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In 1966, A. Arhangel'skii introduced the notion of weak
(local) base of a topological space, and consequently
defined what are a g-first and g-second countable
topological space.

A weak base for a topological space X is a collection
(W), ex such that A C X is open if and only if for every
x € A, there is W € W, such that x ¢ W C A.

A topological space is g-first countable if it has a weak
base (W), cx such that each of the sets W, is countable.

Although it looks like a first countable space is g-first
countable, that is not true in the absence of some form of
the Axiom of Choice.
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A weak base of a topological space (X, 7T) is a family
(W) ex such that:

L (YW eW,) xe W,
2. every W, is a filter base;

3. AC X is open if and only if
for every x € A there is W € W, such that x ¢ W C A.
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» g-first countable if X has a weak base which is countable
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» g-second countable if X has a weak base (W), .y such
that U W, is countable.

xeX
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Closure spaces(=Pretopological spaces)

c:2X — 2X

(X, c) is a closure space if c if grounded, extensive and
additive, i.e. :

1. ¢c(0) =0,
2. if AC c(A);

3. c(AUB) = c(A) U c(B).

Pretopological spaces can equivalently be described with
neighborhoods.

Ne={VIx & c(X\V)}
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N: X — FX, with FX the set of filters on X.

(X, (Nx)xex) is a neighborhood space if for every V' € A,
xe V.

c(A) = {xeX| (VW €N,) VNA#D}
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First countable spaces Pretopological spaces

A pretopological space X is:

» first countable if at each point x, the neighborhood filter
N, has a countable base.

» second countable if there is (By), . such that for each x,
B, is a base for A/ and U B, is countable.

xeX
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Topological reflection

r: PrTfop — Top
(X,¢c) — (X,T)

Aec T if ¢(X\A)= X\ Aor, equivalently

if A is a neighborhood of all its points.
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g-first countable spaces (again)

A topological space X is g-first countable if X has a weak
base which is countable at each point.

A topological space is g-first countable if it is the reflection of
a pretopological first countable space.

» (X, c) has a countable local base at x if the neighborhood
filter N/, has a countable base.

» (X, T) has a countable weak base at x if it is the
reflection of a pretopological space which has a countable
base at x.

It is clear that having a countable weak base at
each point does imply being g-first countable.
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ZF — Zermelo-Fraenkel set theory without the Axiom of
Choice.

MC — The axiom of Multiple Choice

For every family (X;);c; of non-empty sets, there is a family
(A;)ie; of non-empty finite sets such that A; C X; for every
i€l

MC,, - “Generalised” Multiple Choice

For every family (X;);c; of non-empty sets, there is a family
(A;)ies of non-empty at most countable sets such that A; C X;
for every i € I.

MC(«) — is MC for families of sets with cardinal at most «.
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BWV())eex) V()] < R
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g-first countable spaces

gA — every point of X has a countable local weak base.

gB — X is g-first countable (has a weak base which is
countable at each point).

gC —there is {W(n,x) : n € N, x € X} such that for
every x € X, ({W(n,x) : n € N}),ex is a weak base.

gA is never equivalent to the others.
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Some results

Theorem.[KK+ET, 2009] There is a model of ZF where
there is a first a countable space which is not B-first countable
(and also not weak first countable).

Theorem.[GG, 2006 & 2016]

» MC, = (A<B)
» MC(2%) = (B&C) = MC(Ry)

» MC(2%) = (gBegC) = MC(R)
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