Connectedness and inverse limits with set-valued functions on intervals

Sina Greenwood
Coauthors: Judy Kennedy and Michael Lockyer

July 25, 2016

Outline

- CC-sequences and components bases
- Applications of component bases
- Large and small components
- The number of components

Definitions and notation

- $\mathbb{N}=\{0,1, \ldots\}$.
- 2^{Y} denotes the collection of non-empty closed subsets of Y.
- The graph of a function $f: X \rightarrow 2^{Y}$ is the set

$$
\Gamma(f)=\{\langle x, y\rangle: y \in f(x)\} .
$$

For example: $X=Y=[0,1]$ and $f(x)=\{y: 0 \leq y \leq x\}$

- f is surjective if $f(X)=Y$.
- (Ingram, Mahavier) Suppose $f: X \rightarrow 2^{Y}$ is a function. If X and Y are compact Hausdorff spaces, then f is upper semi-continuous (usc) if and only if the graph of f is a closed subset of $X \times Y$.

For each $i \in \mathbb{N}$:
$\left\{X_{i}: i \in \mathbb{N}\right\}$ is a collection of compact Hausdorff spaces $f_{i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ is an usc function.

- The generalised inverse limit (GIL) of the sequence $\mathbf{f}=\left(X_{i}, f_{i}\right)_{i \in \mathbb{N}}$, denoted $\lim _{\leftrightarrows} \mathbf{f}$, is the set

$$
\left\{\left(x_{n}\right) \in \prod_{i \in \mathbb{N}} x_{i}: \forall n \in \mathbb{N}, x_{i} \in f_{i+1}\left(x_{i+1}\right)\right\}
$$

- The functions f_{i} are called bonding maps.
- We are interested in the case where each space $X_{i}=[0,1]$, denoted I_{i}.

Definition

If $I=[0,1]$ and f is an upper semicontinuous surjective function from $/$ into 2^{\prime} and has a connected graph, then we say that f is full.
If for each $i \in \mathbb{N}, I_{i}=[0,1], \mathbf{f}$ is a sequence of functions $f_{i+1}: I_{i+1} \rightarrow 2^{l_{i}}$ and each f_{i+1} is full, then the sequence \mathbf{f} is full.

Notation

1. If $m, n \in \mathbb{N}$ and $m \leq n$ then $[m, n]=\{i \in \mathbb{N}: m \leq i \leq n\}$.
2. π_{j} denotes the projection to I_{j}.
3. $\pi_{i, i-1}$ denotes the projection to $I_{i} \times I_{i-1}$ (usually to the graph if f_{i}).

Definition

Suppose that \mathbf{f} is a full sequence, $m, n>1$, and for each $i \in[m, n]$, $T_{i} \subseteq \Gamma\left(f_{i}\right)$. Then the Mahavier product of T_{m}, \ldots, T_{n} is the set:

$$
\left\{\left\langle x_{0}, \ldots, x_{n}\right\rangle \in \prod_{i \leq n} I_{i}: \forall i<n,\left\langle x_{i+1}, x_{i}\right\rangle \in T_{i+1}\right\}
$$

denoted by $T_{m} \star \cdots \star T_{n}$ or by $\star_{i \in[m, n]} T_{i}$.

Observe that

$$
\begin{aligned}
& \star_{i \in[m, n]} \Gamma\left(f_{i}\right) \\
& =\left\{\left\langle x_{0}, \ldots, x_{n}\right\rangle \in \prod_{i \leq n} I_{i}: \forall i<n,\left\langle x_{i+1}, x_{i}\right\rangle \in \Gamma\left(f_{i+1}\right)\right\} \\
& =\left\{\left\langle x_{0}, \ldots, x_{n}\right\rangle \in \prod_{i \leq n} I_{i}: \forall i<n, x_{i} \in f_{i+1}\left(x_{i+1}\right)\right\} .
\end{aligned}
$$

CC-sequences and component bases

Theorem (Greenwood and Kennedy)
Suppose \mathbf{f} is full. Then the system \mathbf{f} admits a CC-sequence if and only if $\mathrm{lim}_{\mathbf{f}}$ is disconnected.

Example

Figure: A weak component base: S_{1} an L-set, S_{2} a TL-set, S_{3} a T-set.

Classic example

Any L-set must contain the point $\left\langle\frac{1}{4}, \frac{1}{4}\right\rangle$ and is not unique.
The singleton $\left\{\left\langle\frac{1}{4}, \frac{1}{4}\right\rangle\right\}$ is itself an L-set.
For any $x, 0<x<\frac{1}{4}$, the straight line from $\langle x, x\rangle$ to $\left\langle\frac{1}{4}, \frac{1}{4}\right\rangle$ is an L-set. Similarly for T-sets.
For example: $\left\{\left\langle\frac{1}{4}, \frac{1}{4}\right\rangle,\left\langle\frac{3}{4}, \frac{1}{4}\right\rangle\right\}$ is a component base.

Theorem

If \mathbf{f} is full then following statements are equivalent:

1. the system \mathbf{f} admits a CC-sequence;
2. the system \mathbf{f} admits a weak component base;
3. the system \mathbf{f} admits a component base;
4. $\lim _{\leftrightarrows} \mathbf{f}$ is disconnected;
5. there exists $n>0$ such that for every $k \geq n, \star_{i \in[1, k]} \Gamma\left(f_{i}\right)$ is disconnected.

Theorem
If \mathbf{f} is a full sequence, C is a component of $\mathbf{f},\left\langle S_{m}, \ldots, S_{n}\right\rangle$ is a weak component base, and

$$
\pi_{[m-1, n]}(C) \cap \star_{i \in[m, n]} S_{i} \neq \emptyset
$$

then

$$
\pi_{[m-1, n]}(C) \subseteq \star_{i \in[m, n]} S_{i} .
$$

Definition

If \mathbf{f} is a full sequence, $\sigma=\left\langle S_{m}, \ldots, S_{n}\right\rangle$ is a component base, and C is a component of $\lim \mathbf{f}$ such that

$$
\pi_{[m-1, n]}(C)=\star_{i \in[m, n]} S_{i}
$$

then C is captured by $\left\langle S_{m}, \ldots, S_{n}\right\rangle$.

$S_{1}=\left\{\left\langle\frac{1}{4}, \frac{1}{4}\right\rangle\right\}$ is an L-set.
$S_{2}=\left\{\left\langle\frac{3}{4}, \frac{1}{4}\right\rangle\right\}$ is a TL-set.
$S_{3}=\left\{\left\langle\frac{3}{4}, \frac{3}{4}\right\rangle\right\}$ is a T-set.
$\left\langle\frac{1}{4}, \frac{1}{4}, \frac{3}{4}, \frac{3}{4}\right\rangle \in S_{1} \star S_{2} \star S_{3}$.
$\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a component base.

Applications of CC-sequences

Theorem
If for each $\in \mathbb{N}, f_{i+1}: I_{i+1} \rightarrow 2^{I_{i}}$ is a full bonding function and moreover each function f_{i+1} is continuous, then $\lim \mathbf{f}$ is connected, and for each $n>0, \star_{i \in[1, n]} \Gamma\left(f_{i}\right)$ is connected.

Proof.
No L-sets or R-sets.

For each n there is a single full bonding function f such that $\star_{[1, n]} \Gamma(f)$ is connected and $\star_{[1, n+1]} \Gamma(f)$ is disconnected.

Ingram gave examples of of such functions. We give a new example using component bases.

Problem (Ingram)

Suppose \mathbf{f} is a sequence of surjective upper semicontinuous functions on $[0,1]$ and $\lim _{\leftrightarrows} \mathbf{f}$ is connected. Let \mathbf{g} be the sequence such that $g_{i}=f_{i}^{-1}$ for each $i \in \mathbb{N}$. Is $\underset{\leftrightarrows}{\lim g}$ connected?

Ingram and Marsh gave a full sequence \mathbf{f} such that $\lim _{\leftrightarrows} \mathbf{f}$ is connected, and $\underset{\leftrightarrows}{\lim }\left(\mathbf{f}^{-1}\right)$ is disconnected.

The problem is also discussed by Banič and Črepnjak. Here is a new example:

There are no L-sets or R-sets in $\Gamma\left(f_{1}^{-1}\right)$.

What if there is a single bonding function?

Theorem
An inverse limit with a single full bonding function f is connected if and only if the inverse limit with single bonding function f^{-1} is connected.

Proof.

Suppose $\lim _{\mathrm{m}} \mathbf{f}$ is disconnected.
Then $\star_{i \in[1, n]} \Gamma\left(f_{i}\right)$ is disconnected for some n.
So there exists a component base $\left\langle S_{1}, \ldots, S_{n}\right\rangle$.
Then $\left\langle S_{n}^{-1}, \ldots, S_{1}^{-1}\right\rangle$ is a component base of the system \mathbf{f}^{-1}.
The converse follows since $\left(f^{-1}\right)^{-1}=f$.

Large and small components

Banič and Kennedy showed that for every full sequence $\mathbf{f}, \lim \mathbf{f}$ has at least one component C such that for every $i \in \mathbb{N}$, $\pi_{i+1, i}(C)=\Gamma\left(f_{i}\right)$.

Definition

Suppose \mathbf{f} is a full sequence and C is a component of $\lim \mathbf{f}$. Then C is large if for each $i \in \mathbb{N}, \pi_{i+1, i}(C)=\Gamma\left(f_{i+1}\right)$, and C is small if it is not large.
If $m, n>1$ and for each $i \in[m, n], T_{i} \subseteq \Gamma\left(f_{i}\right)$, then D is a large component of $\star_{i \in[m, n]}\left(T_{i}\right)$ if for each $i \in \mathbb{N}, \pi_{i+1, i}(D)=T_{i+1}$.

If \mathbf{f} is a full sequence and C is a small component of $\lim \mathbf{f}$, then it need not be the case that C is weakly captured by a component base.

$$
C=\left\{\left\langle\frac{1}{2}, \frac{1}{2}, x\right\rangle: x \in\left[\frac{1}{2}, 1\right]\right\}
$$

Theorem
For every full sequence \mathbf{f}, if $\lim \mathbf{f}$ has a small component C that is not captured by a component base, then the collection of captured components has a limit point in C.

Theorem
For every full sequence $\mathbf{f}, \lim \mathbf{f}$ has exactly one large component.

Corollary
If $\lim _{\curvearrowleft} \mathbf{f}$ is disconnected then it has a small component.

The number of components of an inverse limit

Theorem
An inverse limit with a single upper semicontinuous function whose graph is the union of two maps without a coincidence point has \mathfrak{c} many components.
Perhaps the most extreme example is:

\mathfrak{c} many components

For every $c \in C,\left\{\left\langle\frac{1}{2}, c\right\rangle,\left\langle c, \frac{1}{2}\right\rangle\right\}$ is a component base.

In the previous example, the inverse limit has \mathfrak{c} many components, and so do each of the Mahavier products of \mathbf{g}.

In this example $\lim _{m} \mathbf{f}$ has \mathfrak{c} many components, but every Mahavier product has only finitely many components.

Figure:

In the previous example the sequence admitted infinitely many component bases

It is possible that a full sequence \mathbf{f} has a finite number of components bases, but limf has \mathfrak{c} many components.

Figure:

