Lifting homeomorphisms from separable quotients of ω^{\ast}

Stefan Geschke and Tomás Silveira Salles

July 29, 2016

We consider automorphisms of the Boolean algebra $\mathcal{P}(\omega)/\texttt{fin}$.

Let us recall the different kinds of such automorphisms.

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

イロト イポト イヨト イヨト

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

・ロン ・回 と ・ ヨ と ・

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

・ロン ・回と ・ヨン・

Clearly, every permutation of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}.$

Also, every bijection between two cofinite subsets of ω induces an automorphism of $\mathcal{P}(\omega)/\texttt{fin}$. These automorphisms are called *trivial*.

A. Bella, A. Dow, K.P. Hart, M. Hrušák, J. van Mill and P. Ursino showed that every isomorphism between two countable subalgebras of $\mathcal{P}(\omega)/\texttt{fin}$ extends to an automorphism of all of $\mathcal{P}(\omega)/\texttt{fin}$ that is induced by a permutation of ω .

・同下 ・ヨト ・ヨト

The following theorem is an equivalent formulation of Comfort's claim:

Theorem

Let X and Y be compact metric spaces and let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi} : \omega^* \to \omega^*$ such that $\varphi \circ f = g \circ \overline{\varphi}$ and such that $\overline{\varphi}$ is induced by a permutation of ω .

- 4 回 5 - 4 回 5 - 4 回 5

The following theorem is an equivalent formulation of Comfort's claim:

Theorem

Let X and Y be compact metric spaces and let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi} : \omega^* \to \omega^*$ such that $\varphi \circ f = g \circ \overline{\varphi}$ and such that $\overline{\varphi}$ is induced by a permutation of ω .

The following theorem is an equivalent formulation of Comfort's claim:

Theorem

Let X and Y be compact metric spaces and let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi} : \omega^* \to \omega^*$ such that $\varphi \circ f = g \circ \overline{\varphi}$ and such that $\overline{\varphi}$ is induced by a permutation of ω .

The following theorem is an equivalent formulation of Comfort's claim:

Theorem

Let X and Y be compact metric spaces and let $f: \omega^* \to X$ and $g: \omega^* \to Y$ be continuous and onto. If $\varphi: X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}: \omega^* \to \omega^*$ such that $\varphi \circ f = g \circ \overline{\varphi}$ and such that $\overline{\varphi}$ is induced by a permutation of ω .

・ 同 ト ・ ヨ ト ・ ヨ ト

The following theorem is an equivalent formulation of Comfort's claim:

Theorem

Let X and Y be compact metric spaces and let $f: \omega^* \to X$ and $g: \omega^* \to Y$ be continuous and onto. If $\varphi: X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}: \omega^* \to \omega^*$ such that $\varphi \circ f = g \circ \overline{\varphi}$ and such that $\overline{\varphi}$ is induced by a permutation of ω .

Theorem $(\ell_{\infty}/c_0$ -formulation)

Let $\varphi : A \to B$ be an isometric isomorphism between two separable closed subalgebras of ℓ_{∞}/c_0 . Then φ extends to an automorphism of ℓ_{∞}/c_0 that is induced by a permutation of ω .

Theorem $(\ell_{\infty}/c_0$ -formulation)

Let $\varphi : A \to B$ be an isometric isomorphism between two separable closed subalgebras of ℓ_{∞}/c_0 . Then φ extends to an automorphism of ℓ_{∞}/c_0 that is induced by a permutation of ω .

Theorem (ℓ_{∞}/c_0 -formulation)

Let $\varphi : A \to B$ be an isometric isomorphism between two separable closed subalgebras of ℓ_{∞}/c_0 . Then φ extends to an automorphism of ℓ_{∞}/c_0 that is induced by a permutation of ω .

高 とう ヨン うまと

Theorem (ℓ_{∞}/c_0 -formulation)

Let $\varphi : A \to B$ be an isometric isomorphism between two separable closed subalgebras of ℓ_{∞}/c_0 . Then φ extends to an automorphism of ℓ_{∞}/c_0 that is induced by a permutation of ω .

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f: \omega \to D$ be a bijection. f has a unique continuous extension $\beta f: \beta \omega \to S^1$. Let $f^*: \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

周 ト イモト イモト

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

周 ト イモト イモト

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

周 ト イモト イモト

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

周 と くき とくきょ

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if *f* is not a bijection?

Let S^1 denote the unit circle, considered as a topological group with respect to complex multiplication. Fix a countable dense subgroup $D \subseteq S^1$. Let $f : \omega \to D$ be a bijection. f has a unique continuous extension $\beta f : \beta \omega \to S^1$. Let $f^* : \omega^* \to S^1$ be the restriction of βf to ω^* . Now f^* is onto S^1 .

Let $d \in D$. Multiplication by d is a homeomorphism of S^1 that is induced by a permutation of ω .

What about rotations that are not in D?

What if f is not a bijection?

Lemma

The following are equivalent:

a) For every metric space X, given continuous surjections $f, g : \omega^* \to X$, there is an automorphism $\varphi : \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

b) Let X be a metric space and $f : \omega^* \to X$ continuous and onto. If φ is a homeomorphism of X, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ f$.

c) Let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto with X and Y metric. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ g$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lemma The following are equivalent:

a) For every metric space X, given continuous surjections $f, g : \omega^* \to X$, there is an automorphism $\varphi : \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

b) Let X be a metric space and $f : \omega^* \to X$ continuous and onto. If φ is a homeomorphism of X, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ f$.

c) Let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto with X and Y metric. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ g$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Lemma

The following are equivalent:

a) For every metric space X, given continuous surjections $f, g: \omega^* \to X$, there is an automorphism $\varphi: \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

b) Let X be a metric space and $f : \omega^* \to X$ continuous and onto. If φ is a homeomorphism of X, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ f$.

c) Let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto with X and Y metric. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ g$.

(4 同) (4 回) (4 回)

Lemma

The following are equivalent:

a) For every metric space X, given continuous surjections $f, g: \omega^* \to X$, there is an automorphism $\varphi: \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

b) Let X be a metric space and $f : \omega^* \to X$ continuous and onto. If φ is a homeomorphism of X, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ f$.

c) Let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto with X and Y metric. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ g$.

Lemma

The following are equivalent:

a) For every metric space X, given continuous surjections $f, g: \omega^* \to X$, there is an automorphism $\varphi: \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

b) Let X be a metric space and $f : \omega^* \to X$ continuous and onto. If φ is a homeomorphism of X, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ f$.

c) Let $f : \omega^* \to X$ and $g : \omega^* \to Y$ be continuous and onto with X and Y metric. If $\varphi : X \to Y$ is a homeomorphism, then there is a homeomorphism $\overline{\varphi}$ of ω^* such that $f \circ \overline{\varphi} = \varphi \circ g$.

The proof

We will prove the following statement:

For every metric space X, given continuous surjections $f, g : \omega^* \to X$, there is an automorphism $\varphi : \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

The proof

We will prove the following statement:

For every metric space X, given continuous surjections $f, g : \omega^* \to X$, there is an automorphism $\varphi : \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

・ 同下 ・ ヨト ・ ヨト

The proof

We will prove the following statement:

For every metric space X, given continuous surjections $f, g: \omega^* \to X$, there is an automorphism $\varphi: \omega^* \to \omega^*$ such that $f = g \circ \varphi$.

Let $f,g:\omega^* \to X$ be continuous and onto where X is metric.

We fix a countable set S_g of clopen subsets of ω^* as in the following lemma:

Lemma

Let $g: \omega^* \to X$ be onto, X a metric space. Then there is a countable family S_g consisting of clopen subsets of ω^* such that for all continuous $f: \omega^* \to X$ and all $\varphi: \omega^* \to \omega^*$ the following holds:

If for all $A \in S_g$ we have $f[\varphi^{-1}[A]] \subseteq g[A]$, then $f = g \circ \varphi$.

- 4 回 5 - 4 回 5 - 4 回 5

Lemma

Let $g: \omega^* \to X$ be onto, X a metric space. Then there is a countable family S_g consisting of clopen subsets ω^* such that for all continuous $f: \omega^* \to X$ and all $\varphi: \omega^* \to \omega^*$ the following holds:

If for all $A \in S_g$ we have $f[\varphi^{-1}[A]] \subseteq g[A]$, then $f = g \circ \varphi$.

Lemma

Let $g: \omega^* \to X$ be onto, X a metric space.

Then there is a countable family S_g consisting of clopen subsets of ω^* such that for all continuous $f : \omega^* \to X$ and all $\varphi : \omega^* \to \omega^*$ the following holds:

If for all $A \in S_g$ we have $f[\varphi^{-1}[A]] \subseteq g[A]$, then $f = g \circ \varphi$.

(1) マン・ション・

Lemma

Let $g: \omega^* \to X$ be onto, X a metric space. Then there is a countable family S_g consisting of clopen subsets of ω^* such that for all continuous $f: \omega^* \to X$ and all $\varphi: \omega^* \to \omega^*$ the following holds:

If for all $A \in S_g$ we have $f[\varphi^{-1}[A]] \subseteq g[A]$, then $f = g \circ \varphi$.

Lemma

Let $g: \omega^* \to X$ be onto, X a metric space. Then there is a countable family S_g consisting of clopen subsets of ω^* such that for all continuous $f: \omega^* \to X$ and all $\varphi: \omega^* \to \omega^*$ the following holds:

If for all $A \in S_g$ we have $f[\varphi^{-1}[A]] \subseteq g[A]$, then $f = g \circ \varphi$.

We construct a Boolean algebra embedding $\varphi^* : S_g \to \operatorname{clop}(\omega^*)$ such that for all clopen sets $A \in S_g$ we have $f[\varphi^*[A]] \subseteq g[A]$.

We do this inductively. Suppose we have already constructed φ^* on a finite subalgebra $\mathcal C$ of S_g .

We want to add a new clopen set b to C and extend φ^* to $\langle C \cup \{e\} \rangle$, the subalgebra of S_g generated by C together with e.

イロト イポト イヨト イヨト

We construct a Boolean algebra embedding $\varphi^* : S_g \to \operatorname{clop}(\omega^*)$ such that for all clopen sets $A \in S_g$ we have $f[\varphi^*[A]] \subseteq g[A]$.

We do this inductively. Suppose we have already constructed φ^* on a finite subalgebra $\mathcal C$ of S_g .

We want to add a new clopen set b to C and extend φ^* to $\langle C \cup \{e\} \rangle$, the subalgebra of S_g generated by C together with e.

We construct a Boolean algebra embedding $\varphi^* : S_g \to \operatorname{clop}(\omega^*)$ such that for all clopen sets $A \in S_g$ we have $f[\varphi^*[A]] \subseteq g[A]$.

We do this inductively. Suppose we have already constructed φ^* on a finite subalgebra $\mathcal C$ of S_g .

We want to add a new clopen set b to C and extend φ^* to $\langle C \cup \{e\} \rangle$, the subalgebra of S_g generated by C together with e.

(四) (日) (日)

We construct a Boolean algebra embedding $\varphi^* : S_g \to \operatorname{clop}(\omega^*)$ such that for all clopen sets $A \in S_g$ we have $f[\varphi^*[A]] \subseteq g[A]$.

We do this inductively. Suppose we have already constructed φ^* on a finite subalgebra \mathcal{C} of S_g .

We want to add a new clopen set b to C and extend φ^* to $\langle C \cup \{e\} \rangle$, the subalgebra of S_g generated by C together with e.

(日本) (日本) (日本)

Theorem (Błaszczyck, Szymański)

Let X be a metric space and $f : \omega^* \to X$ onto and continuous. Let $V \subseteq \omega^*$ be an clopen set, and suppose $C_0, C_1 \subseteq X$ are closed and such that $f[V] \subseteq C_0 \cup C_1$. Then there is a clopen set $V_0 \subseteq V$ such that $f[V_0] = C_0 \cap f[V]$ and $f[V \setminus V_0] = C_1 \cap g[V]$.

Theorem (Błaszczyck, Szymański)

Let X be a metric space and $f : \omega^* \to X$ onto and continuous. Let $V \subseteq \omega^*$ be an clopen set, and suppose $C_0, C_1 \subseteq X$ are closed and such that $f[V] \subseteq C_0 \cup C_1$.

Then there is a clopen set $V_0 \subseteq V$ such that $f[V_0] = C_0 \cap f[V]$ and $f[V \setminus V_0] = C_1 \cap g[V]$.

Theorem (Błaszczyck, Szymański)

Let X be a metric space and $f : \omega^* \to X$ onto and continuous. Let $V \subseteq \omega^*$ be an clopen set, and suppose $C_0, C_1 \subseteq X$ are closed and such that $f[V] \subseteq C_0 \cup C_1$.

Then there is a clopen set $V_0 \subseteq V$ such that $f[V_0] = C_0 \cap f[V]$ and $f[V \setminus V_0] = C_1 \cap g[V]$.

伺 と く き と く き と

Using the Błaszczyck-Szymański result, we can find *b* such that $f[b] = g[a \cap e]$ and $f[\varphi * (a) \setminus b] = g[a \setminus e]$.

We can choose b in such a way that we can actually extend φ^* to $\langle \mathcal{C} \cup \{a \cap e\} \rangle$ by letting $\varphi^*(a \cap e) = b$.

Iterating this procedure, we can extend φ^* to all of $\langle \mathcal{C} \cup \{e\} \rangle$.

Once we have defined φ^* on S_g , we can extend it to all of $\operatorname{clop}(\omega^*) \cong \mathcal{P}(\omega)/\operatorname{fin}$ by the result of Bella et al.

イロト イポト イヨト イヨト

Using the Błaszczyck-Szymański result, we can find b such that $f[b] = g[a \cap e]$ and $f[\varphi * (a) \setminus b] = g[a \setminus e]$.

We can choose b in such a way that we can actually extend φ^* to $\langle \mathcal{C} \cup \{a \cap e\} \rangle$ by letting $\varphi^*(a \cap e) = b$.

Iterating this procedure, we can extend φ^* to all of $\langle \mathcal{C} \cup \{e\} \rangle$.

Once we have defined φ^* on S_g , we can extend it to all of $clop(\omega^*) \cong \mathcal{P}(\omega)/\texttt{fin}$ by the result of Bella et al.

イロト イポト イヨト イヨト

Using the Błaszczyck-Szymański result, we can find b such that $f[b] = g[a \cap e]$ and $f[\varphi * (a) \setminus b] = g[a \setminus e]$.

We can choose b in such a way that we can actually extend φ^* to $\langle \mathcal{C} \cup \{a \cap e\} \rangle$ by letting $\varphi^*(a \cap e) = b$.

Iterating this procedure, we can extend φ^* to all of $\langle \mathcal{C} \cup \{e\} \rangle$.

Once we have defined φ^* on S_g , we can extend it to all of $\operatorname{clop}(\omega^*) \cong \mathcal{P}(\omega)/\operatorname{fin}$ by the result of Bella et al.

Using the Błaszczyck-Szymański result, we can find b such that $f[b] = g[a \cap e]$ and $f[\varphi * (a) \setminus b] = g[a \setminus e]$.

We can choose b in such a way that we can actually extend φ^* to $\langle \mathcal{C} \cup \{a \cap e\} \rangle$ by letting $\varphi^*(a \cap e) = b$.

Iterating this procedure, we can extend φ^* to all of $\langle \mathcal{C} \cup \{e\} \rangle$.

Once we have defined φ^* on S_g , we can extend it to all of $clop(\omega^*) \cong \mathcal{P}(\omega)/\texttt{fin}$ by the result of Bella et al.

Using the Błaszczyck-Szymański result, we can find b such that $f[b] = g[a \cap e]$ and $f[\varphi * (a) \setminus b] = g[a \setminus e]$.

We can choose b in such a way that we can actually extend φ^* to $\langle \mathcal{C} \cup \{a \cap e\} \rangle$ by letting $\varphi^*(a \cap e) = b$.

Iterating this procedure, we can extend φ^* to all of $\langle \mathcal{C} \cup \{e\} \rangle$.

Once we have defined φ^* on S_g , we can extend it to all of $clop(\omega^*) \cong \mathcal{P}(\omega)/fin$ by the result of Bella et al.

By Stone duality there is a homeomorphism φ of ω^* such that for all clopen sets $a \subseteq \omega^*$, $\varphi^*(a) = \varphi^{-1}[a]$.

By the choice of S_g and since for all $A \in S_g$ we have $f[\varphi^{-1}[A]] = f[\varphi^*(A)] \subseteq g[A]$ it holds that $f = g \circ \varphi$.

This finishes the proof.

소리가 소문가 소문가 소문가

By Stone duality there is a homeomorphism φ of ω^* such that for all clopen sets $a \subseteq \omega^*$, $\varphi^*(a) = \varphi^{-1}[a]$.

By the choice of S_g and since for all $A \in S_g$ we have $f[\varphi^{-1}[A]] = f[\varphi^*(A)] \subseteq g[A]$ it holds that $f = g \circ \varphi$.

This finishes the proof.

By Stone duality there is a homeomorphism φ of ω^* such that for all clopen sets $a \subseteq \omega^*$, $\varphi^*(a) = \varphi^{-1}[a]$.

By the choice of S_g and since for all $A \in S_g$ we have $f[\varphi^{-1}[A]] = f[\varphi^*(A)] \subseteq g[A]$ it holds that $f = g \circ \varphi$.

This finishes the proof.

A previous argument used the fact that for all continuous maps f from ω^* onto a metric space X there is a function $g: \omega \to X$ such that $f = g^*$.

The range of g can be any prescribed countable dense subset of X.

Based on a suggestion by K.P. Hart, using a method of Watson and Weiss we could show the following:

Theorem

There are a first countable compact space X and a continuous map f from ω^* onto X such that f is not of the form $g \upharpoonright \omega^*$ for any $g : \beta \omega \to X$.

イロト イポト イヨト イヨト

A previous argument used the fact that for all continuous maps f from ω^* onto a metric space X there is a function $g : \omega \to X$ such that $f = g^*$.

The range of g can be any prescribed countable dense subset of X.

Based on a suggestion by K.P. Hart, using a method of Watson and Weiss we could show the following:

Theorem

There are a first countable compact space X and a continuous map f from ω^* onto X such that f is not of the form $g \upharpoonright \omega^*$ for any $g : \beta \omega \to X$.

A previous argument used the fact that for all continuous maps f from ω^* onto a metric space X there is a function $g : \omega \to X$ such that $f = g^*$.

The range of g can be any prescribed countable dense subset of X.

Based on a suggestion by K.P. Hart, using a method of Watson and Weiss we could show the following:

Theorem

There are a first countable compact space X and a continuous map f from ω^* onto X such that f is not of the form $g \upharpoonright \omega^*$ for any $g : \beta \omega \to X$.

A previous argument used the fact that for all continuous maps f from ω^* onto a metric space X there is a function $g: \omega \to X$ such that $f = g^*$.

The range of g can be any prescribed countable dense subset of X.

Based on a suggestion by K.P. Hart, using a method of Watson and Weiss we could show the following:

Theorem

There are a first countable compact space X and a continuous map f from ω^* onto X such that f is not of the form $g \upharpoonright \omega^*$ for any $g : \beta \omega \to X$.

(日本) (日本) (日本)

A previous argument used the fact that for all continuous maps f from ω^* onto a metric space X there is a function $g: \omega \to X$ such that $f = g^*$.

The range of g can be any prescribed countable dense subset of X.

Based on a suggestion by K.P. Hart, using a method of Watson and Weiss we could show the following:

Theorem

There are a first countable compact space X and a continuous map f from ω^* onto X such that f is not of the form $g \upharpoonright \omega^*$ for any $g : \beta \omega \to X$.

$MA_{\aleph_1} + OCA$ implies that all automorphisms of $\mathcal{P}(\omega)/\texttt{fin}$ are trivial.

This leads to the following observation that was pointed out by Farah.

Under $MA_{\aleph_1} + OCA$ there is an automorphism of a subalgebra of size \aleph_1 of $\mathcal{P}(\omega)/\texttt{fin}$ that does not extend to all of $\mathcal{P}(\omega)/\texttt{fin}$.

 $MA_{\aleph_1} + OCA$ implies that all automorphisms of $\mathcal{P}(\omega)/\texttt{fin}$ are trivial.

This leads to the following observation that was pointed out by Farah.

Under $MA_{\aleph_1} + OCA$ there is an automorphism of a subalgebra of size \aleph_1 of $\mathcal{P}(\omega)/\texttt{fin}$ that does not extend to all of $\mathcal{P}(\omega)/\texttt{fin}$.

 $MA_{\aleph_1} + OCA$ implies that all automorphisms of $\mathcal{P}(\omega)/fin$ are trivial.

This leads to the following observation that was pointed out by Farah.

Under $MA_{\aleph_1} + OCA$ there is an automorphism of a subalgebra of size \aleph_1 of $\mathcal{P}(\omega)/\texttt{fin}$ that does not extend to all of $\mathcal{P}(\omega)/\texttt{fin}$.

(日本)(日本)(日本)

 $MA_{\aleph_1} + OCA$ implies that all automorphisms of $\mathcal{P}(\omega)/fin$ are trivial.

This leads to the following observation that was pointed out by Farah.

Under $MA_{\aleph_1} + OCA$ there is an automorphism of a subalgebra of size \aleph_1 of $\mathcal{P}(\omega)/\texttt{fin}$ that does not extend to all of $\mathcal{P}(\omega)/\texttt{fin}$.

(日本)(日本)(日本)

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of $Sym(\omega)/FS$ is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of Sym(ω)/FS is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)$ /fin.

This leads to the following fact:

Sym (ω) /FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym (ω) /FS maps A to B.

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of $Sym(\omega)/FS$ is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of Sym(ω)/FS is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)$ /fin.

This leads to the following fact:

Sym(ω)/FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym(ω)/FS maps A to B.

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of Sym(ω)/FS is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of $Sym(\omega)/FS$ is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)/fin$.

This leads to the following fact:

Sym (ω) /FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym (ω) /FS maps A to B.

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of Sym(ω)/FS is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of Sym(ω)/FS is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)$ /fin.

This leads to the following fact:

Sym (ω) /FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym (ω) /FS maps A to B.

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of $Sym(\omega)/FS$ is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of Sym(ω)/FS is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)$ /fin.

This leads to the following fact:

Sym (ω) /FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym (ω) /FS maps A to B.

・ロン ・回と ・ヨン ・ヨン

Let Sym(ω) denote the group of all permutations of ω and let FS denote the normal subgroup of permutations that move only finitely many elements.

Alperin, Covington, and Macpherson showed that the automorphism group of Sym(ω)/FS is generated by the inner automorphisms together with the automorphism induced by the shift map $n \mapsto n + 1$.

It follows that the automorphism group of Sym(ω)/FS is isomorphic to the group of trivial automorphisms of $\mathcal{P}(\omega)$ /fin.

This leads to the following fact:

Sym(ω)/FS has two countable, isomorphic subgroups A and B such that no automorphism of Sym(ω)/FS maps A to B.