Anna Giordano Bruno (joint work with Simone Virili)

TopoSym 2016 - Prague August 25, 2016

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ▶ → 見 → のへで

- └─ Topological entropy
 - Historical introduction

Topological entropy (h_{top})

- [Adler, Konheim, McAndrew 1965]: for continuous selfmaps of compact spaces.
- [Bowen 1971]: for uniformly continuous selfmaps of metric spaces.
- [Hood 1974]:

for uniformly continuous selfmaps of uniform spaces.

• We consider it:

for continuous endomorphisms of locally compact groups.

- These entropies coincide on compact groups.
- [Stojanov 1978]:

characterization of topological entropy for continuous endomorphisms of compact groups.

(日) (同) (三) (三) (三) (○) (○)

- └─ Topological entropy
 - Historical introduction

Topological entropy (h_{top})

- [Adler, Konheim, McAndrew 1965]: for continuous selfmaps of compact spaces.
- [Bowen 1971]: for uniformly continuous selfmaps of metric spaces.
- [Hood 1974]:

for uniformly continuous selfmaps of uniform spaces.

• We consider it:

for continuous endomorphisms of locally compact groups.

(日) (同) (三) (三) (三) (○) (○)

- These entropies coincide on compact groups.
- [Stojanov 1978]:

characterization of topological entropy for continuous endomorphisms of compact groups.

- └─ Topological entropy
 - Historical introduction

Topological entropy (h_{top})

- [Adler, Konheim, McAndrew 1965]: for continuous selfmaps of compact spaces.
- [Bowen 1971]: for uniformly continuous selfmaps of metric spaces.
- [Hood 1974]:

for uniformly continuous selfmaps of uniform spaces.

• We consider it:

for continuous endomorphisms of locally compact groups.

- These entropies coincide on compact groups.
- [Stojanov 1978]:

characterization of topological entropy for continuous endomorphisms of compact groups.

(日) (同) (三) (三) (三) (○) (○)

— Topological entropy

Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -cotrajectory of $U \in C(G)$ is

$$C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{C}(G).$$

• The topological entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{top}(\phi, U) = \limsup_{n \to \infty} \frac{-\log \mu(C_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *topological entropy* of φ is

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{C}(G)\}.$$

— Topological entropy

└─ Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -cotrajectory of $U \in \mathcal{C}(G)$ is

$$C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{C}(G).$$

• The topological entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{top}(\phi, U) = \limsup_{n \to \infty} \frac{-\log \mu(C_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *topological entropy* of φ is

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{C}(G)\}.$$

- Topological entropy

— Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -cotrajectory of $U \in \mathcal{C}(G)$ is

$$C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{C}(G).$$

• The topological entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{top}(\phi, U) = \limsup_{n \to \infty} \frac{-\log \mu(C_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *topological entropy* of φ is

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{C}(G)\}.$$

- Topological entropy

Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -cotrajectory of $U \in \mathcal{C}(G)$ is

$$C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{C}(G).$$

• The topological entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{top}(\phi, U) = \limsup_{n \to \infty} \frac{-\log \mu(C_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *topological entropy* of φ is

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{C}(G)\}.$$

- Topological entropy
 - Additivity

Problem (Additivity of topological entropy)

Let G be a locally compact group, $\phi : G \to G$ a continuous endomorphism and N a ϕ -invariant closed normal subgroup of G. Is it true that

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}),$$

where $\bar{\phi}$: $G/N \rightarrow G/N$ is the endomorphism induced by ϕ ?

[Yuzvinski 1965]: for separable compact groups. [Bowen 1971]: for compact metric spaces. [Alcaraz-Dikranjan-Sanchis 2014]: for compact groups.

- Topological entropy
- Additivity

Problem (Additivity of topological entropy)

Let G be a locally compact group, $\phi : G \to G$ a continuous endomorphism and N a ϕ -invariant closed normal subgroup of G. Is it true that

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}),$$

where $\bar{\phi}: G/N \to G/N$ is the endomorphism induced by ϕ ?

$$N \longrightarrow G \longrightarrow G/N$$

$$\phi \upharpoonright_{N} \downarrow \qquad \phi \downarrow \qquad \bar{\phi} \downarrow$$

$$N \longrightarrow G \longrightarrow G/N$$

[Yuzvinski 1965]: for separable compact groups. [Bowen 1971]: for compact metric spaces. [Alcaraz-Dikranjan-Sanchis 2014]: for compact groups.

— Topological entropy

└─ Measure-free formula

We consider the case when G is a totally disconnected locally compact group and $\phi: G \rightarrow G$ is a continuous endomorphism.

Let $\mathcal{B}(G) = \{ U \leq G : U \text{ compact, open} \}.$

[van Dantzig 1931]: $\mathcal{B}(G)$ is a base of the neighborhoods of 1 in G.

[Dikranjan-Sanchis-Virili 2012]:

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{B}(G)\};$$

moreover, for $U \in \mathcal{B}(G)$,

$$H_{top}(\phi, U) = \lim_{n \to \infty} \frac{\log[U : C_n(\phi, U)]}{n}.$$

(Recall that $C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{B}(G).$)

— Topological entropy

└─ Measure-free formula

We consider the case when

G is a totally disconnected locally compact group and $\phi : G \rightarrow G$ is a continuous endomorphism.

Let $\mathcal{B}(G) = \{ U \leq G : U \text{ compact, open} \}.$

[van Dantzig 1931]: $\mathcal{B}(G)$ is a base of the neighborhoods of 1 in G.

[Dikranjan-Sanchis-Virili 2012]:

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{B}(G)\};\$$

moreover, for $U \in \mathcal{B}(G)$,

$$H_{top}(\phi, U) = \lim_{n \to \infty} \frac{\log[U : C_n(\phi, U)]}{n}.$$

(Recall that $C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{B}(G)$.)

- Topological entropy

└─ Measure-free formula

We consider the case when

G is a totally disconnected locally compact group and $\phi: G \rightarrow G$ is a continuous endomorphism.

Let $\mathcal{B}(G) = \{ U \leq G : U \text{ compact, open} \}.$

[van Dantzig 1931]: $\mathcal{B}(G)$ is a base of the neighborhoods of 1 in G.

[Dikranjan-Sanchis-Virili 2012]:

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{B}(G)\};$$

moreover, for $U \in \mathcal{B}(G)$,

$$H_{top}(\phi, U) = \lim_{n \to \infty} \frac{\log[U : C_n(\phi, U)]}{n}.$$

(Recall that $C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U) \in \mathcal{B}(G)$.)

Additivity of topological entropy

Limit-free formula

Let G be a totally disconnected locally compact group and $\phi: G \to G$ a continuous endomorphism.

For $U \in \mathcal{B}(G)$, let:

- $U_0 = U;$
- $U_{n+1} = U \cap \phi(U_n)$ for every n > 0;
- $U_+ = \bigcap_{n=0}^{\infty} U_n$.

Then:

- $U_{n+1} \subseteq U_n$ for every n > 0;
- U_+ is a compact subgroup of G such that $U_+ \subseteq \phi(U_+)$.

Theorem (Limit-free formula; GB-Virili 2016)

 $H_{top}(\phi, U) = \log[\phi(U_+) : U_+],$

[GB 2015]: for topological automorphisms.

Additivity of topological entropy

Limit-free formula

Let G be a totally disconnected locally compact group and $\phi: G \to G$ a continuous endomorphism.

For $U \in \mathcal{B}(G)$, let:

- $U_0 = U;$
- $U_{n+1} = U \cap \phi(U_n)$ for every n > 0;
- $U_+ = \bigcap_{n=0}^{\infty} U_n$.

Then:

- $U_{n+1} \subseteq U_n$ for every n > 0;
- U_+ is a compact subgroup of G such that $U_+ \subseteq \phi(U_+)$.

Theorem (Limit-free formula; GB-Virili 2016)

 $H_{top}(\phi, U) = \log[\phi(U_+) : U_+],$

[GB 2015]: for topological automorphisms.

Additivity of topological entropy

Limit-free formula

Let G be a totally disconnected locally compact group and $\phi: G \to G$ a continuous endomorphism.

For $U \in \mathcal{B}(G)$, let:

- $U_0 = U;$
- $U_{n+1} = U \cap \phi(U_n)$ for every n > 0;
- $U_+ = \bigcap_{n=0}^{\infty} U_n$.

Then:

- $U_{n+1} \subseteq U_n$ for every n > 0;
- U_+ is a compact subgroup of G such that $U_+ \subseteq \phi(U_+)$.

Theorem (Limit-free formula; GB-Virili 2016)

 $H_{top}(\phi, U) = \log[\phi(U_+) : U_+],$

[GB 2015]: for topological automorphisms.

— Topological entropy vs scale

 \Box Topological entropy for G/H when $H \leq G$ is compact

Let G be a totally disconnected locally compact group,

 $\phi: {\it G} \rightarrow {\it G}$ a continuous endomorphism,

N a ϕ -invariant closed normal subgroup of G,

 $\bar{\phi}: G/N \to G/N$ the endomorphism induced by ϕ .

Theorem (Addition Theorem; GB-Virili 2016)

If ker $\phi \subseteq N$ and $\phi(N) = N$, then

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}).$$

ker $\phi \subseteq N$ and $\phi(N) = N$ if and only if $\phi \upharpoonright_N$ is injective and $\overline{\phi}$ is surjective.

Corollary

If $\phi: G \rightarrow G$ is a topological automorphism, then

 $h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}).$

— Topological entropy vs scale

 \Box Topological entropy for G/H when $H \leq G$ is compact

Let G be a totally disconnected locally compact group, $\phi: G \to G$ a continuous endomorphism.

If $N \leq G$ compact (not necessarily normal) with $\phi(N) = N$, then $G/N = \{xN : x \in G\}$ is a locally compact uniform space and $\overline{\phi} : G/N \to G/N$ is a uniformly continuous map.

Then

$$h_{top}(\bar{\phi}) = \sup\{H_{top}(\phi, U) : N \subseteq U \in \mathcal{B}(G)\}.$$

Theorem (GB-Virili 2016)

If ker $\phi \subseteq N$ and $\phi(N) = N$, then

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}).$$

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ▶ → 見 → のへで

— Topological entropy vs scale

 \Box Topological entropy for G/H when $H \leq G$ is compact

Let G be a totally disconnected locally compact group, $\phi: G \to G$ a continuous endomorphism.

If $N \leq G$ compact (not necessarily normal) with $\phi(N) = N$, then $G/N = \{xN : x \in G\}$ is a locally compact uniform space and $\overline{\phi} : G/N \to G/N$ is a uniformly continuous map.

Then

$$h_{top}(\bar{\phi}) = \sup\{H_{top}(\phi, U) : N \subseteq U \in \mathcal{B}(G)\}.$$

Theorem (GB-Virili 2016)

If ker $\phi \subseteq N$ and $\phi(N) = N$, then

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}).$$

— Topological entropy vs scale

 \Box Topological entropy for G/H when $H \leq G$ is compact

Let G be a totally disconnected locally compact group, $\phi: G \to G$ a continuous endomorphism.

If $N \leq G$ compact (not necessarily normal) with $\phi(N) = N$, then $G/N = \{xN : x \in G\}$ is a locally compact uniform space and $\overline{\phi} : G/N \to G/N$ is a uniformly continuous map.

Then

$$h_{top}(\bar{\phi}) = \sup\{H_{top}(\phi, U) : N \subseteq U \in \mathcal{B}(G)\}.$$

Theorem (GB-Virili 2016)

If ker $\phi \subseteq N$ and $\phi(N) = N$, then

$$h_{top}(\phi) = h_{top}(\phi \upharpoonright_N) + h_{top}(\bar{\phi}).$$

◆□ ▶ ◆帰 ▶ ◆ ∃ ▶ ◆ ∃ ▶ → 見 → のへで

— Topological entropy vs scale

Scale

[Willis 2015] (in 2001 for topological automorphisms):

 The scale of a continuous endomorphism φ : G → G of a totally disconnected locally compact group G is

$$s(\phi) = \min\{[\phi(U) : U \cap \phi(U)] : U \in \mathcal{B}(G)\}$$

• $U \in \mathcal{B}(G)$ is minimizing if $s(\phi) = [\phi(U) : U \cap \phi(U)].$

• $\operatorname{nub} \phi \leq G$ is compact and $\phi(\operatorname{nub} \phi) = \operatorname{nub} \phi$;

$$\operatorname{nub} \phi := \bigcap \{ U \in \mathcal{B}(G) : U \text{ minimizing} \}.$$

Theorem (GB-Virili 2016)

For $\overline{\phi}$: $G/\mathrm{nub} \phi \to G/\mathrm{nub} \phi$ the map induced by ϕ ,

$$h_{top}(\bar{\phi}) = \log s(\phi).$$

Corollary (Berlai-Dikranjan-GB and Spiga 2013)

 $h_{top}(\phi) = \log s(\phi)$ if and only if $\operatorname{nub} \phi = \{1\}$.

— Topological entropy vs scale

Scale

[Willis 2015] (in 2001 for topological automorphisms):

 The scale of a continuous endomorphism φ : G → G of a totally disconnected locally compact group G is

$$s(\phi) = \min\{[\phi(U): U \cap \phi(U)]: U \in \mathcal{B}(G)\}$$

• $U \in \mathcal{B}(G)$ is minimizing if $s(\phi) = [\phi(U) : U \cap \phi(U)].$

• $\operatorname{nub} \phi \leq G$ is compact and $\phi(\operatorname{nub} \phi) = \operatorname{nub} \phi$;

$$\operatorname{nub} \phi := \bigcap \{ U \in \mathcal{B}(G) : U \text{ minimizing} \}.$$

Theorem (GB-Virili 2016)

For $\bar{\phi}$: $G/\mathrm{nub} \phi \to G/\mathrm{nub} \phi$ the map induced by ϕ ,

$$h_{top}(\bar{\phi}) = \log s(\phi).$$

Corollary (Berlai-Dikranjan-GB and Spiga 2013)

 $h_{top}(\phi) = \log s(\phi)$ if and only if $\operatorname{nub} \phi = \{1\}$.

Algebraic entropy for locally compact abelian groups

Historical introduction

<u>Algebraic entropy</u> (h_{alg})

- [Adler, Konheim, McAndrew 1965; Weiss 1974; Dikranjan-Goldsmith-Salce-Zanardo 2009]: for endomorphisms of discrete (torsion) abelian groups.
- [Peters 1979]: for automorphisms of discrete abelian groups.
- [Dikranjan-GB 2012, 2016]: for endomorphisms of discrete (abelian) groups.
- [Peters 1981]:

for top. automorphisms of locally compact abelian groups.

• [Virili 2010; Dikranjan-GB 2012]: for cont. endomorphisms of locally compact (abelian) groups.

Algebraic entropy for locally compact abelian groups

Historical introduction

<u>Algebraic entropy</u> (h_{alg})

- [Adler, Konheim, McAndrew 1965; Weiss 1974; Dikranjan-Goldsmith-Salce-Zanardo 2009]: for endomorphisms of discrete (torsion) abelian groups.
- [Peters 1979]: for automorphisms of discrete abelian groups.
- [Dikranjan-GB 2012, 2016]: for endomorphisms of discrete (abelian) groups.
- [Peters 1981]: for top. automorphisms of locally compact abelian groups.
- [Virili 2010; Dikranjan-GB 2012]: for cont. endomorphisms of locally compact (abelian) groups.

DashAlgebraic entropy for locally compact abelian groups

└─ Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -trajectory of $U \in C(G)$ is

$$T_n(\phi, U) = U \cdot \phi(U) \cdot \ldots \cdot \phi^{n-1}(U) \in \mathcal{C}(G).$$

• The algebraic entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{alg}(\phi, U) = \limsup_{n \to \infty} \frac{\log \mu(T_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *algebraic entropy* of φ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{C}(G)\}.$$

DashAlgebraic entropy for locally compact abelian groups

└─ Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -trajectory of $U \in C(G)$ is

$$T_n(\phi, U) = U \cdot \phi(U) \cdot \ldots \cdot \phi^{n-1}(U) \in \mathcal{C}(G).$$

• The algebraic entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{alg}(\phi, U) = \limsup_{n \to \infty} \frac{\log \mu(T_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The algebraic entropy of φ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{C}(G)\}.$$

DashAlgebraic entropy for locally compact abelian groups

└─ Definition

Let G be a locally compact group, μ a Haar measure on G, C(G) the family of all compact neighborhoods of 1 in G, $\phi: G \to G$ a continuous endomorphism.

• For n > 0, the *n*-th ϕ -trajectory of $U \in C(G)$ is

$$T_n(\phi, U) = U \cdot \phi(U) \cdot \ldots \cdot \phi^{n-1}(U) \in \mathcal{C}(G).$$

• The algebraic entropy of ϕ with respect to $U \in \mathcal{C}(G)$ is

$$H_{alg}(\phi, U) = \limsup_{n \to \infty} \frac{\log \mu(T_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ.)
The *algebraic entropy* of φ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{C}(G)\}.$$

└─ Algebraic entropy for locally compact abelian groups

└─ The Bridge Theorem for the totally disconnected LCA groups

Let G be a totally disconnected locally compact abelian group and $\phi: G \to G$ a continuous endomorphism. Let \widehat{G} be the Pontryagin dual of G and $\widehat{\phi}: \widehat{G} \to \widehat{G}$ the dual of ϕ . Then $\mathcal{B}(\widehat{G})$ is cofinal in $\mathcal{C}(\widehat{G})$. Hence,

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{B}(\widehat{G})\};$$

moreover, for $U \in \mathcal{B}(\widehat{G})$,

$$H_{alg}(\widehat{\phi}, U) = \lim_{n \to \infty} \frac{\log[T_n(\widehat{\phi}, U) : U]}{n}.$$

Theorem (Bridge Theorem; Dikranjan-GB 2014)

$$h_{top}(\phi) = h_{alg}(\widehat{\phi}).$$

[Weiss 1974]: for totally disconnected compact abelian groups. [Dikranjan-GB 2011]: for compact abelian groups. [Virili 2015]: for actions of amenable groups on LCA.groups...

└─ Algebraic entropy for locally compact abelian groups

└─ The Bridge Theorem for the totally disconnected LCA groups

Let *G* be a totally disconnected locally compact abelian group and $\phi: G \to G$ a continuous endomorphism. Let \widehat{G} be the Deptember of *G* and $\widehat{f} \in \widehat{G} \to \widehat{G}$ the dual of *f*.

Let \widehat{G} be the Pontryagin dual of G and $\widehat{\phi} : \widehat{G} \to \widehat{G}$ the dual of ϕ . Then $\mathcal{B}(\widehat{G})$ is cofinal in $\mathcal{C}(\widehat{G})$. Hence,

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{B}(\widehat{G})\};$$

moreover, for $U \in \mathcal{B}(\widehat{G})$,

$$H_{alg}(\widehat{\phi}, U) = \lim_{n \to \infty} \frac{\log[T_n(\widehat{\phi}, U) : U]}{n}.$$

Theorem (Bridge Theorem; Dikranjan-GB 2014)

$$h_{top}(\phi) = h_{alg}(\widehat{\phi}).$$

└─ Algebraic entropy for locally compact abelian groups

└─ The Bridge Theorem for the totally disconnected LCA groups

Let *G* be a totally disconnected locally compact abelian group and $\phi : G \to G$ a continuous endomorphism. Let \widehat{G} be the Pontryagin dual of *G* and $\widehat{\phi} : \widehat{G} \to \widehat{G}$ the dual of ϕ .

Let G be the Pontryagin dual of G and $\phi : G \to G$ the dual of \mathcal{B} . Then $\mathcal{B}(\widehat{G})$ is cofinal in $\mathcal{C}(\widehat{G})$. Hence,

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, U) : U \in \mathcal{B}(\widehat{G})\};$$

moreover, for $U \in \mathcal{B}(\widehat{G})$,

$$H_{alg}(\widehat{\phi}, U) = \lim_{n \to \infty} \frac{\log[T_n(\widehat{\phi}, U) : U]}{n}.$$

Theorem (Bridge Theorem; Dikranjan-GB 2014)

$$h_{top}(\phi) = h_{alg}(\widehat{\phi}).$$

[Weiss 1974]: for totally disconnected compact abelian groups. [Dikranjan-GB 2011]: for compact abelian groups. [Virili 2015]: for actions of amenable groups on LCA groups.

- END -