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Observation (Todorcevic). There are strong connections between
creature forcing and topological Ramsey spaces deserving of a
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creature forcing and topological Ramsey spaces deserving of a
systematic study.

Question. Which creature forcings are essentially topological Ramsey
spaces?

Topological Ramsey spaces dense in forcings make possible canonical
equivalence relations on barriers and tight results for Rudin-Keisler
and Tukey structures on ultrafilters. This has been seen in

@ Forcings P, (o < wi) of Laflamme in [D/Todorcevic 2014,15
TAMS];

@ Forcings of Baumgartner and Taylor, of Blass, and others in
[D/Mijares/Trujillo AFML];

@ P(w*)/Fin®*, 2 < a < wy in [D 2015 JSL, 2016 JML].
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Observation (Todorcevic). There are strong connections between
creature forcing and topological Ramsey spaces deserving of a
systematic study.

Question. Which creature forcings are essentially topological Ramsey
spaces?

Topological Ramsey spaces dense in forcings make possible canonical
equivalence relations on barriers and tight results for Rudin-Keisler
and Tukey structures on ultrafilters. This has been seen in

@ Forcings P, (o < wi) of Laflamme in [D/Todorcevic 2014,15
TAMS];
@ Forcings of Baumgartner and Taylor, of Blass, and others in
[D/Mijares/Trujillo AFML];
@ P(w*)/Fin®*, 2 < a < wy in [D 2015 JSL, 2016 JML].
Moreover, the forced ultrafilters have complete combinatorics over L(R)

in the presence of a supercompact cardinal [Di Prisco/Mijares/Nieto].
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Some Results of Rostanowski and Shelah

The 2013 paper, Partition theorems from creatures and idempotent

ultrafilters, by Rostanowski and Shelah, seemed a good place to start this
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Some Results of Rostanowski and Shelah

The 2013 paper, Partition theorems from creatures and idempotent

ultrafilters, by Rostanowski and Shelah, seemed a good place to start this
investigation.

H denotes any function with dom(H) = w such that H(n) is a finite
non-empty set for each n < w.

Fu= {J J]H0).

ueFIN neu

pure candidates are certain infinite sequences t of creatures (defined later
in context). pos(t) is a subset of Fiy determined by t.

Thm. [R/S] Under certain hypotheses on a creature forcing, given a
pure candidate t and a coloring ¢ : pos(t) — 2 there is a pure

candidate 5 stronger than t such that c is constant on pos(5).
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Cor. [R/S] (CH) There is an ultrafilter & on base set Fy generated by
{pos(ta ) : @ < w1} for a decreasing sequence of pure candidates

(tq : @ < w1), moreover, satisfying the previous partition theorem:

For any t such that pos(t) € U and any partition of pos(t) into finitely
many pieces, there is a pure candidate 5§ < t such that pos(5) is
contained in one piece of the partition and pos(5) € U.
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Cor. [R/S] (CH) There is an ultrafilter & on base set Fy generated by
{pos(ta ) : @ < w1} for a decreasing sequence of pure candidates

(tq : @ < w1), moreover, satisfying the previous partition theorem:

For any t such that pos(t) € U and any partition of pos(t) into finitely
many pieces, there is a pure candidate 5§ < t such that pos(5) is
contained in one piece of the partition and pos(5) € U.

Remark. This is similar to the construction of an ultrafilter & on base
set FIN generated by block sequences and using Hindman’s Theorem so
that for each partition of FIN into finitely many pieces, there is an
infinite block sequence X such that [X] is contained in one piece of the
partition and [X] € U.
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Cor. [R/S] (CH) There is an ultrafilter ¢/ on base set Fy generated by
{pos(ta ) : @ < w1} for a decreasing sequence of pure candidates

(tq : @ < w1), moreover, satisfying the previous partition theorem:

For any t such that pos(t) € U and any partition of pos(t) into finitely
many pieces, there is a pure candidate 5§ < t such that pos(5) is
contained in one piece of the partition and pos(5) € U.

Remark. This is similar to the construction of an ultrafilter & on base
set FIN generated by block sequences and using Hindman’s Theorem so
that for each partition of FIN into finitely many pieces, there is an
infinite block sequence X such that [X] is contained in one piece of the
partition and [X] € U.

Remark. The proofs in [R/S] use the Galvin-Glazer method extended
to certain classes of creature forcings.
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We now look at a specific example of a creature forcing in [R/S 2013].
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|
Example 2.10 in [Roslanowski/Shelah 2013]

Hi(n) = n+1, for each n < w.
Fu, = {functions f : dom(f) is finite and Vn € dom(f)(f(n) < n)}.
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Example 2.10 in [Roslanowski/Shelah 2013]

Hi(n) = n+1, for each n < w.
Fu, = {functions f : dom(f) is finite and Vn € dom(f)(f(n) < n)}.

K1 = set of all creatures t = (nor[t], val[t], dis[t], m}, , m{,) such that

o dis[t] = (u,i*, AY), where u* C [mf,, mi.), i € u*,
0 # A" C Hy (i) = i +1,

e nor[t] = log,(|At|),

e val[t] C HJ-EU Hi()) = HjEu(j +1) st. {f(i*): f e val[t]} = A"
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The Sub-Composition Operation: For tg,...,t, € K; with

mi, = mi+ for all | < n,

: t
Yi(to,...,ta) is all t € Ky such that mj, = mg , mi, = m{, and

u—Uu it =i A" C AY for some | < n,

and val[t] C {RU---Uf,: (fo,...,f) € val[tp] x --- x val[t,]}.
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u—Uu it =i A" C AY for some | < n,

and val[t] C {RU---Uf,: (fo,...,f) € val[tp] x --- x val[t,]}.
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The Sub-Composition Operation: For tg,...,t, € K; with

mi, = mi+ for all | < n,
Yi(to, ..., tp) is all t € Ky such that mf, = mQ, mi, = mir and

u—Uu it =i A" C AY for some | < n,

and val[t] C {RU---Uf,: (fo,...,f) € val[tp] x --- x val[t,]}.

PCLE (K1, X%) denotes the set of all pure candidates = (tg, t1, ... ) such

that for each n < w, t, € K1 and mflnp = md”;rl, and limp_,o NOr[t,] = 00
§ < tiff 3 (nj)j<. strictly increasing s.t. Vj, s; € Z(tn, ..., tn;—1)-
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The set of possibilities on the pure candidate t is

pos™(f) = | J{hU---Ufs:ncwAVi<n(fievallt])}. (1)
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The set of possibilities on the pure candidate t is

pos™(f) = | J{hU---Ufs:ncwAVi<n(fievallt])}. (1)

Thm. [R/S] Given t € PC (K1, X3), | > 1, di : pos*™(t 1 k) — |,
k <w, 35 < tin PC(K1,X;) and a I’ < I such that for each i < w, if k
is such that s; € X3(t 1 k) and f € pos*®(51 i), then di(f) = I'.

t 1 n denotes (tn, tht1,.-.)-
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The set of possibilities on the pure candidate t is

pos™(f) = | J{hU---Ufs:ncwAVi<n(fievallt])}. (1)

Thm. [R/S] Given t € PC (K1, X3), | > 1, di : pos*™(t 1 k) — |,
k <w, 35 < tin PC(K1,X;) and a I’ < I such that for each i < w, if k
is such that s; € X3(t 1 k) and f € pos*®(51 i), then di(f) = I'.

t 1 n denotes (tn, tht1,.-.)-

Remark. This theorem will be recovered from showing that there is a
topological Ramsey space dense in PC52( Ky, X7).
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We will show there is a dense subset of the collection of all pure
candidates for this example which forms a topological Ramsey space.
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We will show there is a dense subset of the collection of all pure
candidates for this example which forms a topological Ramsey space.

What is a topological Ramsey space?
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|
The Archetypal Example of a Topological Ramsey Space

The Ellentuck space is ([w]“, r, Q).
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The Archetypal Example of a Topological Ramsey Space

The Ellentuck space is ([w]“, r, Q).

Basis for topology: [a,X]={Y € [w]*:aC Y C X}.
This is a refinement of the metric topology on the Baire space.
rn(X) = the least n members of X, the n-th approximation of X.

Def. X C [w]¥ is Ramsey iff for each [a, X], there is a T Y C X such
that either [a, Y] C X or [a, Y] N X = 0.
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Thm. [Ellentuck 1974] Every X C [w]¥ with the property of Baire is
Ramsey, and every meager set is Ramsey null.
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The Archetypal Example of a Topological Ramsey Space

The Ellentuck space is ([w]“, r, Q).

Basis for topology: [a,X]={Y € [w]*:aC Y C X}.
This is a refinement of the metric topology on the Baire space.

rn(X) = the least n members of X, the n-th approximation of X.

Def. X C [w]¥ is Ramsey iff for each [a, X], there is a T Y C X such
that either [a, Y] C X or [a, Y] N X = 0.

Thm. [Ellentuck 1974] Every X C [w]¥ with the property of Baire is
Ramsey, and every meager set is Ramsey null.

This extends theorems of Nash-Williams, Galvin and Prikry, and Silver.
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-
Topological Ramsey Spaces (R, <, r)

Basic open sets: [a,A]={X eR:aC X < A}
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Topological Ramsey Spaces (R, <, r)
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Def. X C R is Ramsey iff for each () # [a, A], there is a B € [a, A] such
that either [a, B] C X or [a, BN X = (.

Def. [Todorcevic] A triple (R, <, r) is a topological Ramsey space if
every subset of R with the Baire property is Ramsey, and every meager
subset of R is Ramsey null.
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-
Topological Ramsey Spaces (R, <, r)

Basic open sets: [a,A]={X e R:aC X < A}

Def. X C R is Ramsey iff for each () # [a, A], there is a B € [a, A] such
that either [a, B] C X or [a, BN X = (.

Def. [Todorcevic] A triple (R, <, r) is a topological Ramsey space if
every subset of R with the Baire property is Ramsey, and every meager
subset of R is Ramsey null.

Abstract Ellentuck Thm. [Todorcevic] If (R, <, r) satisfies Axioms
A.1 - A.4 and R is closed (in ARY), then (R, <, r) is a topological
Ramsey space.
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Selective Coideals and Complete Combinatorics

Given a topological Ramsey space (R, <, r), a coideal Y C R is selective
if for each A € U and any collection (As),car|a of members of U | A,
there is a U € U which diagonalizes (A;).c 4r|a-
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Selective Coideals and Complete Combinatorics

Given a topological Ramsey space (R, <, r), a coideal Y C R is selective
if for each A € U and any collection (A )aeAR|A of members of U | A,
there is a U € U which diagonalizes (A;).c 4r|a-

To each topological Ramsey space there corresponds a notion of almost
reduction <*, and forcing with (R, <*) adds a selective coideal &/ on R.

tRs in Creature Forcing University of Denver 12 /26



Selective Coideals and Complete Combinatorics

Given a topological Ramsey space (R, <, r), a coideal Y C R is selective
if for each A € U and any collection (As),car|a of members of U | A,
there is a U € U which diagonalizes (A;).c 4r|a-

To each topological Ramsey space there corresponds a notion of almost
reduction <*, and forcing with (R, <*) adds a selective coideal &/ on R.

Thm. [DiPrisco/Mijares/Nieto] In the presence of a supercompact
cardinal, every selective coideal U C R is generic for (R, <*).
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A dense subset of PCZ2(K1, X7) forming a tRs

Recall: Hi(n) = n+1.
Creatures t € Kj are determined by mj, < m{,, u* C [m§ ,mi,), i* € u',

At C Hy (i), valt] C [[;c, Hu(j) satisfying {f(i*) : f € val[t]} = A",
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Recall: Hi(n) = n+1.

Creatures t € Kj are determined by mj, < m{,, u* C [m§ ,mi,), i* € u',

At C Hy (i), valt] C [[;c, Hu(j) satisfying {f(i*) : f € val[t]} = A",

R(Ki1,X1) is the set of = (t, : n < w) € PCL (K1, I}) such that Vn,

Q@ |[A"|=n+1and
@ for each a € A™, there is exactly one function gi» € val[t,] such that

ga(it") = a.
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1,
A dense subset of PCZ2(K1, X7) forming a tRs

Recall: Hi(n) = n+1.
Creatures t € Kj are determined by mj, < m{,, u* C [m§ ,mi,), i* € u',

At C Hy (i), valt] C [[;c, Hu(j) satisfying {f(i*) : f € val[t]} = A",

R(Ki1,X1) is the set of = (t, : n < w) € PCL (K1, I}) such that Vn,
Q@ |A"|=n+1and
@ for each a € A™, there is exactly one function gi» € val[t,] such that
ga(it") = a.

Thus, val[t,] = {gl : a € A"} and |val[t,]| = |A"| = n+ 1.
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|
A dense subset of PC**(K;, X¥) forming a tRs
00 1 g

For k <w and 5 = (sp,51,...) € R(K1,X7), rk(3) = (s0,---,Sk—1)-
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For k <w and 5 = (sp,51,...) € R(K1,X7), rk(3) = (s0,---,Sk—1)-

Thm. [D] (R(K1,X3),<,r) is a topological Ramsey space which is
dense in PCY (K1, X7).
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For k <w and 5 = (sp,51,...) € R(K1,X7), rk(3) = (s0,---,Sk—1)-

Thm. [D] (R(K1,X3),<,r) is a topological Ramsey space which is
dense in PCY (K1, X7).

Cor. [D] Given t € R(K1,X7) and ¢, : ARk|t — [ for each k > 1, there
isan § <t in R(Ki,X}) and an /" < [ such that for each k, ¢ is
constantly /" on re[k —1,3].
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1,
A dense subset of PCZ2(K1, X7) forming a tRs

For k <w and 5 = (sp,51,...) € R(K1,X7), rk(3) = (s0,---,Sk—1)-

Thm. [D] (R(K1,X3),<,r) is a topological Ramsey space which is
dense in PCY (K1, X7).

Cor. [D] Given t € R(K1,X7) and ¢, : ARk|t — [ for each k > 1, there
isan § <t in R(Ki,X}) and an /" < [ such that for each k, ¢ is
constantly /" on re[k —1,3].

Using the fact that for t € R(K1,X7), |pos*™™(tn)| = n+ 1 for each n, we
can quickly derive Rostanowski and Shelah’s result for this example,
and hence obtain an ultrafilter on Fu, which satisfies the partition
theorem of [R/S].
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The proof that (R(K1, X3), <,r) is a topological Ramsey space hinges on
proving the pigeonhole principle Axiom A.4:
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The proof that (R(K1, X3), <,r) is a topological Ramsey space hinges on
proving the pigeonhole principle Axiom A.4:

Given t € R(K1,X7), k> 1, and c: re[k —1,t] — 2, thereisan 5§ < t
such that c is constant on re[k — 1,3].
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The proof that (R(K1, X3), <,r) is a topological Ramsey space hinges on
proving the pigeonhole principle Axiom A.4:

Given t € R(K1,X7), k> 1, and c: re[k —1,t] — 2, thereisan 5§ < t
such that c is constant on re[k — 1,3].

Members (to, . .., ty—2,x) of ry[k — 1, t] are completely determined by
the triple (i*, AX, my;). So c is really coloring

U U AB—1 s A=t [ABR]R x Al i Al
n>k—1 k—1<p<n
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The proof that (R(K1, X3), <,r) is a topological Ramsey space hinges on
proving the pigeonhole principle Axiom A.4:

Given t € R(K1,X7), k> 1, and c: re[k —1,t] — 2, thereisan 5§ < t
such that c is constant on re[k — 1,3].

Members (to, . .., ty—2,x) of ry[k — 1, t] are completely determined by
the triple (i*, AX, my;). So c is really coloring

U U AB—1 s A=t [ABR]R x Al i Al
n>k—1 k—1<p<n

This looks suspiciously similar to the following theorem.
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Thm. [DiPrisco/Llopis/Todorcevic 2004] There is an
R : (NT)<¥ — N* such that for every infinite sequence (m;)j<, of
positive integers and for every coloring

c: UHR(mO,...,mj)—>2,

n<w j<n
there exist H; C R(mo, ..., m;), |H;| = mj, for j < w, such that c is
constant on the product
I1#
Jj<n

for infinitely many n < w.
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Thm. [DiPrisco/Llopis/Todorcevic 2004] There is an
R : (NT)<¥ — N* such that for every infinite sequence (m;)j<, of
positive integers and for every coloring

c: UHR(mO,...,mj)—>2,

n<w j<n

there exist H; C R(mo, ..., m;), |H;| = mj, for j < w, such that c is
constant on the product
I1#

j<n

for infinitely many n < w.

Remark. The difference is that we need sets of size k to be able to
move up and down indices of the product.
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As an intermediate step to the new product tree Ramsey theorem we prove

Thm. [D] Given k > 1, there is a function Ry : [N*]<% — N* such that
for each sequence (mj);<,, of positive integers, for each coloring

n<w

c: |JRe(mo)l* x [ ] Re(mo, ..., m;) — 2,
j=1

there are subsets H; C Rx(mo, ..., m;) such that |H;| = m; and c is
constant on

[Hol* x [ [ Hi
j=1

for infinitely many n.
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As an intermediate step to the new product tree Ramsey theorem we prove

Thm. [D] Given k > 1, there is a function Ry : [N*]<% — N* such that
for each sequence (mj);<,, of positive integers, for each coloring

c: |JRe(mo)l* x [ ] Re(mo, ..., m;) — 2,
n<w j=1

there are subsets H; C Rx(mo, ..., m;) such that |H;| = m; and c is
constant on

[Hol* x [ [ Hi
j=1
for infinitely many n.

Then diagonalize and apply Theorem [DLT] to obtain the next
theorem.
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New Product Tree Ramsey Theorem
For p < n, [Kp]¥ x [Ljc(n+1)\(py K; denotes

K0X~--><Kp,1><[Kp]kXKp+1><“‘XKn-
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New Product Tree Ramsey Theorem

For p < n, [Kp]¥ x [Ljc(n+1)\(py K; denotes
Ko x - x Ky 1 X [Kp]¥ X Kpiq1 x -+ x K.

Thm. [D] Given k > 1, a sequence of positive integers (mg, my,...),
sets Kj, j < w such that |Kj| > j + 1, and a coloring

c: Ukl > II K)—2
n<w p<n JE(+1)\{p}

there are infinite sets L, N C w such that, enumerating L and N in
increasing order, lp < ng < h < ny <..., and there are subsets H; C K,
J < w, such that |Hj;| = m; for each i < w, |H;| =1 for each j € w\ L,
and c is constant on

U U < JI H.
neN leLn(n+1) Je(n+I\{1}
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|
Example 2.11 in [Roslanowski/Shelah 2013]

Hy(n) =2 for n < w. Fy, = {f : dom(f) € FIN and f : dom(f) — 2}.
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|
Example 2.11 in [Roslanowski/Shelah 2013]

Ha(n) =2 for n < w. Fu, = {f : dom(f) € FIN and f : dom(f) — 2}.

Kz = set of all creatures t = (nor[t], val[t], dis[t], m},,, m},) such that
o 0 dist] C [mi,, m,)
e valft] C dis[t]p,
e nor[t] = log,(| val[t]|).

For tg,...,ty, € K> with mt’ < md*1 for all I < n, ¥a(ty,. .., ty) consists
of all creatures t € K5 such that

mf, = m2, my, = mi, dis[t] = dis[t], val[t] C val[t], for some / < n.
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PCoo (K2, Z2) denotes the set of all pure candidates ¢t = (to, t1,...) such

that for each i < w, t; € K> and mf{p < mé’n, and lim;_, nor(t;] = co.
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PCoo (K2, Z2) denotes the set of all pure candidates ¢t = (to, t1,...) such
that for each i < w, t; € K> and mf{p < mé’n, and lim;_, nor(t;] = co.

5 < tiff 3 (jn)n<w strictly increasing s.t. Vn, s, € Lo(t),,,-- -5 1)
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PCoo (K2, Z2) denotes the set of all pure candidates ¢t = (to, t1,...) such
that for each i < w, t; € K> and mf{p < mgn, and lim;_, nor(t;] = co.

5 < tiff 3 (jn)n<w strictly increasing s.t. Vn, s, € Lo(t),,,-- -5 1)

The set of possibilities on the pure candidate t is

pos(E) = | J{val[ta] : n < w}. (2)
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PCoo (K2, Z2) denotes the set of all pure candidates ¢t = (to, t1,...) such
that for each i < w, t; € K> and mf{p < mgn, and lim;_, nor(t;] = co.

5 < tiff 3 (jn)n<w strictly increasing s.t. Vn, s, € Lo(t),,,-- -5 1)

The set of possibilities on the pure candidate t is

pos(E) = | J{val[ta] : n < w}. (2)

Thm. [R/S] Given t € PC(K2,X2), | > 1, and di : pos(t | k) — 1,
k < w, there exist § < t in PC (K2, X2) and /" < I such that for each
i < w, if k is such that s; € Lo(t ] k) and f € pos(517), then dk(f) =/’

This theorem will be recovered by showing that there is a topological
Ramsey space dense in PCo (K2, X2).
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A dense subsets forming a topological Ramsey space

R(Kz, 22) = {§ S PCOO(K2,ZQ) V< w, ]val[t,] ’ =1+ ]_},

with its inherited partial ordering.
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A dense subsets forming a topological Ramsey space
R(Kz, 22) = {§ S PCOO(K2,22) V< w, ]val[t,] ’ =/+ ]_},
with its inherited partial ordering.

Thm. [D] (R(K2, X2),<,r) is a topological Ramsey space which is
dense in PC (K>, X>).
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A dense subsets forming a topological Ramsey space
R(Kz, 22) = {§ S PCOO(K2,22) V< w, ]val[t,] ’ =/+ ]_},
with its inherited partial ordering.

Thm. [D] (R(K2, X2),<,r) is a topological Ramsey space which is
dense in PC (K>, X>).

Remark. The proof of the pigeonhole again relies on the new product
tree Ramsey theorem. The application, though, is slightly different.
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The generic filter

Since R(K>, X) is a topological Ramsey space, it forces a generic filter G

which is selective for R(K2, X2), hence has complete combinatorics over
L(R) in the presence of a supercompact cardinal.
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The generic filter

Since R(K>, X) is a topological Ramsey space, it forces a generic filter G

which is selective for R(K2, X2), hence has complete combinatorics over
L(R) in the presence of a supercompact cardinal.

The generic filter induces an ultrafilter 4/ on AR;.

AR1 = {(m,n,f): m < n, dom(f) C [m, n) and ran(f) C 2}
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The generic filter

Since R(K>, X) is a topological Ramsey space, it forces a generic filter G

which is selective for R(K2, X2), hence has complete combinatorics over
L(R) in the presence of a supercompact cardinal.

The generic filter induces an ultrafilter 4/ on AR;.

AR1 = {(m,n,f): m < n, dom(f) C [m, n) and ran(f) C 2}

This filter induces an ultrafilter on Fy, = {f : dom(f) € FIN and

f :dom(f) — 2} generated by possibilities on pure candidates and
satisfying the partition theorem of [R/S].
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|
Example 2.13 in [Rostanowski/Shelah 2013]

Let N > 0 and Hy(n) = N for n < w. Ky consists of all creatures t s.t.

o dis[t] = (X¢, ), where X; C [m],m{,), and ¢ : X; — N,

t
up’

o val[t] = {f € ™) N : o, C f and f is constant on
[mgln’ mﬁp) \ Xt}-

e nor[t] =m
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|
Example 2.13 in [Rostanowski/Shelah 2013]

Let N > 0 and Hy(n) = N for n < w. Ky consists of all creatures t s.t.
o dis[t] = (X¢, ), where X; C [m],m{,), and ¢ : X; — N,
e nor[t] = m{,
o val[t] = {f € ™) N : o, C f and f is constant on
[mf,, mﬁp) \ Xe}.

For tg,..., t, € K> with mt’ = mctl’gl, Yn(to, ..., ty)isall t € Ky s.t.
° mén = mdn’ mtp up' Xto o U)<t‘,, - Xty
e for each I/ < n, either X; N [mdn, i) = Xy, and
[mdn’ m ) Sot/v
or [mdn, ) C X; and ¢ [mdn, ﬁ’p) € val[t)].
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|
Example 2.13 in [Rostanowski/Shelah 2013]

Let N > 0 and Hy(n) = N for n < w. Ky consists of all creatures ¢ s.t.
o dis[t] = (X¢, ), where X; C [m],m{,), and ¢ : X; — N,
e nor[t] = m{,
o val[t] = {f € ™) N : o, C f and f is constant on
[mf,, mﬁp) \ Xe}.

For tg,..., t, € K> with mt’ = mé’gl, Yn(to, ..., ty)isall t € Ky s.t.
° mén = mdn’ mtp up' Xto o U)<t‘,, - Xty
e for each I/ < n, either X; N [mdn, i) = Xy, and
[mdn’ m ) Sot/v
or [mdn, ) C X; and ¢ [mdn, ﬁ’p) € val[t)].

For 5, € PC(Kn, ), § < T iff 3 strictly increasing (jn)n<w such that
each s, € In(t,, .-, tj, 1)
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Thm. [R/S] Given a pure candidate t and a coloring ¢ : pos**(t) — 2,
there is an § < t such that ¢ is constant on pos®®(s).
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Thm. [R/S] Given a pure candidate t and a coloring ¢ : pos**(t) — 2,
there is an § < t such that ¢ is constant on pos®®(s).

Thm. [D] PCE(Kn, Xy) is a topological Ramsey space.
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Thm. [R/S] Given a pure candidate t and a coloring ¢ : pos**(t) — 2,
there is an § < t such that ¢ is constant on pos®®(s).

Thm. [D] PCE(Kn, Xy) is a topological Ramsey space.

Both proofs use the Hales-Jewett Theorem, but neither seems to imply
the other directly.
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Thm. [R/S] Given a pure candidate t and a coloring ¢ : pos**(t) — 2,
there is an § < t such that ¢ is constant on pos®®(s).

Thm. [D] PCE(Kn, Xy) is a topological Ramsey space.
Both proofs use the Hales-Jewett Theorem, but neither seems to imply

the other directly.

Remark. This space is the tight version of the Carlson-Simpson space
of variable words.
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Questions.

@ What other creature forcings are essentially (topological) Ramsey
spaces? Extend this study to streamline approaches to certain
classes of creature forcings.

@ What other forced ultrafilters in the literature, or new ones, have
complete combinatorics?

© What other pigeonhole principles and Ramsey theorems will
emerge from this investigation?
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Questions.

@ What other creature forcings are essentially (topological) Ramsey
spaces? Extend this study to streamline approaches to certain
classes of creature forcings.

@ What other forced ultrafilters in the literature, or new ones, have
complete combinatorics?

© What other pigeonhole principles and Ramsey theorems will
emerge from this investigation?

Thank you for your attention.
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