Connectedness and inverse limits with set-valued functions on intervals

Sina Greenwood

Coauthors: Judy Kennedy and Michael Lockyer

July 25, 2016

Outline

CC-sequences and components bases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Applications of component bases
- Large and small components
- The number of components

Definitions and notation

- $\blacktriangleright \mathbb{N} = \{0, 1, \ldots\}.$
- 2^{Y} denotes the collection of non-empty closed subsets of Y.
- The graph of a function $f: X \to 2^Y$ is the set

$$\Gamma(f) = \{ \langle x, y \rangle : y \in f(x) \}.$$

For example: X = Y = [0, 1] and $f(x) = \{y : 0 \le y \le x\}$

•
$$f$$
 is surjective if $f(X) = Y$.

► (Ingram, Mahavier) Suppose f : X → 2^Y is a function. If X and Y are compact Hausdorff spaces, then f is upper semi-continuous (usc) if and only if the graph of f is a closed subset of X × Y.

For each $i \in \mathbb{N}$: { $X_i : i \in \mathbb{N}$ } is a collection of compact Hausdorff spaces $f_{i+1} : X_{i+1} \to 2^{X_i}$ is an usc function.

► The generalised inverse limit (GIL) of the sequence $\mathbf{f} = (X_i, f_i)_{i \in \mathbb{N}}$, denoted $\lim_{i \in \mathbb{N}} \mathbf{f}$, is the set

$$\left\{(x_n)\in\prod_{i\in\mathbb{N}}X_i:\forall n\in\mathbb{N},x_i\in f_{i+1}(x_{i+1})\right\}$$

- The functions f_i are called bonding maps.
- We are interested in the case where each space X_i = [0, 1], denoted I_i.

Definition

If I = [0, 1] and f is an upper semicontinuous surjective function from I into 2^{I} and has a connected graph, then we say that f is *full*.

If for each $i \in \mathbb{N}$, $I_i = [0, 1]$, **f** is a sequence of functions $f_{i+1} : I_{i+1} \to 2^{I_i}$ and each f_{i+1} is full, then the sequence **f** is *full*.

Notation

- 1. If $m, n \in \mathbb{N}$ and $m \leq n$ then $[m, n] = \{i \in \mathbb{N} : m \leq i \leq n\}$.
- 2. π_j denotes the projection to I_j .
- 3. $\pi_{i,i-1}$ denotes the projection to $I_i \times I_{i-1}$ (usually to the graph if f_i).

Definition

Suppose that **f** is a full sequence, m, n > 1, and for each $i \in [m, n]$, $T_i \subseteq \Gamma(f_i)$. Then the *Mahavier product* of T_m, \ldots, T_n is the set:

$$\left\{ \langle x_0, \ldots, x_n \rangle \in \prod_{i \le n} I_i : \forall i < n, \langle x_{i+1}, x_i \rangle \in T_{i+1} \right\},\$$

denoted by $T_m \star \cdots \star T_n$ or by $\bigstar_{i \in [m,n]} T_i$.

Observe that

$$\star_{i \in [m,n]} \Gamma(f_i)$$

$$= \left\{ \langle x_0, \dots, x_n \rangle \in \prod_{i \le n} I_i : \forall i < n, \langle x_{i+1}, x_i \rangle \in \Gamma(f_{i+1}) \right\}$$

$$= \left\{ \langle x_0, \dots, x_n \rangle \in \prod_{i \le n} I_i : \forall i < n, x_i \in f_{i+1}(x_{i+1}) \right\}.$$

CC-sequences and component bases

Theorem (Greenwood and Kennedy)

Suppose **f** is full. Then the system **f** admits a CC-sequence if and only if $\lim_{t \to \infty} \mathbf{f}$ is disconnected.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

Figure: A weak component base: S_1 an L-set, S_2 a TL-set, S_3 a T-set.

・ロト ・聞ト ・ヨト ・ヨト

э

Classic example

Any L-set must contain the point $\langle \frac{1}{4}, \frac{1}{4} \rangle$ and is not unique. The singleton $\{\langle \frac{1}{4}, \frac{1}{4} \rangle\}$ is itself an L-set. For any x, $0 < x < \frac{1}{4}$, the straight line from $\langle x, x \rangle$ to $\langle \frac{1}{4}, \frac{1}{4} \rangle$ is an L-set. Similarly for T-sets. For example: $\{\langle \frac{1}{4}, \frac{1}{4} \rangle, \langle \frac{3}{4}, \frac{1}{4} \rangle\}$ is a component base.

Theorem

If **f** is full then following statements are equivalent:

- 1. the system **f** admits a CC-sequence;
- 2. the system **f** admits a weak component base;
- 3. the system **f** admits a component base;
- 4. lim **f** is disconnected;
- 5. there exists n > 0 such that for every $k \ge n$, $\bigstar_{i \in [1,k]} \Gamma(f_i)$ is disconnected.

Theorem

If **f** is a full sequence, C is a component of **f**, (S_m, \ldots, S_n) is a weak component base, and

$$\pi_{[m-1,n]}(C) \cap \bigstar_{i \in [m,n]} S_i \neq \emptyset,$$

then

$$\pi_{[m-1,n]}(C) \subseteq \bigstar_{i \in [m,n]} S_i.$$

Definition

If **f** is a full sequence, $\sigma = \langle S_m, \dots, S_n \rangle$ is a component base, and *C* is a component of $\lim \mathbf{f}$ such that

$$\pi_{[m-1,n]}(C) = \bigstar_{i \in [m,n]} S_i,$$

then C is *captured* by $\langle S_m, \ldots, S_n \rangle$.

Applications of CC-sequences

Theorem

If for each $\in \mathbb{N}$, $f_{i+1} : I_{i+1} \to 2^{l_i}$ is a full bonding function and moreover each function f_{i+1} is continuous, then $\varprojlim \mathbf{f}$ is connected, and for each n > 0, $\bigstar_{i \in [1,n]} \Gamma(f_i)$ is connected.

Proof.

No L-sets or R-sets.

For each *n* there is a single full bonding function *f* such that $\bigstar_{[1,n]}\Gamma(f)$ is connected and $\bigstar_{[1,n+1]}\Gamma(f)$ is disconnected.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ingram gave examples of of such functions. We give a new example using component bases.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Problem (Ingram)

Suppose **f** is a sequence of surjective upper semicontinuous functions on [0, 1] and $\varprojlim \mathbf{f}$ is connected. Let **g** be the sequence such that $g_i = f_i^{-1}$ for each $i \in \mathbb{N}$. Is $\varprojlim \mathbf{g}$ connected?

Ingram and Marsh gave a full sequence f such that $\varprojlim f$ is connected, and $\varprojlim (f^{-1})$ is disconnected.

The problem is also discussed by Banič and Črepnjak. Here is a new example:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

There are no L-sets or R-sets in $\Gamma(f_1^{-1})$.

What if there is a single bonding function?

Theorem

An inverse limit with a single full bonding function f is connected if and only if the inverse limit with single bonding function f^{-1} is connected.

Proof.

Suppose $\lim_{t \to 0} \mathbf{f}$ is disconnected.

Then $\bigstar_{i \in [1,n]} \Gamma(f_i)$ is disconnected for some *n*.

So there exists a component base $\langle S_1, \ldots, S_n \rangle$.

Then $\langle S_n^{-1}, \ldots, S_1^{-1} \rangle$ is a component base of the system f^{-1} .

The converse follows since $(f^{-1})^{-1} = f$.

Large and small components

Banič and Kennedy showed that for every full sequence \mathbf{f} , $\varprojlim \mathbf{f}$ has at least one component C such that for every $i \in \mathbb{N}$, $\pi_{i+1,i}(C) = \Gamma(f_i)$.

Definition

Suppose **f** is a full sequence and *C* is a component of $\varprojlim \mathbf{f}$. Then *C* is *large* if for each $i \in \mathbb{N}$, $\pi_{i+1,i}(C) = \Gamma(f_{i+1})$, and *C* is *small* if it is not large.

If m, n > 1 and for each $i \in [m, n]$, $T_i \subseteq \Gamma(f_i)$, then D is a *large* component of $\bigstar_{i \in [m,n]}(T_i)$ if for each $i \in \mathbb{N}$, $\pi_{i+1,i}(D) = T_{i+1}$.

(日) (同) (三) (三) (三) (○) (○)

If **f** is a full sequence and *C* is a small component of $\lim_{t \to 0} \mathbf{f}$, then it need not be the case that *C* is weakly captured by a component base.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

For every full sequence \mathbf{f} , if $\varprojlim \mathbf{f}$ has a small component C that is not captured by a component base, then the collection of captured components has a limit point in C.

Theorem

For every full sequence f, $\lim_{t \to 0} f$ has exactly one large component.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Corollary If $\lim_{t \to \infty} \mathbf{f}$ is disconnected then it has a small component.

The number of components of an inverse limit

Theorem

An inverse limit with a single upper semicontinuous function whose graph is the union of two maps without a coincidence point has c many components.

Perhaps the most extreme example is:

In the previous example, the inverse limit has \mathfrak{c} many components, and so do each of the Mahavier products of \mathbf{g} .

In this example $\varprojlim f$ has \mathfrak{c} many components, but every Mahavier product has only finitely many components.

Figure:

In the previous example the sequence admitted infinitely many component bases

It is possible that a full sequence f has a finite number of components bases, but $\varprojlim f$ has $\mathfrak c$ many components.

Figure:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●