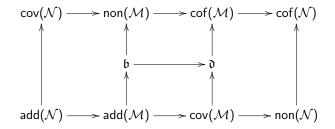
- A. Blass: Combinatorial Cardinal Characteristics of the Continuum

•
$$\mathfrak{b} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \ \forall g \in \omega^{\omega} \ \exists f \in \mathcal{F} \ |\{n : f(n) > g(n)\}| = \omega\}$$

• $\mathfrak{s} = \min\{|\mathcal{S}| : \mathcal{S} \subseteq [\omega]^{\omega} \ \forall A \in [\omega]^{\omega} \ \exists S \in \mathcal{S} \ |S \cap A| = |A \setminus S| = \omega\}$

向下 イヨト イヨト

Cardinal invariants of the continuum



Cichoń's diagram

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q ()

Definition (Devlin-Shelah 1978)

The weak diamond principle Φ is the following assertion:

$$\forall F: 2^{<\omega_1} \to 2 \; \exists g: \omega_1 \to 2 \; \forall f \in 2^{\omega_1}$$

$$\{\alpha < \omega_1 : F(f \restriction \alpha) = g(\alpha)\}$$
 is stationary.

Theorem (Devlin-Shelah 1978)

 Φ is equivalent to $2^{\omega} < 2^{\omega_1}$.

伺 ト イヨト イヨト

Problem (Malykhin 1978)

Is there a separable (equvalently, countable) Fréchet group which is not metrizable?

Partial positive solutions:

- $\mathfrak{p} > \omega_1 \dots$ Yes
- (Gerlits-Nagy 1982) There is an uncountable γ -set . . . Yes
- (Nyikos 1989) $\mathfrak{p} = \mathfrak{b} \dots$ Yes

Theorem (H.-Ramos García 2014)

It is consistent with **ZFC** that every separable Fréchet group is metrizable.

< 個 > < 注 > < 注 > □ 注

Problem (Malykhin 1978)

Is there a separable (equvalently, countable) Fréchet group which is not metrizable?

Partial positive solutions:

- $\mathfrak{p} > \omega_1 \dots$ Yes
- (Gerlits-Nagy 1982) There is an uncountable γ -set . . . Yes
- (Nyikos 1989) $\mathfrak{p} = \mathfrak{b} \dots$ Yes

Theorem (H.-Ramos García 2014)

It is consistent with **ZFC** that every separable Fréchet group is metrizable.

(本語) (本語) (本語) (二語)

Theorem (H.–Ramos-García 2014)

Assuming Φ , there is a countable non-metrizable Fréchet group (of weight \aleph_1).

Given a filter ${\mathcal F}$ on ω let

$$\mathcal{F}^{<\omega} = \{A \subseteq [\omega]^{<\omega} : (\exists F \in \mathcal{F})[F]^{<\omega} \subseteq A\}.$$

Declaring $\mathcal{F}^{<\omega}$ the filter of neighbourhoods of the \emptyset induces a group topology $\tau_{\mathcal{F}}$ on the Boolean group $[\omega]^{<\omega}$ with the symmetric difference as the group operation.

伺 とう ほう うちょう

We shall use Φ to show that there is a pair of mutually orthogonal, \subseteq^* -increasing sequences of infinite subsets of ω (in fact, a *Hausdorff gap*) $\langle A_{\alpha}: \alpha < \omega_1 \rangle$, $\langle B_{\alpha}: \alpha < \omega_1 \rangle$ so that

for every $X \subseteq [\omega]^{<\omega} \setminus \{\emptyset\}$ there exists an $\alpha < \omega_1$ such that either

- **(**) there is an $n \in \omega$ such that $a \cap (A_{\alpha} \cup n) \neq \emptyset$ for every $a \in X$, or
- **(a)** for every $n \in \omega$ there is an $a \in X$ such that min $a \ge n$ and $a \subset B_{\alpha}$.

Having done that, let \mathcal{F} be the filter generated by the complements of the A_{α} 's and the co-finite sets. Then $\tau_{\mathcal{F}}$ is Fréchet group which is not metrizable.

★御★ ★注★ ★注★ 一注

Recall - Φ : $\forall F : 2^{<\omega_1} \rightarrow 2$ Borel $\exists g : \omega_1 \rightarrow 2 \ \forall f \in 2^{\omega_1}$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary.

Want $\langle A_{\alpha} : \alpha < \omega_1 \rangle$, $\langle B_{\alpha} : \alpha < \omega_1 \rangle$, \subseteq^* -increasing mutually orthogonal so that for every $X \subseteq [\omega]^{<\omega} \setminus \{\emptyset\}$ there exists an $\alpha < \omega_1$ such that either there is an $n \in \omega$ such that $a \cap (A_{\alpha} \cup n) \neq \emptyset$ for every $a \in X$, or for every $n \in \omega$ there is an $a \in X$ such that min $a \ge n$ and $a \subseteq B_{\alpha}$.

$\Phi \Rightarrow \exists$ countable non-metrizable Fréchet group

- The domain of *F* (using a suitable coding) is the set of all triples $\langle X, \langle A_{\beta} : \beta < \alpha \rangle, \langle B_{\beta} : \beta < \alpha \rangle \rangle$ such that:
 - $X \subseteq [\omega]^{<\omega} \setminus \{\emptyset\}.$
 - 2 α is an infinite countable ordinal.
 - $\langle A_{\beta} : \beta < \alpha \rangle$, $\langle B_{\beta} : \beta < \alpha \rangle$ is a pair of mutually orthogonal, ⊂*-increasing sequences of infinite subsets of ω .
- Given a pair ⟨A_β: β < α⟩, ⟨B_β: β < α⟩ as above, fix disjoint sets A and B such that A almost contains all A_β, β < α, while B almost contains all B_β, β < α, and ω = A ∩ B.¹

$$F(t) = \begin{cases} 0 & \text{if } \exists n \in \omega \, \forall a \in X(a \cap (A \cup n) \neq \emptyset); \\ 1 & \text{if } \forall n \in \omega \, \exists a \in X(a \cap (A \cup n) = \emptyset). \end{cases}$$

¹Let $\alpha = \{\alpha_n : n \in \omega\}$ be an enumeration of α . For each $n \in \omega$, let $A^{n+1} = A^n \cup (A_{\alpha_{n+1}} \setminus \bigcup_{k \leq n} B^k)$ and $B^{n+1} = B^n \cup (B_{\alpha_{n+1}} \setminus \bigcup_{k \leq n+1} A^k)$, where $A^0 = A_{\alpha_0}$ and $B^0 = B_{\alpha_0} \setminus A_{\alpha_0}$. Then, $A = \bigcup_{n \in \omega} A^n$ and $B = \omega \otimes A$ are as required. $\Im \subseteq M$. Hruššk Weak diamonds and topology

$\Phi \Rightarrow \exists$ countable non-metrizable Fréchet group

- Now suppose that $g: \omega_1 \to 2$ is a \diamond -sequence for F. Construct $\langle A_{\alpha}: \alpha < \omega_1 \rangle$, $\langle B_{\alpha}: \alpha < \omega_1 \rangle$ as follows:
- Let $\langle A_n \colon n < \omega \rangle$, $\langle B_n \colon n < \omega \rangle$ be any pair of mutually orthogonal, \subseteq^* -increasing sequences of infinite subsets of ω . If $\langle A_\beta \colon \beta < \alpha \rangle$, $\langle B_\beta \colon \beta < \alpha \rangle$ have been defined, consider the corresponding partition $\omega = A \cup B$ such that A almost contains all A_β , $\beta < \alpha$, while B almost contains all B_β , $\beta < \alpha$ constructed by the algorithm described above.
- If g(α) = 0, then let A_α = A, and let B_α be a co-infinite subset of B still almost containing all B_β, β < α.

If $g(\alpha) = 1$, then let $B_{\alpha} = B$, and let A_{α} be a co-infinite subset of A almost containing all A_{β} , $\beta < \alpha$.

Definition (Devlin-Shelah 1978)

The weak diamond principle Φ is the following assertion:

$$\forall F: 2^{<\omega_1} \to 2 \exists g: \omega_1 \to 2 \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary (unbounded).

Definition (Moore-H.-Džamonja 2004)

The weakest (or Borel) weak diamond principle $\Diamond(2,=)$ is the following assertion:

$$\forall F: 2^{<\omega_1} \rightarrow 2 \text{ Borel } \exists g: \omega_1 \rightarrow 2 \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary (unbounded).^a

^{*a*}*F* is Borel if $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$.

Borel $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Devlin-Shelah 1978)

The weak diamond principle Φ is the following assertion:

$$\forall F: 2^{<\omega_1} \to 2 \ \exists g: \omega_1 \to 2 \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary (unbounded).

Definition (Moore-H.-Džamonja 2004)

The weakest (or Borel) weak diamond principle $\Diamond(2,=)$ is the following assertion:

$$\forall F : 2^{<\omega_1} \rightarrow 2 \text{ Borel } \exists g : \omega_1 \rightarrow 2 \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary (unbounded).^a

^{*a*}*F* is Borel if $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$.

Borel $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$.

Theorem (Devlin-Shelah 1978)

The principle Φ holds if and only if $2^\omega < 2^{\omega_1}.$ In particular, it holds assuming CH.

(Moore-H.-Džamonja 2004) \Diamond (2,=) holds in many models of $2^{\omega} = 2^{\omega_1}$:

- after forcing with the Suslin tree,
- in models obtained by "definable" CS or FS iterations.

向下 イヨト イヨト

Definition (Moore-H.-Džamonja 2004)

The principle $\Diamond(b)$ is the following assertion:

$$\forall \textit{Borel } F: 2^{<\omega_1} \to \omega^{\omega} \ \exists g: \omega_1 \to \omega^{\omega} \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \not\geq^* g(\alpha)\}$ is stationary.

Borel $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$.

Theorem (MHD 2004)

If \mathbb{P}_{ω_2} is a CSI iteration of a sufficiently definable sufficiently homogeneous proper forcing such that $V^{\mathbb{P}_{\omega_2}} \models \mathfrak{b} = \omega_1$ then $V^{\mathbb{P}_{\omega_2}} \models \diamondsuit(\mathfrak{b}).$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

A topological space X is *weakly first countable* if for any point $x \in X$ there is a countable collection $\{C_n(x) : n \in \omega\}$ of subsets of X each containing x such that a set $U \subseteq X$ is open if and only if $\forall x \in U \exists n \in \omega \ C_n(x) \subseteq U$.

- Jakovlev 1976 (CH) There is a weakly first countable compact space which is not first countable.
- Abraham-Gorelic-Juhász 2006 ($\mathfrak{b} = \mathfrak{c}$) There is a Jakovlev space.
- Gaspar-Hernández-H. 2015 ($\Diamond(\mathfrak{b})$) There is a Jakovlev.

・ 同 ト ・ ヨ ト ・ ヨ ト

A maximal almost disjoint (MAD) family $\mathcal{A} \subseteq \mathcal{P}(\omega)$ is Cohen-indestructible if it remains maximal after adding a Cohen-real (equivalently, any number of Cohen-reals).

- Kunen 1980 (CH) There is a Cohen-indestructible MAD family.
- Garcia-Ferreira-H. 2001 ($\mathfrak{b} = \mathfrak{c}$) There is a Cohen-indestructible MAD family.
- Guzmán-H. 2015 (◊(𝔥)) There is a Cohen-indestructible MAD family.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Scarborough-Stone problem: Products of sequentially compact spaces

A topological space X is *sequentialy compact (resp. countably compact)* if any countable sequence in X has a convergent subsequence (resp. an accumulation point).

- Vaughan 1976 (◊) There is a family of sequentially compact spaces whose product is not countably compact.
- van Douwen 1984 ($\mathfrak{b} = \mathfrak{c}$) There is a family of sequentially compact spaces whose product is not countably compact.
- Gaspar-Hernández-H. 2015 (◊(\$)) There is a family of sequentially compact spaces whose product is not countably compact.

The principle $\Diamond(\mathfrak{s})$ is the following:

$$\forall \textit{Borel } F: 2^{<\omega_1} \to [\omega]^{\omega} \exists g: \omega_1 \to [\omega]^{\omega} \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : g(\alpha) \text{ splits } F(f \restriction \alpha)\}$ is stationary.

通 とう マラ とう マ

Archangel'skii-Franklin problem: Sequential order of compact spaces

Recall that a topological space X is *sequential* if any subset which is not closed contains a convergent sequence whose limit is outside of the set. In other words, closure can be obtained by iterating adding limits of convergent sequences, the *sequential order* of X being the minimal number of iterations necessary to get the closure.

- Isbell-Mrowka (implicitly) There is a compact sequential space of sequential order 2.
- Bashkirov 1974 (CH) There is a compact sequential space of sequential order ω_1 .
- Dow 2005 ($\mathfrak{b} = \mathfrak{c}$) There is a compact space of sequential order 4.
- Gaspar-Henández-H. (◊(b)) There is a compact sequential space of sequential order ω.
- Gaspar-Henández-H. (◊(bs)) There is a compact sequential space of sequential order ω₁.

An invariant is a triple
$$(A, B, \rightarrow)$$
 where $\rightarrow \subseteq A \times B$ is such that
(1) $\forall a \in A \exists b \in B \ a \rightarrow b$, and
(2) $\forall b \in B \exists a \in A \ a \not\rightarrow b$.
Given an invariant (A, B, \rightarrow) the evaluation of (A, B, \rightarrow) is

$$||A, B, \rightarrow || = \min\{|B'| : B' \subseteq B \,\, \forall a \in A \,\, \exists b \in B' \,\, a \rightarrow b\}$$

We abbreviate (A, A, \rightarrow) as (A, \rightarrow) .

Definition $\Phi(A, B, \rightarrow)$

$$\forall F: 2^{<\omega_1} \to \mathbf{A} \exists g: \omega_1 \to \mathbf{B} \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$ is stationary.

Disadvantage: $\Phi(A, B, \rightarrow)$ implies $2^{\omega} < 2^{\omega_1}$.

We restrict to Borel invariants - require A, B and \rightarrow to be Borel subsets of Polish spaces.

Definition (MHD 2004) \diamondsuit (*A*, *B*, \rightarrow)

 $\forall F: 2^{<\omega_1} \to A \text{ Borel } \exists g: \omega_1 \to B \ \forall f \in 2^{\omega_1}$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$ is stationary.

F is Borel if $F \upharpoonright 2^{\alpha}$ is Borel for every $\alpha < \omega_1$. Easy observations:

- $(A, B, \rightarrow) \Rightarrow ||A, B, \rightarrow || \leq \omega_1,$
- $\diamond \Leftrightarrow \diamond (\mathbb{R},=)$,
- $(A, B, \rightarrow) \leq_{GT} (A', B', \rightarrow')$ and $\Diamond (A', B', \rightarrow') \Rightarrow \Diamond (A, B, \rightarrow).$

Theorem (MHD 2004)

If W is a canonical model and (A, B, \rightarrow) is a Borel invariant then $W \models \Diamond (A, B, \rightarrow)$ if and only if $||A, B, \rightarrow || \le \omega_1$.

By a CANONICAL MODEL we mean a model which is the result of a CSI of length ω_2 of a single sufficiently definable (e.g. Suslin) and sufficiently homogeneous ($\mathbb{P} \simeq \{0,1\} \times \mathbb{P}$) proper forcing \mathbb{P} .

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- $\Diamond(\mathsf{non}(\mathcal{M})) \Rightarrow \mathsf{There} \text{ is a Suslin tree.}$
- $\diamondsuit(\mathfrak{s}^{\omega}) \Rightarrow$ There is an Ostaszewski space.
- $\Diamond(\mathfrak{b}) \Rightarrow$ There is a non-trivial coherent sequence on ω_1 which can not be uniformized.
- Cardinal invariants with "structure" have their Borel "shadows", e.g. $\Diamond(\mathfrak{b}) \Rightarrow \mathfrak{a} = \omega_1, \ \Diamond(\mathfrak{r}) \Rightarrow \mathfrak{u} = \omega_1, \ldots$
- CH + "Almost no diamonds hold" is consistent.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

- (Yorioka, 2005) $\Diamond(non(\mathcal{M})) \Rightarrow$ There is a ccc destructible Hausdorff gap.
- (Minami 2005) Separated ◊'s for invariants in the Cichoń diagram under CH.
- (Kastermans-Zhang 2006) ◊(non(M)) ⇒ There is a maximal cofinitary group of size ω₁.
- (Minami 2008) Parametrized diamonds hold in FSI iterations of Suslin ccc forcings.
- (Mildenberger, Mildenberger-Shelah 2009-2011) No other diamonds in the Cichoń diagram imply the existence of a Suslin tree (all are consistent with "all Aronszajn trees are special").

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

- (Cancino-H.-Meza 2014) $\Diamond(\mathfrak{r}) \Rightarrow$ There is a countable irresolvable space of weight ω_1 .
- (H.–Ramos-García 2014) ◊(2,=) ⇒ There is a separable Fréchet non-metrizable group.
- (Chodounský 2014) $\Diamond(2,=) \Rightarrow$ There is a tight Hausdorff gap of functions.
- (Fernández-H. 2015) ◊(t_{Hindman}) ⇒ There is a union-ultrafilter of character ω₁.
- (Fernández-H. 2015) ◊(τ_{Fin×scattered}) ⇒ There is a gruff ultrafilter of character ω₁.

Definition $\Diamond(A, B, \rightarrow)$

$$\forall F: 2^{<\omega_1} \rightarrow A \text{ Borel } \exists g: \omega_1 \rightarrow B \ \forall f \in 2^{\omega_1}$$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$ is stationary.

It turns out that the requirement that F be Borel is unnecessarily strong – can be replaced by $F \upharpoonright 2^{\alpha}$ is definable from an ω_1 -sequence of reals (or even an ω_1 -sequence of ordinals), i.e. $F \upharpoonright 2^{\alpha} \in L(\mathbb{R})[X]$, where X is an ω_1 -sequence of ordinals, which we shall call ω_1 -definable.

Definition $\diamondsuit^{\omega_1}(A, B, \rightarrow)$

$$orall F: 2^{<\omega_1} o A \; \omega_1$$
-definable $\exists g: \omega_1 o B \; orall f \in 2^{\omega_1}$

 $\{\alpha < \omega_1 : F(f \upharpoonright \alpha) \rightarrow g(\alpha)\}$ is stationary.

(人間) (人) (人) (人) (日) (日)

The weakest weak diamond and failure of Baumgartner

$\diamondsuit^{\omega_1}(2,=)$ - the Weakest weak diamond

$$\forall F: 2^{<\omega_1} \rightarrow 2 \; \omega_1$$
-definable $\exists g: \omega_1 \rightarrow 2 \; \forall f \in 2^{\omega_1}$

$$\{\alpha < \omega_1 : F(f \upharpoonright \alpha) = g(\alpha)\}$$
 is stationary.

Example.

 $\Diamond^{\omega_1}(2,=) \Rightarrow$ Every \aleph_1 -dense set of reals X contains an \aleph_1 -dense set Y such that X and Y are not order isomorphic.

Proof.

Fix X and $Z \aleph_1$ -dense subset of X such that $X \setminus Z$ is uncountable. Enumerate $X \setminus Z$ as $\{x_\alpha : \alpha < \omega_1\}$, and let $H : 2^\omega \to Aut(\mathbb{R})$ be Borel and onto. Let F(s) = 0 iff $|s| < \omega$ or $H(s \upharpoonright \omega)(x_{|s|}) \in X$. Given g, let $Y = Z \cup \{x_\alpha : g(\alpha) = 1\}$. Given an $h \in Aut(\mathbb{R})$ consider any $f \in 2^{\omega_1}$ such that $H(f \upharpoonright \omega) = h$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Given $i = (A, B, \rightarrow)$ and $j = (A', B', \rightarrow')$, we define the sequential composition i; j of i and j by

 $\mathfrak{i};\mathfrak{j}=(A\times A'^B,B\times B',\rightarrow'') \text{ with } (a,h)\rightarrow''(b,b') \text{ iff } a\rightarrow b \And h(b)\rightarrow' b'.$

Remark: $||i; j|| = \max\{||i||, ||j||\}.$

<回> < 回> < 回> < 回> = 回

Maximal trees in $\mathcal{P}(\omega)/\text{fin}$.

A set $\mathcal{T} \subseteq [\omega]^{\omega}$ is a maximal tree if

- **①** \mathcal{T} is a tree (ordered by reverse \subseteq^*), and

Note that levels of the tree are incomparable families, not AD families.

(Campero-Cancino-H.-Miranda 2015)

 $\Diamond^{\omega_1}(\mathfrak{r}_{\sigma};\mathfrak{d}) \Rightarrow$ There is a maximal tree in $\mathcal{P}(\omega)/fin$ of size ω_1 .

Question

Does every maximal tree in $\mathcal{P}(\omega)$ /fin have size at least \mathfrak{d} ?

▲圖 → ▲ 臣 → ▲ 臣 → 二 臣

Definition $\diamondsuit_{S}^{\omega_{1}}(\omega_{1}, -)$ - the Strongest weak diamond

Let $S \subseteq \omega_1$ be stationary.

$$orall F: 2^{<\omega_1} o \omega_1 \ \omega_1$$
-definable $\exists g: \omega_1 o \omega_1 \ orall f \in 2^{\omega_1}$

 $\{\alpha \in S : F(f \upharpoonright \alpha) = g(\alpha)\}$ is stationary.

Observations:

•
$$\diamondsuit_{S}^{\omega_{1}}(\omega_{1},=)+||A,B,\rightarrow||\leq\omega_{1} \Rightarrow \diamondsuit_{S}^{\omega_{1}}(A,B,\rightarrow)$$

•
$$\diamond_{S} \Leftrightarrow \mathsf{CH} + \diamond_{S}^{\omega_{1}}(\omega_{1}, =).$$

Theorem

 $\forall S \in NS(\omega_1)^+ \diamondsuit^{\omega_1}_S(\omega_1, =)$ holds in all canonical models.

"All" parametrized diamonds hold in the Sacks model

Theorem

 $\forall S \in NS(\omega_1)^+ \diamondsuit_S^{\omega_1}(\omega_1, =)$ holds in any canonical model.

combined with

Theorem (Zapletal 2008)

For every Borel cardinal invariant (A, B, \rightarrow) if $||A, B, \rightarrow || < \mathfrak{c}$ can be forced then $V^{\mathbb{S}_{\omega_2}} \models ||A, B, \rightarrow || \leq \omega_1$.

gives

Corollary

 $V^{\mathbb{S}_{\omega_2}} \models \Diamond^{\omega_1}(A, B, \rightarrow)$ for every Borel cardinal invariant (A, B, \rightarrow) such that $||A, B, \rightarrow || \le \omega_1$ can be forced over any model without collapsing ω_2 .

Canonical models

The following hold in ALL canonical models:

- All Whitehead groups of size ω_1 are free (Shelah $\diamondsuit_S^{\omega_1}(2,=)$)
- Baumgartner's theorem fails (Baumgartner $\diamondsuit^{\omega_1}(2,=))$
- $\mathfrak{p} = \mathfrak{q} = \omega_1$, $\mathfrak{a} = \mathfrak{b}$, $\mathfrak{r} = \mathfrak{u}$, $\mathfrak{s} = \mathfrak{s}_{\omega} \dots (\mathsf{MHD})$
- There is a non-metrizable separable Fréchet group. (H.-Ramos $\Diamond(2,=)$)
- There is a Cohen indestructible MAD family. (H.-Guzmán $\mathfrak{b} = \mathfrak{c} + \diamondsuit(\mathfrak{b})$)
- There is a compact sequential space of sequential order > 2. (Dow - $\mathfrak{b} = \mathfrak{c} + \text{Gaspar-Hernández-H.} - \diamondsuit(\mathfrak{b})$)
- There is a compact weakly first countable space that is not first countable.

(Abraham-Gorelic-Juhász - $\mathfrak{b} = \mathfrak{c} + \mathsf{Gaspar-Hernández-H.} - \diamondsuit(\mathfrak{b})$)

• There is a ccc forcing adding a real and not adding either a random or a Cohen real.

 $(\mathsf{Brendle} - \mathsf{cof}(\mathcal{M}) = \mathfrak{c} + \mathsf{Guzm}$ án - $\Diamond(\mathsf{cof}(\mathcal{M}))).$

Questions

- Is $\diamondsuit^{\omega_1}(\omega_1, <)$ consistent with $\neg\diamondsuit^{\omega_1}(\omega_1, =)$?
- Ooes every canonical model contain a P-point?
- Ooes every canonical model contain a Suslin tree?

Thank you for your attention!!!

Questions

- Is $\diamondsuit^{\omega_1}(\omega_1, <)$ consistent with $\neg\diamondsuit^{\omega_1}(\omega_1, =)$?
- Ooes every canonical model contain a P-point?
- Ooes every canonical model contain a Suslin tree?

Thank you for your attention!!!

伺 と く ヨ と く ヨ と