g-first countable spaces and the Axiom of Choice Gonçalo Gutierres – CMUC/Universidade de Coimbra

In 1966, A. Arhangel'skii introduced the notion of weak (local) base of a topological space, and consequently defined what are a *g*-first and *g*-second countable topological space.

A weak base for a topological space X is a collection $(\mathcal{W}_x)_{x\in X}$ such that $A\subseteq X$ is open if and only if for every $x\in A$, there is $W\in \mathcal{W}_x$ such that $x\in W\subseteq A$. A topological space is *g*-first countable if it has a weak base $(\mathcal{W}_x)_{x\in X}$ such that each of the sets \mathcal{W}_x is countable. Although it looks like a first countable space is *g*-first countable, that is not true in the absence of some form of the Axiom of Choice.

A weak base of a topological space (X, \mathcal{T}) is a family $(\mathcal{W}_x)_{x \in X}$ such that:

A weak base of a topological space (X, \mathcal{T}) is a family $(\mathcal{W}_x)_{x \in X}$ such that:

1. $(\forall W \in \mathcal{W}_x) x \in W;$

A weak base of a topological space (X, \mathcal{T}) is a family $(\mathcal{W}_x)_{x \in X}$ such that:

- 1. $(\forall W \in W_x) x \in W;$
- 2. every \mathcal{W}_x is a filter base;

A weak base of a topological space (X, \mathcal{T}) is a family $(\mathcal{W}_x)_{x \in X}$ such that:

- 1. $(\forall W \in \mathcal{W}_x) \ x \in W;$
- 2. every \mathcal{W}_x is a filter base;
- 3. $A \subseteq X$ is open if and only if for every $x \in A$ there is $W \in W_x$ such that $x \in W \subseteq A$.

A topological space X is:

first countable if each point of X has a countable local (or neighborhood) base.

- *first countable* if each point of X has a countable local (or neighborhood) base.
- ► *g*-first countable if X has a weak base which is countable at each point.

- *first countable* if each point of X has a countable local (or neighborhood) base.
- ► *g*-first countable if X has a weak base which is countable at each point.
- second countable if there is (𝔅_x)_{x∈X} such that for each x,
 𝔅_x is a local base and ⋃_{x∈X} 𝔅_x is countable.

- first countable if each point of X has a countable local (or neighborhood) base.
- ► *g*-first countable if X has a weak base which is countable at each point.
- second countable if there is (B_x)_{x∈X} such that for each x,
 B_x is a local base and ⋃_{x∈X} B_x is countable.
- *g*-second countable if X has a weak base (𝒱_x)_{x∈X} such that U_{x∈X} 𝔅 is countable.

$$c: 2^X \longrightarrow 2^X$$

$$c: 2^X \longrightarrow 2^X$$

1.
$$c(\emptyset) = \emptyset;$$

$$c: 2^X \longrightarrow 2^X$$

1.
$$c(\emptyset) = \emptyset;$$

2. if
$$A \subseteq c(A)$$
;

$$c: 2^X \longrightarrow 2^X$$

1.
$$c(\emptyset) = \emptyset;$$

2. if
$$A \subseteq c(A)$$
;

3.
$$c(A \cup B) = c(A) \cup c(B)$$
.

$$c: 2^X \longrightarrow 2^X$$

(X, c) is a closure space if c if grounded, extensive and additive, i.e. :

1.
$$c(\emptyset) = \emptyset;$$

2. if
$$A \subseteq c(A)$$
;

3.
$$c(A \cup B) = c(A) \cup c(B)$$
.

Pretopological spaces can equivalently be described with neighborhoods.

$$\mathcal{N}_x := \{ V \, | \, x \notin c(X \setminus V) \}$$

Neighborhood spaces(=Pretopological spaces)

$$\begin{array}{cccc} \mathcal{N}: & X & \longrightarrow & FX, & & \text{with } FX \text{ the set of filters on } X. \\ & & x & \mapsto & \mathcal{N}_x \end{array}$$

 $(X, (\mathcal{N}_x)_{x \in X})$ is a neighborhood space if for every $V \in \mathcal{N}_x$, $x \in V$.

Neighborhood spaces(=Pretopological spaces)

$$\begin{array}{cccc} \mathcal{N}: & X & \longrightarrow & FX, & & \text{with } FX \text{ the set of filters on } X. \\ & x & \mapsto & \mathcal{N}_x \end{array}$$

 $(X, (\mathcal{N}_x)_{x \in X})$ is a neighborhood space if for every $V \in \mathcal{N}_x$, $x \in V$.

$$c(A) = \{x \in X \mid (\forall V \in \mathcal{N}_x) \ V \cap A \neq \emptyset\}$$

First countable spaces Pretopological spaces

First countable spaces Pretopological spaces

A pretopological space X is:

► first countable if at each point x, the neighborhood filter N_x has a countable base. First countable spaces Pretopological spaces

- ► first countable if at each point x, the neighborhood filter N_x has a countable base.
- second countable if there is (B_x)_{x∈X} such that for each x,
 B_x is a base for N_x and ⋃_{x∈X} B_x is countable.

Topological reflection

$$egin{array}{rll} r: & {\sf PrTop} & \longrightarrow & {\sf Top} \ & (X,c) & \mapsto & (X,{\mathcal T}) \end{array}$$

Topological reflection

$$egin{array}{rll} r: & {\sf PrTop} & \longrightarrow & {\sf Top} \ & (X,c) & \mapsto & (X,{\mathcal T}) \end{array}$$

 $A \in \mathcal{T}$ if $c(X \setminus A) = X \setminus A$ or, equivalently

Topological reflection

$$egin{array}{rll} r: & {\sf PrTop} & \longrightarrow & {\sf Top} \ & (X,c) & \mapsto & (X,{\mathcal T}) \end{array}$$

 $A \in \mathcal{T}$ if $c(X \setminus A) = X \setminus A$ or, equivalently if A is a neighborhood of all its points.

A topological space X is *g*-first countable if X has a weak base which is countable at each point.

A topological space X is *g*-first countable if X has a weak base which is countable at each point.

A topological space is *g*-first countable if it is the reflection of a pretopological first countable space.

A topological space X is *g*-first countable if X has a weak base which is countable at each point.

A topological space is *g*-first countable if it is the reflection of a pretopological first countable space.

 (X, c) has a countable local base at x if the neighborhood filter N_x has a countable base.

A topological space X is *g*-first countable if X has a weak base which is countable at each point.

A topological space is *g*-first countable if it is the reflection of a pretopological first countable space.

- ► (X, c) has a countable local base at x if the neighborhood filter N_x has a countable base.
- ► (X, T) has a countable weak base at x if it is the reflection of a pretopological space which has a countable base at x.

A topological space X is *g*-first countable if X has a weak base which is countable at each point.

A topological space is *g*-first countable if it is the reflection of a pretopological first countable space.

- ► (X, c) has a countable local base at x if the neighborhood filter N_x has a countable base.
- ► (X, T) has a countable weak base at x if it is the reflection of a pretopological space which has a countable base at x.

It is clear that having a countable weak base at each point does imply being *g*-first countable.

ZF - Zermelo-Fraenkel set theory without the Axiom of Choice.

 $\mathsf{ZF}-\mathsf{Zermelo}\text{-}\mathsf{Fraenkel}$ set theory without the Axiom of Choice.

MC – The axiom of Multiple Choice For every family $(X_i)_{i \in I}$ of non-empty sets, there is a family $(A_i)_{i \in I}$ of non-empty finite sets such that $A_i \subseteq X_i$ for every $i \in I$.

ZF – Zermelo-Fraenkel set theory without the Axiom of Choice.

MC – The axiom of Multiple Choice For every family $(X_i)_{i \in I}$ of non-empty sets, there is a family $(A_i)_{i \in I}$ of non-empty finite sets such that $A_i \subseteq X_i$ for every $i \in I$.

 \mathbf{MC}_{ω} – "Generalised" Multiple Choice For every family $(X_i)_{i \in I}$ of non-empty sets, there is a family $(A_i)_{i \in I}$ of non-empty at most countable sets such that $A_i \subseteq X_i$ for every $i \in I$.

ZF – Zermelo-Fraenkel set theory without the Axiom of Choice.

MC – The axiom of Multiple Choice For every family $(X_i)_{i \in I}$ of non-empty sets, there is a family $(A_i)_{i \in I}$ of non-empty finite sets such that $A_i \subseteq X_i$ for every $i \in I$.

 \mathbf{MC}_{ω} – "Generalised" Multiple Choice For every family $(X_i)_{i \in I}$ of non-empty sets, there is a family $(A_i)_{i \in I}$ of non-empty at most countable sets such that $A_i \subseteq X_i$ for every $i \in I$.

 $MC(\alpha)$ – is MC for families of sets with cardinal at most α .

first countable \Rightarrow *g*-first countable

first countable \Rightarrow *g*-first countable

$(\forall x \in X) (\exists \mathcal{N}(x)) \ |\mathcal{N}(x)| \leq \aleph_0$

first countable \Rightarrow *g*-first countable

$(\forall x \in X) (\exists \mathcal{N}(x)) \ |\mathcal{N}(x)| \leq \aleph_0$

$\left(\exists \left(\mathcal{W}(x)\right)_{x\in X}\right) |\mathcal{W}(x)| \leq \aleph_0$

A - X is first countable (every point has a countable local base).

A - X is first countable (every point has a countable local base).

B – X has a local countable base system $(\mathcal{B}(x))_{x \in X}$.

A - X is first countable (every point has a countable local base).

B – X has a local countable base system $(\mathcal{B}(x))_{x \in X}$.

C – there is $\{B(n, x) : n \in \mathbb{N}, x \in X\}$ such that for every $x \in X$, $\{B(n, x) : n \in \mathbb{N}\}$ is a local base at x.

gA – every point of X has a countable local weak base.

gA – every point of X has a countable local weak base.

gB - X is g-first countable (has a weak base which is countable at each point).

gA – every point of X has a countable local weak base.

gB - X is g-first countable (has a weak base which is countable at each point).

gC – there is
$$\{W(n, x) : n \in \mathbb{N}, x \in X\}$$
 such that for
every $x \in X$, $(\{W(n, x) : n \in \mathbb{N}\})_{x \in X}$ is a weak base.

gA – every point of X has a countable local weak base.

gB - X is g-first countable (has a weak base which is countable at each point).

gC – there is
$$\{W(n, x) : n \in \mathbb{N}, x \in X\}$$
 such that for
every $x \in X$, $(\{W(n, x) : n \in \mathbb{N}\})_{x \in X}$ is a weak base.

gA is never equivalent to the others.

- true in ZF

- true in ZFC

Theorem.[KK+ET, 2009] There is a model of ZF where there is a first a countable space which is not B-first countable (and also not weak first countable).

Theorem.[KK+ET, 2009] There is a model of ZF where there is a first a countable space which is not B-first countable (and also not weak first countable).

Theorem.[GG, 2006 & 2016]

$$\blacktriangleright \mathbf{MC}_{\omega} \quad \Rightarrow \quad (\mathsf{A} \Leftrightarrow \mathsf{B})$$

Theorem.[KK+ET, 2009] There is a model of ZF where there is a first a countable space which is not B-first countable (and also not weak first countable).

Theorem.[GG, 2006 & 2016]

•
$$\mathbf{MC}_{\omega} \Rightarrow (A \Leftrightarrow B)$$

 $\blacktriangleright \mathsf{MC}(2^{\aleph_0}) \quad \Rightarrow \quad (\mathsf{B} \Leftrightarrow \mathsf{C}) \quad \Rightarrow \quad \mathsf{MC}(\aleph_0)$

Theorem.[KK+ET, 2009] There is a model of ZF where there is a first a countable space which is not B-first countable (and also not weak first countable).

Theorem.[GG, 2006 & 2016]

$$\blacktriangleright \mathbf{MC}_{\omega} \quad \Rightarrow \quad (\mathsf{A} \Leftrightarrow \mathsf{B})$$

- $\blacktriangleright \mathsf{MC}(2^{\aleph_0}) \quad \Rightarrow \quad (\mathsf{B} \Leftrightarrow \mathsf{C}) \quad \Rightarrow \quad \mathsf{MC}(\aleph_0)$
- $\blacktriangleright \mathsf{MC}(2^{\aleph_0}) \quad \Rightarrow \quad (\mathsf{gB} \Leftrightarrow \mathsf{gC}) \quad \Rightarrow \quad \mathsf{MC}(\aleph_0)$

References

A. Arhangel'skii, *Mappings and spaces*, Russian Mathematical Surveys **21** (1966) 115–162.

K. Keremedis and E. Tachtsis, *Different versions of a first countable space without choice*, Top. Applications **156** (2009) 2000–2004.

G. Gutierres, *What is a first countable space?*, Top. Appl. **153** (2006) 3420–3429.

P. Howard and J. E. Rubin, *Consequences of the Axiom of Choice*, American Mathematical Society, 1998. http://consequences.emich.edu/conseq.htm.