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Topological entropy on totally disconnected locally compact groups

Topological entropy

Historical introduction

Topological entropy (htop)

[Adler, Konheim, McAndrew 1965]:
for continuous selfmaps of compact spaces.

[Bowen 1971]:
for uniformly continuous selfmaps of metric spaces.

[Hood 1974]:
for uniformly continuous selfmaps of uniform spaces.

We consider it:
for continuous endomorphisms of locally compact groups.

These entropies coincide on compact groups.

[Stojanov 1978]:
characterization of topological entropy for continuous
endomorphisms of compact groups.
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Topological entropy

Definition

Let G be a locally compact group, µ a Haar measure on G ,
C(G ) the family of all compact neighborhoods of 1 in G ,
φ : G → G a continuous endomorphism.

For n > 0, the n-th φ-cotrajectory of U ∈ C(G ) is

Cn(φ,U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) ∈ C(G ).

The topological entropy of φ with respect to U ∈ C(G ) is

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n
.

(It does not depend on the choice of the Haar measure µ.)

The topological entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ C(G )}.
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Topological entropy

Additivity

Problem (Additivity of topological entropy)

Let G be a locally compact group, φ : G → G a continuous
endomorphism and N a φ-invariant closed normal subgroup of G .
Is it true that

htop(φ) = htop(φ �N) + htop(φ̄),

where φ̄ : G/N → G/N is the endomorphism induced by φ?

N //

φ�N
��

G

φ

��

// G/N

φ̄
��

N // G // G/N

[Yuzvinski 1965]: for separable compact groups.
[Bowen 1971]: for compact metric spaces.
[Alcaraz-Dikranjan-Sanchis 2014]: for compact groups.
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Topological entropy

Measure-free formula

We consider the case when
G is a totally disconnected locally compact group
and φ : G → G is a continuous endomorphism.

Let B(G ) = {U ≤ G : U compact, open}.

[van Dantzig 1931]: B(G ) is a base of the neighborhoods of 1 in G .

[Dikranjan-Sanchis-Virili 2012]:

htop(φ) = sup{Htop(φ,U) : U ∈ B(G )};

moreover, for U ∈ B(G ),

Htop(φ,U) = lim
n→∞

log[U : Cn(φ,U)]

n
.

(Recall that Cn(φ,U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U) ∈ B(G ).)
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Additivity of topological entropy

Limit-free formula

Let G be a totally disconnected locally compact group and
φ : G → G a continuous endomorphism.

For U ∈ B(G ), let:

U0 = U;

Un+1 = U ∩ φ(Un) for every n > 0;

U+ =
⋂∞

n=0 Un.

Then:

Un+1 ⊆ Un for every n > 0;

U+ is a compact subgroup of G such that U+ ⊆ φ(U+).

Theorem (Limit-free formula; GB-Virili 2016)

Htop(φ,U) = log[φ(U+) : U+],

[GB 2015]: for topological automorphisms.
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Topological entropy vs scale

Topological entropy for G/H when H ≤ G is compact

Let G be a totally disconnected locally compact group,
φ : G → G a continuous endomorphism,
N a φ-invariant closed normal subgroup of G ,
φ̄ : G/N → G/N the endomorphism induced by φ.

Theorem (Addition Theorem; GB-Virili 2016)

If ker φ ⊆ N and φ(N) = N, then

htop(φ) = htop(φ �N) + htop(φ̄).

ker φ ⊆ N and φ(N) = N if and only if
φ �N is injective and φ̄ is surjective.

Corollary

If φ : G → G is a topological automorphism, then

htop(φ) = htop(φ �N) + htop(φ̄).



Topological entropy on totally disconnected locally compact groups

Topological entropy vs scale

Topological entropy for G/H when H ≤ G is compact

Let G be a totally disconnected locally compact group,
φ : G → G a continuous endomorphism.

If N ≤ G compact (not necessarily normal) with φ(N) = N,
then G/N = {xN : x ∈ G} is a locally compact uniform space
and φ̄ : G/N → G/N is a uniformly continuous map.

Then
htop(φ̄) = sup{Htop(φ,U) : N ⊆ U ∈ B(G )}.

Theorem (GB-Virili 2016)

If ker φ ⊆ N and φ(N) = N, then
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Topological entropy vs scale

Scale

[Willis 2015] (in 2001 for topological automorphisms):

The scale of a continuous endomorphism φ : G → G
of a totally disconnected locally compact group G is

s(φ) = min{[φ(U) : U ∩ φ(U)] : U ∈ B(G )}.

U ∈ B(G ) is minimizing if s(φ) = [φ(U) : U ∩ φ(U)].
nubφ ≤ G is compact and φ(nubφ) = nubφ;

nubφ :=
⋂
{U ∈ B(G ) : U minimizing}.

Theorem (GB-Virili 2016)

For φ̄ : G/nubφ→ G/nubφ the map induced by φ,

htop(φ̄) = log s(φ).

Corollary (Berlai-Dikranjan-GB and Spiga 2013)

htop(φ) = log s(φ) if and only if nubφ = {1}.

So, if nubφ = {1} then htop(φ) is finite.
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Algebraic entropy for locally compact abelian groups

Historical introduction

Algebraic entropy (halg )

[Adler, Konheim, McAndrew 1965; Weiss 1974;
Dikranjan-Goldsmith-Salce-Zanardo 2009]:
for endomorphisms of discrete (torsion) abelian groups.

[Peters 1979]:
for automorphisms of discrete abelian groups.

[Dikranjan-GB 2012, 2016]:
for endomorphisms of discrete (abelian) groups.

[Peters 1981]:
for top. automorphisms of locally compact abelian groups.

[Virili 2010; Dikranjan-GB 2012]:
for cont. endomorphisms of locally compact (abelian) groups.
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Algebraic entropy for locally compact abelian groups

Definition

Let G be a locally compact group, µ a Haar measure on G ,
C(G ) the family of all compact neighborhoods of 1 in G ,
φ : G → G a continuous endomorphism.

For n > 0, the n-th φ-trajectory of U ∈ C(G ) is

Tn(φ,U) = U · φ(U) · . . . · φn−1(U) ∈ C(G ).

The algebraic entropy of φ with respect to U ∈ C(G ) is

Halg (φ,U) = lim sup
n→∞

logµ(Tn(φ,U))

n
.

(It does not depend on the choice of the Haar measure µ.)

The algebraic entropy of φ is

halg (φ) = sup{Halg (φ,U) : U ∈ C(G )}.
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Algebraic entropy for locally compact abelian groups

The Bridge Theorem for the totally disconnected LCA groups

Let G be a totally disconnected locally compact abelian group and
φ : G → G a continuous endomorphism.
Let Ĝ be the Pontryagin dual of G and φ̂ : Ĝ → Ĝ the dual of φ.

Then B(Ĝ ) is cofinal in C(Ĝ ). Hence,

halg (φ) = sup{Halg (φ,U) : U ∈ B(Ĝ )};

moreover, for U ∈ B(Ĝ ),

Halg (φ̂,U) = lim
n→∞

log[Tn(φ̂,U) : U]

n
.

Theorem (Bridge Theorem; Dikranjan-GB 2014)

htop(φ) = halg (φ̂).

[Weiss 1974]: for totally disconnected compact abelian groups.
[Dikranjan-GB 2011]: for compact abelian groups.
[Virili 2015]: for actions of amenable groups on LCA groups.
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