Separable determination in Asplund spaces

Marek Cúth

Toposym 2016

Marek Cúth Separable determination in Asplund spaces

< ロ > < 同 > < 回 > < 回 >

References

M. Cúth, Separable determination in Asplund spaces, preprint avaiable at http://www.karlin.mff.cuni.cz/kma-preprints/

Introduction

- Separable determination in general
- Tingley's problem and its relation to the (generalized) lushness

2 Separable determination in Asplund spaces

- The concept of suitable submodels
- Generalized lushness is separably determined in Asplund spaces
- The concept of rich families and its relation to the concept of suitable models

- A - B - M

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Separable determination in general

Setting: X is a real Banach space

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination: Statement ϕ concerning Banach space *X* is separably determined if

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination: Statement ϕ concerning Banach space *X* is separably determined if there is a sufficiently large family of separable subspaces \mathcal{F} such that

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination: Statement ϕ concerning Banach space *X* is separably determined if there is a sufficiently large family of separable subspaces \mathcal{F} such that

 $\forall F \in \mathcal{F} : \phi \text{ holds in } X \leftrightarrow \phi \text{ holds in } F.$

< ロ > < 同 > < 回 > < 回 >

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination: Statement ϕ concerning Banach space *X* is separably determined if there is a sufficiently large family of separable subspaces \mathcal{F} such that

 $\forall F \in \mathcal{F} : \phi \text{ holds in } X \leftrightarrow \phi \text{ holds in } F.$

In the final deduction: we use only one separable subspace.

Separable determination in general

Setting: X is a real Banach space

Separable reduction: Extend validity of a statement from separable spaces to the nonseparable setting without knowing the proof of the statement in the separable case.

Separable determination: Statement ϕ concerning Banach space *X* is separably determined if there is a sufficiently large family of separable subspaces \mathcal{F} such that

 $\forall F \in \mathcal{F} : \phi \text{ holds in } X \leftrightarrow \phi \text{ holds in } F.$

In the final deduction: we use only one separable subspace. In order to join finitely arguments together: the family \mathcal{F} is large.

Tingley's problem

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Theorem (Mazur-Ulam, 1932): If $T : X \to Y$ is isometry onto with T(0) = 0, then T is linear.

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Theorem (Mazur-Ulam, 1932): If $T : X \to Y$ is isometry onto with T(0) = 0, then T is linear.

Theorem (Mankiewicz, 1972): If $T : U_X \to U_Y$ is isometry onto with T(0) = 0, then *T* can be extended to a linear isometry of *X* and *Y*.

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Theorem (Mazur-Ulam, 1932): If $T : X \to Y$ is isometry onto with T(0) = 0, then T is linear.

Theorem (Mankiewicz, 1972): If $T : U_X \to U_Y$ is isometry onto with T(0) = 0, then *T* can be extended to a linear isometry of *X* and *Y*.

OPEN PROBLEM (Tingley, 1982): Let $f : S_X \to S_Y$ be an isometry onto. Does *f* extend to a linear isometry of *X* and *Y*?

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Theorem (Mazur-Ulam, 1932): If $T : X \to Y$ is isometry onto with T(0) = 0, then T is linear.

Theorem (Mankiewicz, 1972): If $T : U_X \to U_Y$ is isometry onto with T(0) = 0, then *T* can be extended to a linear isometry of *X* and *Y*.

OPEN PROBLEM (Tingley, 1982): Let $f : S_X \to S_Y$ be an isometry onto. Does *f* extend to a linear isometry of *X* and *Y*?

Equivalently: Is the mapping
$$F(x) := \begin{cases} 0 & x = 0 \\ \|x\| f(\frac{x}{\|x\|}) & x \neq 0 \end{cases}$$
 linear?

(Tingley: we have F(ax) = aF(x) for every $a \in \mathbb{R}$)

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

X and Y are Banach spaces, U_X and U_Y are open unit balls.

Theorem (Mazur-Ulam, 1932): If $T : X \to Y$ is isometry onto with T(0) = 0, then T is linear.

Theorem (Mankiewicz, 1972): If $T : U_X \to U_Y$ is isometry onto with T(0) = 0, then *T* can be extended to a linear isometry of *X* and *Y*.

OPEN PROBLEM (Tingley, 1982): Let $f : S_X \to S_Y$ be an isometry onto. Does *f* extend to a linear isometry of *X* and *Y*?

Equivalently: Is the mapping
$$F(x) := \begin{cases} 0 & x = 0 \\ \|x\| f(\frac{x}{\|x\|}) & x \neq 0 \end{cases}$$
 linear?

(Tingley: we have F(ax) = aF(x) for every $a \in \mathbb{R}$)

Equivalently: Is it true that

$$\forall \lambda > 0 \ \forall x, y \in S_X : \quad \|f(x) - \lambda f(y)\| = \|x - \lambda y\|?$$

equivalently: instead of " $||f(x) - \lambda f(y)|| = ||x - \lambda y||$ " it is enough to have " $||f(x) - \lambda f(y)|| \ge ||x - \lambda y||$ "

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

Tingley's problem - partial results

OPEN e.g. for: X is two-dimensional and X = Y.

Tingley's problem - partial results

OPEN e.g. for: X is two-dimensional and X = Y.

Answer YES if:

- Y arbitrary, X is finite-dimensional and polyhedral
- Y arbitrary, $X \in \{\ell_p, L^p(\mu), \text{Tsirelson space}\}$ $(p \in [1, \infty])$
- Y arbitrary, X is lush (e.g. $X \in \{L^1(\mu), C(K)\}$)

< ロ > < 同 > < 回 > < 回 >

Tingley's problem - partial results

OPEN e.g. for: X is two-dimensional and X = Y.

Answer YES if:

- Y arbitrary, X is finite-dimensional and polyhedral
- Y arbitrary, $X \in \{\ell_p, L^p(\mu), \text{Tsirelson space}\}$ $(p \in [1, \infty])$
- Y arbitrary, X is lush (e.g. $X \in \{L^1(\mu), C(K)\}$)

Let Z be a Banach space. If the **answer is YES** for Y arbitrary and X = Z, we say Z has the **Mazur-Ulam property**.

(Generalized) lushness

Separable determination in general Tingley's problem and its relation to the (generalized) lushness

Notation: For $x^* \in S_{X^*}$ and $\varepsilon > 0$ we put $S(x^*, \varepsilon) := \{x \in B_X : x^*(x) > 1 - \varepsilon\}.$

(Generalized) lushness

Notation: For $x^* \in S_{X^*}$ and $\varepsilon > 0$ we put $S(x^*, \varepsilon) := \{x \in B_X : x^*(x) > 1 - \varepsilon\}.$

Definition

A Banach space X is called *generalized lush* (GL) if for every $x \in S_X$ and every $\varepsilon > 0$ there is $x^* \in S_{X^*}$ such that $x \in S(x^*, \varepsilon)$ and, for every $y \in S_X$,

 $dist(y, S(x^*, \varepsilon)) + dist(y, -S(x^*, \varepsilon)) < 2 + \varepsilon.$

< ロ > < 同 > < 三 > < 三 > -

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our approach: \mathcal{F} consists of spaces $\overline{X \cap M}$, where *M* is a suitable model.

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

3

Definition

Let $\Phi = \{\varphi_1(x_0, x_1, \dots, x_{i_1}), \varphi_2(x_0, x_1, \dots, x_{i_2}), \dots, \varphi_n(x_0, x_1, \dots, x_{i_n})\}$ be a finite list of formulas and let *Y* be a countable set.

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

< ロ > < 同 > < 三 > < 三 > -

Definition

Let $\Phi = \{\varphi_1(x_0, x_1, \dots, x_{i_h}), \varphi_2(x_0, x_1, \dots, x_{i_2}), \dots, \varphi_n(x_0, x_1, \dots, x_{i_n})\}$ be a finite list of formulas and let *Y* be a countable set. Then (in this talk) *M* is a *model of* Φ *containing Y* if $M \supset Y$ is countable and

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

Definition

Let $\Phi = \{\varphi_1(x_0, x_1, \dots, x_{i_1}), \varphi_2(x_0, x_1, \dots, x_{i_2}), \dots, \varphi_n(x_0, x_1, \dots, x_{i_n})\}$ be a finite list of formulas and let *Y* be a countable set. Then (in this talk) *M* is a *model of* Φ *containing Y* if $M \supset Y$ is countable and

$$\forall j \in \{1,\ldots,n\} \; \forall a_1,\ldots,a_{i_j} \in M:$$

$$\exists x \ \varphi_j(x, a_1, \ldots, a_{i_j}) \Rightarrow \exists x \in M \ \varphi_j(x, a_1, \ldots, a_{i_j}).$$

We write $M \prec (\Phi; Y)$.

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

Definition

Let $\Phi = \{\varphi_1(x_0, x_1, \dots, x_{i_1}), \varphi_2(x_0, x_1, \dots, x_{i_2}), \dots, \varphi_n(x_0, x_1, \dots, x_{i_n})\}$ be a finite list of formulas and let *Y* be a countable set. Then (in this talk) *M* is a *model of* Φ *containing Y* if $M \supset Y$ is countable and

$$\forall j \in \{1,\ldots,n\} \; \forall a_1,\ldots,a_{i_j} \in M:$$

$$\exists x \ \varphi_j(x, a_1, \ldots, a_{i_j}) \Rightarrow \exists x \in M \ \varphi_j(x, a_1, \ldots, a_{i_j}).$$

We write $M \prec (\Phi; Y)$.

Theorem

Let Φ be a finite list of formulas and Y any countable set. Then there exists a countable set M such that $M \prec (\Phi; Y)$.

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our approach: \mathcal{F} consists of spaces $\overline{X \cap M}$, where *M* is a suitable model.

More precisely:

Suitable models

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our approach: \mathcal{F} consists of spaces $\overline{X \cap M}$, where *M* is a suitable model.

More precisely:

There are a finite list of formulas Φ and a countable set *Y* such that

$$\mathcal{F} = \{\overline{X \cap M}; \ M \prec (\Phi; Y)\}$$

works (i.e. $\forall F \in \mathcal{F} : \phi$ holds in *X* if and only if ϕ holds in *F*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalized lushness is separably determined in Asplund spaces

Proposition

There are a finite list of formulas Φ and a countable set *C* such that any $M \prec (\Phi; C)$ satisfies the following:

Let X be a Banach space with $X \in M$. If X is (GL), then $\overline{X \cap M}$ is (GL).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generalized lushness is separably determined in Asplund spaces

Proposition

There are a finite list of formulas Φ and a countable set *C* such that any $M \prec (\Phi; C)$ satisfies the following:

Let X be a Banach space with $X \in M$. If X is (GL), then $\overline{X \cap M}$ is (GL).

Theorem

There are a finite list of formulas Φ and a countable set *C* such that any $M \prec (\Phi; C)$ satisfies the following:

Let *X* be an Asplund space with $X \in M$. Then

 $X \text{ is } (GL) \iff \overline{X \cap M} \text{ is } (GL).$

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

< ロ > < 同 > < 回 > < 回 >

Key property of Asplund spaces

If X is an Asplund space, there are a finite list of formulas Φ and a countable set Y such that for every $M \prec (\Phi; Y)$, we have

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

Key property of Asplund spaces

If X is an Asplund space, there are a finite list of formulas Φ and a countable set Y such that for every $M \prec (\Phi; Y)$, we have

 $X^* \cap M$ is dense in $(\overline{X \cap M})^*$

Sketch of the proof

The concept of suitable submodels Generalized lushness is separably determined in Asplund spaces

Definition

A Banach space X is called *generalized lush* (GL) if for every $x \in S_X$ and every $\varepsilon > 0$ there is $x^* \in S_{X^*}$ such that $x \in S(x^*, \varepsilon)$ and, for every $y \in S_X$,

 $dist(y, S(x^*, \varepsilon)) + dist(y, -S(x^*, \varepsilon)) < 2 + \varepsilon.$

Sketch of the proof

Definition

A Banach space X is called *generalized lush* (GL) if for every $x \in S_X$ and every $\varepsilon > 0$ there is $x^* \in S_{X^*}$ such that $x \in S(x^*, \varepsilon)$ and, for every $y \in S_X$,

 $dist(y, S(x^*, \varepsilon)) + dist(y, -S(x^*, \varepsilon)) < 2 + \varepsilon.$

Lemma

Let X be a Banach space and let $G \subset X^*$ be a dense subset of X^* . Let us assume that there are $x \in S_X$ and $\varepsilon > 0$ such that for every $x^* \in G$ with $x \in S\left(\frac{x^*}{\|x^*\|}, \varepsilon\right)$ there exists $y \in S_X$ such that

$$\mathsf{dist}\left(y, \mathcal{S}\left(\frac{x^*}{\|x^*\|}, \varepsilon\right)\right) + \mathsf{dist}\left(y, -\mathcal{S}\left(\frac{x^*}{\|x^*\|}, \varepsilon\right)\right) \geq 2 + \varepsilon.$$

Then X is not (GL).

< ロ > < 同 > < 回 > < 回 >

Rich families

Another approach: the family \mathcal{F} is rich.

Rich families

Another approach: the family \mathcal{F} is rich.

Definition

A family \mathcal{F} of separable subspaces is called *rich* if

(i) each separable subspace is contained in an element of $\ensuremath{\mathcal{F}}$ and

Rich families

Another approach: the family \mathcal{F} is rich.

Definition

A family \mathcal{F} of separable subspaces is called *rich* if

- (i) each separable subspace is contained in an element of $\ensuremath{\mathcal{F}}$ and
- (ii) for every increasing sequence F_n in \mathcal{F} , $\overline{\bigcup_{n=1}^{\infty} F_n}$ belongs to \mathcal{F} .

Rich families

Another approach: the family \mathcal{F} is rich.

Definition

A family \mathcal{F} of separable subspaces is called *rich* if

- (i) each separable subspace is contained in an element of $\ensuremath{\mathcal{F}}$ and
- (ii) for every increasing sequence F_n in \mathcal{F} , $\overline{\bigcup_{n=1}^{\infty} F_n}$ belongs to \mathcal{F} .

We try to compare both concepts (rich families and suitable models). This work is still in progress...

The end

Thank you for your attention!

크