
Topological Ramsey spaces in creature forcing

Natasha Dobrinen

University of Denver

Toposym, 2016

Dobrinen tRs in Creature Forcing University of Denver 1 / 26



Observation (Todorcevic). There are strong connections between
creature forcing and topological Ramsey spaces deserving of a
systematic study.

Question. Which creature forcings are essentially topological Ramsey
spaces?

Topological Ramsey spaces dense in forcings make possible canonical
equivalence relations on barriers and tight results for Rudin-Keisler
and Tukey structures on ultrafilters. This has been seen in

1 Forcings Pα (α < ω1) of Laflamme in [D/Todorcevic 2014,15
TAMS];

2 Forcings of Baumgartner and Taylor, of Blass, and others in
[D/Mijares/Trujillo AFML];

3 P(ωα)/Fin⊗α, 2 ≤ α < ω1 in [D 2015 JSL, 2016 JML].

Moreover, the forced ultrafilters have complete combinatorics over L(R)
in the presence of a supercompact cardinal [Di Prisco/Mijares/Nieto].
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Some Results of Ros lanowski and Shelah

The 2013 paper, Partition theorems from creatures and idempotent
ultrafilters, by Ros lanowski and Shelah, seemed a good place to start this
investigation.

H denotes any function with dom(H) = ω such that H(n) is a finite
non-empty set for each n < ω.

FH =
⋃

u∈FIN

∏
n∈u

H(n).

pure candidates are certain infinite sequences t̄ of creatures (defined later
in context). pos(t̄) is a subset of FH determined by t̄.

Thm. [R/S] Under certain hypotheses on a creature forcing, given a
pure candidate t̄ and a coloring c : pos(t̄ )→ 2 there is a pure
candidate s̄ stronger than t̄ such that c is constant on pos(s̄).
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Cor. [R/S] (CH) There is an ultrafilter U on base set FH generated by
{pos(t̄α ) : α < ω1} for a decreasing sequence of pure candidates
〈t̄α : α < ω1〉, moreover, satisfying the previous partition theorem:
For any t̄ such that pos(t̄ ) ∈ U and any partition of pos(t̄ ) into finitely
many pieces, there is a pure candidate s̄ ≤ t̄ such that pos(s̄) is
contained in one piece of the partition and pos(s̄) ∈ U .

Remark. This is similar to the construction of an ultrafilter U on base
set FIN generated by block sequences and using Hindman’s Theorem so
that for each partition of FIN into finitely many pieces, there is an
infinite block sequence X such that [X ] is contained in one piece of the
partition and [X ] ∈ U .

Remark. The proofs in [R/S] use the Galvin-Glazer method extended
to certain classes of creature forcings.
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We now look at a specific example of a creature forcing in [R/S 2013].
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Example 2.10 in [Roslanowski/Shelah 2013]

H1(n) = n + 1, for each n < ω.

FH1 = {functions f : dom(f ) is finite and ∀n ∈ dom(f )(f (n) ≤ n)}.

K1 = set of all creatures t = (nor[t], val[t],dis[t],mt
dn,m

t
up) such that

• dis[t] = (ut , i t ,At), where ut ⊆ [mt
dn,m

t
up), i t ∈ ut ,

∅ 6= At ⊆ H1(i t) = i t + 1,

• nor[t] = log2(|At |),

• val[t] ⊆
∏

j∈u H1(j) =
∏

j∈u(j + 1) s.t. {f (i t) : f ∈ val[t]} = At .
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The Sub-Composition Operation: For t0, . . . , tn ∈ K1 with
mtl

up = m
tl+1

dn for all l ≤ n,

Σ∗1(t0, . . . , tn) is all t ∈ K1 such that mt
dn = mt0

dn, m
t
up = mtn

up, and

ut =
⋃
j≤n

utj , i t = i tl , At ⊆ Atl for some l ≤ n,

and val[t] ⊆ {f0 ∪ · · · ∪ fn : (f0, . . . , fn) ∈ val[t0]× · · · × val[tn]}.

PCtt
∞(K1,Σ

∗
1) denotes the set of all pure candidates t̄ = (t0, t1, . . . ) such

that for each n < ω, tn ∈ K1 and mtn
up = m

tn+1

dn , and limn→∞ nor[tn] =∞.

s̄ ≤ t̄ iff ∃ (nj)j<ω strictly increasing s.t. ∀j , sj ∈ Σ∗1(tnj , . . . , tnj+1−1).
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The set of possibilities on the pure candidate t̄ is

postt(t̄) =
⋃
{f0 ∪ · · · ∪ fn : n ∈ ω ∧ ∀i ≤ n (fi ∈ val[ti ])}. (1)

Thm. [R/S] Given t̄ ∈ PCtt
∞(K1,Σ

∗
1), l ≥ 1, dk : postt(t̄ � k)→ l ,

k < ω, ∃s̄ ≤ t̄ in PCtt
∞(K1,Σ

∗
1) and a l ′ < l such that for each i < ω, if k

is such that si ∈ Σ∗1(t̄ � k) and f ∈ postt(s̄ � i), then dk(f ) = l ′.

t̄ � n denotes (tn, tn+1, . . . ).

Remark. This theorem will be recovered from showing that there is a
topological Ramsey space dense in PCtt

∞(K1,Σ
∗
1).
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We will show there is a dense subset of the collection of all pure
candidates for this example which forms a topological Ramsey space.

What is a topological Ramsey space?
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The Archetypal Example of a Topological Ramsey Space

The Ellentuck space is ([ω]ω, r ,⊆).

Basis for topology: [a,X ] = {Y ∈ [ω]ω : a < Y ⊆ X}.
This is a refinement of the metric topology on the Baire space.

rn(X ) = the least n members of X , the n-th approximation of X .

Def. X ⊆ [ω]ω is Ramsey iff for each [a,X ], there is a < Y ⊆ X such
that either [a,Y ] ⊆ X or [a,Y ] ∩ X = ∅.

Thm. [Ellentuck 1974] Every X ⊆ [ω]ω with the property of Baire is
Ramsey, and every meager set is Ramsey null.

This extends theorems of Nash-Williams, Galvin and Prikry, and Silver.
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Topological Ramsey Spaces (R,≤, r)

Basic open sets: [a,A] = {X ∈ R : a < X ≤ A}.

Def. X ⊆ R is Ramsey iff for each ∅ 6= [a,A], there is a B ∈ [a,A] such
that either [a,B] ⊆ X or [a,B] ∩ X = ∅.

Def. [Todorcevic] A triple (R,≤, r) is a topological Ramsey space if
every subset of R with the Baire property is Ramsey, and every meager
subset of R is Ramsey null.

Abstract Ellentuck Thm. [Todorcevic] If (R,≤, r) satisfies Axioms
A.1 - A.4 and R is closed (in ARN), then (R,≤, r) is a topological
Ramsey space.
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Selective Coideals and Complete Combinatorics

Given a topological Ramsey space (R,≤, r), a coideal U ⊆ R is selective
if for each A ∈ U and any collection (Aa)a∈AR|A of members of U � A,
there is a U ∈ U which diagonalizes (Aa)a∈AR|A.

To each topological Ramsey space there corresponds a notion of almost
reduction ≤∗, and forcing with (R,≤∗) adds a selective coideal U on R.

Thm. [DiPrisco/Mijares/Nieto] In the presence of a supercompact
cardinal, every selective coideal U ⊆ R is generic for (R,≤∗).
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A dense subset of PCtt
∞(K1,Σ∗1) forming a tRs

Recall: H1(n) = n + 1.

Creatures t ∈ K1 are determined by mt
dn < mt

up, ut ⊆ [mt
dn,m

t
up), i t ∈ ut ,

At ⊆ H1(i t), val[t] ⊆
∏

j∈ut H1(j) satisfying {f (i t) : f ∈ val[t]} = At .

R(K1,Σ1) is the set of t̄ = (tn : n < ω) ∈ PCtt
∞(K1,Σ

∗
1) such that ∀n,

1 |Atn | = n + 1 and

2 for each a ∈ Atn , there is exactly one function g tn
a ∈ val[tn] such that

ga(i tn) = a.

Thus, val[tn] = {g tn
a : a ∈ Atn} and | val[tn]| = |Atn | = n + 1.

Dobrinen tRs in Creature Forcing University of Denver 13 / 26



A dense subset of PCtt
∞(K1,Σ∗1) forming a tRs

Recall: H1(n) = n + 1.

Creatures t ∈ K1 are determined by mt
dn < mt

up, ut ⊆ [mt
dn,m

t
up), i t ∈ ut ,

At ⊆ H1(i t), val[t] ⊆
∏

j∈ut H1(j) satisfying {f (i t) : f ∈ val[t]} = At .

R(K1,Σ1) is the set of t̄ = (tn : n < ω) ∈ PCtt
∞(K1,Σ

∗
1) such that ∀n,

1 |Atn | = n + 1 and

2 for each a ∈ Atn , there is exactly one function g tn
a ∈ val[tn] such that

ga(i tn) = a.

Thus, val[tn] = {g tn
a : a ∈ Atn} and | val[tn]| = |Atn | = n + 1.

Dobrinen tRs in Creature Forcing University of Denver 13 / 26



A dense subset of PCtt
∞(K1,Σ∗1) forming a tRs

Recall: H1(n) = n + 1.

Creatures t ∈ K1 are determined by mt
dn < mt

up, ut ⊆ [mt
dn,m

t
up), i t ∈ ut ,

At ⊆ H1(i t), val[t] ⊆
∏

j∈ut H1(j) satisfying {f (i t) : f ∈ val[t]} = At .

R(K1,Σ1) is the set of t̄ = (tn : n < ω) ∈ PCtt
∞(K1,Σ

∗
1) such that ∀n,

1 |Atn | = n + 1 and

2 for each a ∈ Atn , there is exactly one function g tn
a ∈ val[tn] such that

ga(i tn) = a.

Thus, val[tn] = {g tn
a : a ∈ Atn} and | val[tn]| = |Atn | = n + 1.

Dobrinen tRs in Creature Forcing University of Denver 13 / 26



A dense subset of PCtt
∞(K1,Σ∗1) forming a tRs

For k < ω and s̄ = (s0, s1, . . . ) ∈ R(K1,Σ
∗
1), rk(s̄) = (s0, . . . , sk−1).

Thm. [D] (R(K1,Σ
∗
1),≤, r) is a topological Ramsey space which is

dense in PCtt
∞(K1,Σ

∗
1).

Cor. [D] Given t̄ ∈ R(K1,Σ
∗
1) and ck : ARk |t̄ → l for each k ≥ 1, there

is an s̄ ≤ t̄ in R(K1,Σ
∗
1) and an l ′ < l such that for each k , ck is

constantly l ′ on rk [k − 1, s̄].

Using the fact that for t̄ ∈ R(K1,Σ
∗
1), |postt(tn)| = n + 1 for each n, we

can quickly derive Ros lanowski and Shelah’s result for this example,
and hence obtain an ultrafilter on FH1 which satisfies the partition
theorem of [R/S].
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The proof that (R(K1,Σ
∗
1),≤, r) is a topological Ramsey space hinges on

proving the pigeonhole principle Axiom A.4:

Given t̄ ∈ R(K1,Σ
∗
1), k ≥ 1, and c : rk [k − 1, t̄ ]→ 2, there is an s̄ ≤ t̄

such that c is constant on rk [k − 1, s̄].

Members (t0, . . . , tk−2, x) of rk [k − 1, t̄ ] are completely determined by
the triple (ix ,Ax ,mx

up). So c is really coloring⋃
n≥k−1

⋃
k−1≤p≤n

Atk−1 × · · · × Atp−1 × [Atp ]k × Atp+1 × Atn .

This looks suspiciously similar to the following theorem.
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Thm. [DiPrisco/Llopis/Todorcevic 2004] There is an
R : (N+)<ω → N+ such that for every infinite sequence (mj)j<ω of
positive integers and for every coloring

c :
⋃
n<ω

∏
j≤n

R(m0, . . . ,mj)→ 2,

there exist Hj ⊆ R(m0, . . . ,mj), |Hj | = mj , for j < ω, such that c is
constant on the product ∏

j≤n
Hj

for infinitely many n < ω.

Remark. The difference is that we need sets of size k to be able to
move up and down indices of the product.
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As an intermediate step to the new product tree Ramsey theorem we prove

Thm. [D] Given k ≥ 1, there is a function Rk : [N+]<ω → N+ such that
for each sequence (mj)j<ω of positive integers, for each coloring

c :
⋃
n<ω

[Rk(m0)]k ×
n∏

j=1

Rk(m0, . . . ,mj)→ 2,

there are subsets Hj ⊆ Rk(m0, . . . ,mj) such that |Hj | = mj and c is
constant on

[H0]k ×
n∏

j=1

Hj

for infinitely many n.

Then diagonalize and apply Theorem [DLT] to obtain the next
theorem.
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New Product Tree Ramsey Theorem

For p ≤ n, [Kp]k ×
∏

j∈(n+1)\{p} Kj denotes

K0 × · · · × Kp−1 × [Kp]k × Kp+1 × · · · × Kn.

Thm. [D] Given k ≥ 1, a sequence of positive integers (m0,m1, . . . ),
sets Kj , j < ω such that |Kj | ≥ j + 1, and a coloring

c :
⋃
n<ω

⋃
p≤n

([Kp]k ×
∏

j∈(n+1)\{p}

Kj)→ 2,

there are infinite sets L,N ⊆ ω such that, enumerating L and N in
increasing order, l0 ≤ n0 < l1 ≤ n1 < . . . , and there are subsets Hj ⊆ Kj ,
j < ω, such that |Hli | = mi for each i < ω, |Hj | = 1 for each j ∈ ω \ L,
and c is constant on⋃

n∈N

⋃
l∈L∩(n+1)

([Hl ]
k ×

∏
j∈(n+1)\{l}

Hj).

Dobrinen tRs in Creature Forcing University of Denver 18 / 26



New Product Tree Ramsey Theorem

For p ≤ n, [Kp]k ×
∏

j∈(n+1)\{p} Kj denotes

K0 × · · · × Kp−1 × [Kp]k × Kp+1 × · · · × Kn.

Thm. [D] Given k ≥ 1, a sequence of positive integers (m0,m1, . . . ),
sets Kj , j < ω such that |Kj | ≥ j + 1, and a coloring

c :
⋃
n<ω

⋃
p≤n

([Kp]k ×
∏

j∈(n+1)\{p}

Kj)→ 2,

there are infinite sets L,N ⊆ ω such that, enumerating L and N in
increasing order, l0 ≤ n0 < l1 ≤ n1 < . . . , and there are subsets Hj ⊆ Kj ,
j < ω, such that |Hli | = mi for each i < ω, |Hj | = 1 for each j ∈ ω \ L,
and c is constant on⋃

n∈N

⋃
l∈L∩(n+1)

([Hl ]
k ×

∏
j∈(n+1)\{l}

Hj).

Dobrinen tRs in Creature Forcing University of Denver 18 / 26



Example 2.11 in [Roslanowski/Shelah 2013]

H2(n) = 2 for n < ω. FH2 = {f : dom(f ) ∈ FIN and f : dom(f )→ 2}.

K2 = set of all creatures t = (nor[t], val[t],dis[t],mt
dn,m

t
up) such that

• ∅ 6= dis[t] ⊆ [mt
dn,m

t
up),

• val[t] ⊆ dis[t]2,

• nor[t] = log2(| val[t]|).

For t0, . . . , tn ∈ K2 with mtl
up ≤ m

tl+1

dn for all l ≤ n, Σ2(t0, . . . , tn) consists
of all creatures t ∈ K2 such that

mt
dn = mt0

dn, m
t
up = mtn

up, dis[t] = dis[tl ], val[t] ⊆ val[tl ], for some l ≤ n.
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PC∞(K2,Σ2) denotes the set of all pure candidates t̄ = (t0, t1, . . . ) such
that for each i < ω, ti ∈ K2 and mti

up ≤ mti
dn, and limi→∞ nor[ti ] =∞.

s̄ ≤ t̄ iff ∃ (jn)n<ω strictly increasing s.t. ∀n, sn ∈ Σ2(tj2n , . . . , tj2n+1).

The set of possibilities on the pure candidate t̄ is

pos(t̄) =
⋃
{val[tn] : n < ω}. (2)

Thm. [R/S] Given t̄ ∈ PC∞(K2,Σ2), l ≥ 1, and dk : pos(t̄ � k)→ l ,
k < ω, there exist s̄ ≤ t̄ in PC∞(K2,Σ2) and l ′ < l such that for each
i < ω, if k is such that si ∈ Σ2(t̄ � k) and f ∈ pos(s̄ � i), then dk(f ) = l ′.

This theorem will be recovered by showing that there is a topological
Ramsey space dense in PC∞(K2,Σ2).
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k < ω, there exist s̄ ≤ t̄ in PC∞(K2,Σ2) and l ′ < l such that for each
i < ω, if k is such that si ∈ Σ2(t̄ � k) and f ∈ pos(s̄ � i), then dk(f ) = l ′.

This theorem will be recovered by showing that there is a topological
Ramsey space dense in PC∞(K2,Σ2).
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A dense subsets forming a topological Ramsey space

R(K2,Σ2) = {s̄ ∈ PC∞(K2,Σ2) : ∀l < ω, | val[tl ] | = l + 1},
with its inherited partial ordering.

Thm. [D] (R(K2,Σ2),≤, r) is a topological Ramsey space which is
dense in PC∞(K2,Σ2).

Remark. The proof of the pigeonhole again relies on the new product
tree Ramsey theorem. The application, though, is slightly different.
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The generic filter

Since R(K2,Σ2) is a topological Ramsey space, it forces a generic filter G
which is selective for R(K2,Σ2), hence has complete combinatorics over
L(R) in the presence of a supercompact cardinal.

The generic filter induces an ultrafilter U on AR1.

AR1 = {(m, n, f ) : m < n, dom(f ) ⊆ [m, n) and ran(f ) ⊆ 2}

This filter induces an ultrafilter on FH2 = {f : dom(f ) ∈ FIN and
f : dom(f )→ 2} generated by possibilities on pure candidates and
satisfying the partition theorem of [R/S].
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Example 2.13 in [Ros lanowski/Shelah 2013]

Let N > 0 and HN(n) = N for n < ω. KN consists of all creatures t s.t.

• dis[t] = (Xt , ϕt), where Xt ( [mt
dn,m

t
up), and ϕt : Xt → N,

• nor[t] = mt
up,

• val[t] = {f ∈ [mt
dn,m

t
up)N : ϕt ⊆ f and f is constant on

[mt
dn,m

t
up) \ Xt}.

For t0, . . . , tn ∈ K2 with mtl
up = m

tl+1

dn , ΣN(t0, . . . , tn) is all t ∈ KN s.t.

• mt
dn = mt0

dn, mt
up = mtn

up, Xt0 ∪ · · · ∪ Xtn ⊆ Xt ,

• for each l ≤ n, either Xt ∩ [mtl
dn,m

tl
up) = Xtl and

ϕt � [mtl
dn,m

tl
up) = ϕtl ,

or [mtl
dn,m

tl
up) ( Xt and ϕt � [mtl

dn,m
tl
up) ∈ val[tl ].

For s̄, t̄ ∈ PCtt
∞(KN ,ΣN), s̄ ≤ t̄ iff ∃ strictly increasing (jn)n<ω such that

each sn ∈ ΣN(tjn , . . . , tjn+1−1).
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Thm. [R/S] Given a pure candidate t̄ and a coloring c : postt(t̄ )→ 2,
there is an s̄ ≤ t̄ such that c is constant on postt(s̄).

Thm. [D] PCtt
∞(KN ,ΣN) is a topological Ramsey space.

Both proofs use the Hales-Jewett Theorem, but neither seems to imply
the other directly.

Remark. This space is the tight version of the Carlson-Simpson space
of variable words.
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Questions.

1 What other creature forcings are essentially (topological) Ramsey
spaces? Extend this study to streamline approaches to certain
classes of creature forcings.

2 What other forced ultrafilters in the literature, or new ones, have
complete combinatorics?

3 What other pigeonhole principles and Ramsey theorems will
emerge from this investigation?

Thank you for your attention.
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