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Introduction: locally compact Abelian groups

Consider the group of integers Z and let us say that sequence (nk)
converges to 0 when the sequence (tnk ) converges to 1 for all
t ∈ T = {t ∈ C : |t| = 1}.

Question

Find a non trivial convergent sequence



Introduction: locally compact Abelian groups

Consider the group of integers Z and let us say that sequence (nk)
converges to 0 when the sequence (tnk ) converges to 1 for all
t ∈ T = {t ∈ C : |t| = 1}.

Question

Find a non trivial convergent sequence

Suppose that {nk} is a sequence which goes to 0. Then, by
definition, the sequence of functions {tnk} converges pointwise to
1 on T . Equivalently, the sequence of functions {e i2πnkx}
converges pointwise to 1 in the interval [0, 1]. Applying Lebesgue’s
Dominated Convergence Theorem, it follows that the sequence
{0} = {

∫ 1

0
e i2πnkxdx} converges to

∫ 1

0
dx = 1, which is a

contradiction.



Introduction: locally compact Abelian groups

The convergence that we have considered here stems from the
initial topology generated by the functions n −→ tn of Z into T .
This topology is called the Bohr topology of Z (denoted Z

♯) and
yields the largest precompact (therefore, non discrete) group
topology that can be defined on the integers. Even though this
topology has been widely studied recently, we are still far from
understanding it well.



Introduction: locally compact Abelian groups

The convergence that we have considered here stems from the
initial topology generated by the functions n −→ tn of Z into T .
This topology is called the Bohr topology of Z (denoted Z

♯) and
yields the largest precompact (therefore, non discrete) group
topology that can be defined on the integers. Even though this
topology has been widely studied recently, we are still far from
understanding it well.

Glicksberg’s Theorem

If G is a LCA group, then every Bohr compact subset of G is also
compact in its original topology. This fact is due to Leptin (discrete
Abelian groups) and Glicksberg (locally compact Abelian groups).
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Bohr compactification

The Bohr compactification of an arbitrary topological group G is a
pair (bG , b) where bG is a compact Hausdorff group and b is a
continuous homomorphism from G onto a dense subgroup of bG
with the following universal property:
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In case, G is discrete, take the supreme of all precompact
topologies on G . This equips G with the largest precompact group
topology on G , whose completion is bG .
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In case, G is discrete, take the supreme of all precompact
topologies on G . This equips G with the largest precompact group
topology on G , whose completion is bG .

Bohr topology

This topology is called Bohr topology and coincides with the weak
or initial topology generated by all irreducible finite dimensional
unitary representations of G . The group G equipped with the Bohr
topology is denoted by G ♯.
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I0-sets

Improving the previous results considerably, van Douwen proved
the following:

van Douwen’s Theorem

For every infinite subset A of an Abelian group G there is B ⊂ A

with |B | = |A| such that B is an interpolation set for bG . This

means that B is C ∗-embedded in bG , which yields B
bG ∼= βBd).

These interpolation sets were called I0-sets by Hartman and
Ryll-Nardzewski who were the first ones to investigate them.
Subsequently I0-sets have also been called Hartman and

Ryll-Nardzewski sets.



I0-sets

Hadamard sets are I0-sets

Every sequence of real numbers {tn}n<ω st t1 > 0,
tn+1/tn > q > 1 is an I0-set in the additive group of the real
numbers.
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appear in connection with the Fourier transform of integrable
functions and measures.

Here, we are interested in a topological approach, which is
connected with the spaces Cp(X ,M), where M is a compact Lie
group.



I0-sets

Hadamard sets are I0-sets

Every sequence of real numbers {tn}n<ω st t1 > 0,
tn+1/tn > q > 1 is an I0-set in the additive group of the real
numbers.

Interpolation sets are well known in harmonic analysis, where they
appear in connection with the Fourier transform of integrable
functions and measures.

Here, we are interested in a topological approach, which is
connected with the spaces Cp(X ,M), where M is a compact Lie
group.

For Abelian groups, it suffices to look at the 1-dimensional torus
T . The Bohr topology of an Abelian group G stems from the
space Cp(X ,T ) when X is the dual group of G .
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Interpolation sets in topological spaces

Definition

Let X be a topological space and let M be a metric space. A
subset Y of X is called M-interpolation (or IM) set when for every
function g ∈ MY with relatively compact range in M, there exists
a f ∈ C (X ,M) such that f|Y = g .
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homomorphisms of G into U(n). If we equip Hom(G ,U(n)) with
the pointwise convergence topology on G , it becomes a compact
Hausdorff space.



Interpolation sets in topological spaces

Definition

Let X be a topological space and let M be a metric space. A
subset Y of X is called M-interpolation (or IM) set when for every
function g ∈ MY with relatively compact range in M, there exists
a f ∈ C (X ,M) such that f|Y = g .

Let G be a topological group and let Hom(G ,U(n)) (resp.
CHom(G ,U(n))) denote the set of (resp. continuous)
homomorphisms of G into U(n). If we equip Hom(G ,U(n)) with
the pointwise convergence topology on G , it becomes a compact
Hausdorff space.

Definition

We say that a subset E of CHom(G ,U(n)) is an n-dimensional I0
set when when for every bounded function f : E −→ C

n2 there
exists f̃ ∈ C (Hom(G ,U(n)),Cn2) such that f̃ |E = f .



Interpolation sets in spaces of continuous functions

Definition

Given a subset ∆ of X , and L ⊆ C (X ,M), we say that L is
separated by ∆ if for every F ⊆ L, there are D1 and D2 subsets of
M and x ∈ ∆ such that dist(D1,D2) > 0, f (x) ∈ D1 if f ∈ F and
f (x) ∈ D2 if f ∈ L\F .



Interpolation sets in spaces of continuous functions

Definition

Given a subset ∆ of X , and L ⊆ C (X ,M), we say that L is
separated by ∆ if for every F ⊆ L, there are D1 and D2 subsets of
M and x ∈ ∆ such that dist(D1,D2) > 0, f (x) ∈ D1 if f ∈ F and
f (x) ∈ D2 if f ∈ L\F .

Lemma

Let L be a countable subset of C (X ,M) such that L
MX

is a
compact space. Consider the following four properties:

(a) There is a subset ∆ of X such that L is separated by ∆.

(b) Every two disjoint subsets of L have disjoint closures in MX .

(c) L
MX

is canonically homeomorphic to βω.

(d) L is a IM set for Cp(X ,M).

Then (a) ⇒ (b) ⇔ (c) ⇐ (d). If M is a Banach space then (b),
(c) and (d) are equivalent.



B-families

Definition

Let X be a topological space and let M be a metric space. We say
that G ⊆ C (X ,M) is a B-family if the following two conditions
hold:

(a) G
MX

is compact.

(b) There exists a nonempty open set V of X and ǫ > 0 such that
for every finite collection {U1, . . . ,Un} of nonempty relatively
open sets of V there is a g ∈ G such that, for all
j ∈ {1, . . . , n}, diam(g(Uj)) ≥ ǫ.



B-families

Definition

Let X be a topological space and let M be a metric space. We say
that G ⊆ C (X ,M) is a B-family if the following two conditions
hold:

(a) G
MX

is compact.

(b) There exists a nonempty open set V of X and ǫ > 0 such that
for every finite collection {U1, . . . ,Un} of nonempty relatively
open sets of V there is a g ∈ G such that, for all
j ∈ {1, . . . , n}, diam(g(Uj)) ≥ ǫ.

Recall that a map is said quasi open when the closure of the image
of an open subset has nonempty interior.



A technical result

Theorem

Let X be a Čech-complete space, M a metric space, Y a
metrizable separable space and Φ : X → Y a continuous and
quasi-open map. If G ⊆ C (X ,M) is a B-family such that each
g ∈ G factors through Y , then there is a nonempty compact
subset ∆ of X and a countable infinite subset L of G such that L
is separated by ∆. As a consequence, if M is a Banach space, it
follows that L is an IM set.



A technical result

Theorem

Let X be a Čech-complete space, M a metric space, Y a
metrizable separable space and Φ : X → Y a continuous and
quasi-open map. If G ⊆ C (X ,M) is a B-family such that each
g ∈ G factors through Y , then there is a nonempty compact
subset ∆ of X and a countable infinite subset L of G such that L
is separated by ∆. As a consequence, if M is a Banach space, it
follows that L is an IM set.

The proof of this theorem proceeds by extending techniques given
by Bourgain for sets of real-valued functions defined on a Polish
space.
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Topological groups

Lemma

Let X be a topological group, M a metric topological group and

G ⊆ CHom(X ,M) such that G
MX

is compact. Then G is a
B-family if and only if it is not equicontinuous.



Topological groups

Lemma

Let X be a topological group, M a metric topological group and

G ⊆ CHom(X ,M) such that G
MX

is compact. Then G is a
B-family if and only if it is not equicontinuous.

Theorem

Let X be a Čech-complete group and K a compact group. If
G ⊆ CHom(X ,K ) is not equicontinuous, then G contains a

countable subset L such that L
KX

is canonically homeomorphic to
βω. In case K = U(n), it follows that L is an n-dimensional I0 set.



Topological groups

Corollary

Let X be a Čech-complete Abelian group. If G ⊆ X̂ is not
equicontinuous, then G contains an I0 set.



Topological groups

Corollary

Let X be a Čech-complete Abelian group. If G ⊆ X̂ is not
equicontinuous, then G contains an I0 set.

Theorem

Let X be a Čech-complete group, K be a compact group and
G ⊆ CHom(X ,K ). If for every countable subset L ⊆ G and

separable subset Y ⊆ X it holds that either L
KY

has countable

tightness or |L
KY

| ≤ c, then G is equicontinuous.



Locally kω abelian groups

Definition

A topological space X is a kω space if it is a hemicompact k-space.
A topological group G is locally kω if G contains an open kω
subgroup.

The class of locally kω abelian groups contains among others
kω-groups, locally compact groups, and their countable direct (or
inductive) limits; free abelian groups on compact spaces and, more
generally, any dual group of a countable projective limit of Čech
complete groups. In particular, any group that is the dual of an
abelian pro-Lie group defined by a countable system is a kω group.



Locally kω abelian groups

Definition

A topological space X is a kω space if it is a hemicompact k-space.
A topological group G is locally kω if G contains an open kω
subgroup.

The class of locally kω abelian groups contains among others
kω-groups, locally compact groups, and their countable direct (or
inductive) limits; free abelian groups on compact spaces and, more
generally, any dual group of a countable projective limit of Čech
complete groups. In particular, any group that is the dual of an
abelian pro-Lie group defined by a countable system is a kω group.

Theorem

Every non-relatively compact subset of a locally kω abelian group
contains an I0-set. As a consequence every locally kω abelian
group strongly respects compactness.



Dual space of compact non-Abelian groups

Let G be a compact group and let Ĝ denote the set of equivalence
classes of irreducible unitary representations of G .

When G is nonAbelian, Ĝ is not longer a group and it is called
dual object. We may view Ĝ as a set of matrix-valued functions
σ : G → U(dσ), where dσ denotes the degree of σ.



Dual space of compact non-Abelian groups

Let G be a compact group and let Ĝ denote the set of equivalence
classes of irreducible unitary representations of G .

When G is nonAbelian, Ĝ is not longer a group and it is called
dual object. We may view Ĝ as a set of matrix-valued functions
σ : G → U(dσ), where dσ denotes the degree of σ.

As in the Abelian case, one can define the notion of Fourier
transform for integrable functions and measures. Given an
integrable function f (resp. measure µ), the symbolism f̂ (resp. µ̂)
will denote its Fourier transform defined on Ĝ .



Interpolation sets

Let l∞(Ĝ ), denote the Banach space of all {Aσ}σ∈Ĝ , where Aσ is
a dσ × dσ matrix, with norm ‖{Aσ}σ∈Ĝ‖∞ = sup

σ∈Ĝ

‖Aσ‖op < ∞

when viewed as a map on C
dσ . We define l∞(E ) similarly for

E ⊆ Ĝ by restricting the representations to E .



Interpolation sets

Let l∞(Ĝ ), denote the Banach space of all {Aσ}σ∈Ĝ , where Aσ is
a dσ × dσ matrix, with norm ‖{Aσ}σ∈Ĝ‖∞ = sup

σ∈Ĝ

‖Aσ‖op < ∞

when viewed as a map on C
dσ . We define l∞(E ) similarly for

E ⊆ Ĝ by restricting the representations to E .

Definition

A subset E ⊆ Ĝ is called Sidon set if whenever (Aσ)σ ⊆ l∞(E ),
there is a measure µ on G satisfying µ̂(σ) = Aσ for all σ ∈ E . If,
in addition, µ can be chosen to be discrete (or discontinuous),
then E is said to be an I0 set.



Interpolation sets

We finish this talk with the following result about the existence of
I0-sets, which partially extends van Douwen’s theorem to
nonabelian groups.

Theorem

Let G be a compact group and let L be an infinite subset of Ĝn.
Then L contains an I0 set.



Interpolation sets
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