Accessible arc-components and extendability of the shift homeomorphism of planar embeddings of unimodal inverse limit spaces

Jernej Činč

University of Vienna

Prague, 25.7.2016

Joint work with Ana Anušić and Henk Bruin

うして ふゆう ふほう ふほう うらつ

Introduction

Let I denote a unit interval and let $T : I \to I$ be a unimodal map such that T(0) = 0.

Let c denote the critical point of map T. We say $[T^2(c), T(c)]$ is the core of T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note that T has two fixed points: 0 and r.

Inverse limit spaces

We define the *inverse limit space* $\lim_{t \to \infty} (I, T)$ with a bonding map T by

$$\varprojlim(I,T):=\{x=(\ldots,x_2,x_1,x_0)\in I^\infty; T(x_{(n-1)})=x_n, \forall n\in\mathbb{N}\},\$$

equipped with a metric

$$d(x,y) = \sum_{i\geq 0} \frac{|x_i - y_i|}{2^i}$$

for every $x, y \in \varprojlim(I, T)$ and the *shift homeomorphism* $\sigma : \varprojlim(I, T) \to \varprojlim(I, T)$, defined by

$$\sigma((\ldots, x_2, x_1, x_0)) = (\ldots, x_1, x_0, T(x_0)).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Embeddings making an arbitrary point accessible

Thm (Anušić, Bruin, Č., 2016): For an arbitrary point $x \in \varprojlim(I, T)$ there exists an embedding of $\varprojlim(I, T)$ which makes x accessible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Idea of the proof

- ► prescribe a two-sided infinite itinerary to every point x ∈ lim(I, T) where the left infinite itinerary x determines the basic arc x ∈ A(x),
- ▶ determine the rule on admissible left-infinite sequences for which the left infinite code L := ... I_n ... I₁. ∈ {0, 1}^{-N} of A(∑) is the largest code among basic arcs,
- ► align A(x) as horizontal arcs along the vertically embedded Cantor set in the plane.

Coding the Cantor set

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Example of a constructed embedding

Figure: The planar representation of an arc $A \subset \underline{\lim}(I, T)$

Denote all of the constructed embeddings varying L by \mathcal{E} .

Preliminaries

Def: The arc-component $\mathcal{U}(x)$ of a point $x \in K$ in a continuum K is a union of all arcs in K containing a point x.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Remark: Possible arc-components of a point x of a chainable continuum:

- ▶ the point *x*,
- an arc containing x,
- a line (continuous image of \mathbb{R}) containing x,
- a ray (continuous image of \mathbb{R}^+) containing x.

-
$$(\ldots 0, 0, 0) \in \mathcal{C} \subset \varprojlim(\mathcal{T}, I),$$

-
$$(\ldots r, r, r) \in \mathcal{R} \subset \varprojlim(T, I).$$

Motivation

Note that $\lim_{t \to \infty} (I, T) = C \cup \lim_{t \to \infty} ([T^2(c), T(c)], T)$ (Bennet, 1962) and we are interested in spaces where $\lim_{t \to \infty} ([T^2(c), T(c)], T)$ (the core inverse limit) is indecomposable.

Def: A point $x \in X \subset \mathbb{R}^2$ is *accessible* if there exist an arc A = [a, b] such that a = x and $A \cap X = \{x\}$. An arc-component is fully accessible, if every $x \in \mathcal{U}(x)$ is accessible.

- K. Brucks, B. Diamond (1995): Embeddings of ↓m(I, T) making L = 0^{-∞}1. the largest basic arc.
- ► H. Bruin (1999): Embedding of lim(I, T) such that every point in R (L = 1^{-∞}.) is fully accessible, extending σ homeomorphism to the plane.

We call these two embeddings of $\lim_{n \to \infty} (I, T)$ standard.

Extendability of standard embeddings

Figure: Smale's horseshoe

(a)

æ

Extendability of σ to the plane

Question (Boyland, 2015): Do there exist embeddings of $\varprojlim(I, T)$ which are not equivalent to standard embeddings and σ -homeomorphism is extendable to the plane?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Accessible points of embeddings ${\cal E}$

Question: What are the accessible points of embeddings \mathcal{E} ?

Observe itineraries of points through finite cylinders $[a_1 \dots a_n]$ for some $a_i \in \{0, 1\}!$

Remark: If $A(\overleftarrow{x})$ is on the top/bottom of some finite cylinder $[a_1 \dots a_n]$, then every point $x \in A(\overleftarrow{x})$ is accessible.

Figure: Point on the top of some cylinder is accessible.

うして ふゆう ふほう ふほう うらつ

Sets of accessible points of $\ensuremath{\mathcal{E}}$

- There exist embeddings from *E* where an arc-component is partially accessible.
- Even countably many arc-components are partially accessible in some embeddings *E*!

For some embeddings from *E*, endpoint *e* where *U*([√]*e*) ≠ *U*(*A*(*L*)) is accessible but every *e* ≠ *x* ∈ *U*(*e*) is not.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- The ray (...0,0) ∈ C is fully accessible in every embedding E except for lim(I, T) being Knaster continuum.
- Let L = 1^{-∞}. Arc-component R is fully accessible and every point x ∉ R is not.
- Kneading sequence starting with v = 101... and L = (01)^{-∞}. Two arc-components from lim([T²(c), T(c)], T) coded by (01)^{-∞}. and (10)^{-∞}. are fully accessible!

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

 Arc-component U(A(L)) is fully accessible for every embedding E.

The number of fully accessible arc-components

Question: Does there exist an embedding of an indecomposable chainable continuum in the plane so that more than 2 different nondegenerate arc-components are fully accessible?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

Yes!

Embeddings of $\varprojlim([T^2(c), T(c)], T)$ making $n \in N$ arc-components fully accessible

Thm (Anušić, Bruin, Č., 2016): Let $\lim_{t \to \infty} (I, T)$ have $\nu = (10...01)^{\infty}$ periodic with period κ . For the embedding of $\lim_{t \to \infty} ([T^2(c), T(c)], T)$ making $L = 0^{-\infty}1$ the largest sequence, all κ arc-components with left-infinite itinerary $(10...01)^{\infty}x_n...x_1$. for some $n \in \mathbb{N}$ are fully accessible.

Sketch of a proof

- Embedding with L = 0^{-∞}1 is exactly Brucks & Diamond embedding, homeomorphism σ can be extended from lim(I, T) to the plane.
- ► There exists $H : \mathbb{R}^2 \to \mathbb{R}^2$ planar homeomorphism with $H|_{\mathcal{C} \cup [\underline{im}([T^2(c), T(c)], T)]} = \sigma$ and thus $H|_{\underline{im}([T^2(c), T(c)], T)]} = \sigma$.
- ▶ σ permutes endpoints $e_0, \ldots, e_{\kappa-1} \in \varprojlim([T^2(c), T(c)], T)$ and arc-components $U(e_0), \ldots U(e_{\kappa-1})$.

Sketch of a proof

- Symbolic arguments give that all basic arcs from U(e₀),...U(eκ−1) are tops/bottoms of cylinders and no other basic arcs are top/bottom of some cylinder.
- for lim([T²(c), T(c)], T) map σ is extendable to the plane and thus U(e_k) accessible for every k ∈ {0,...κ − 1}.

Figure: $\nu = (1001)^{\infty}$, $\mathcal{U}(e_0)$, $\mathcal{U}(e_1)$, $\mathcal{U}(e_2)$, $\mathcal{U}(e_3)$

イロト イ理ト イヨト イヨト

Э

Corollary (Anušić, Bruin, Č., 2016): For every $n \in \mathbb{N}$ there exists an indecomposable continuum with n different fully accessible non-degenerate arc-components.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question: Does there exist an embedding of an indecomposable chainable continuum in the plane so that countably many non-degenerate arc-components are fully accessible?

Non-extendability of σ to the plane of embeddings ${\cal E}$

Prop: Fix $\lim_{L \to \infty} ([T^2(c), T(c)], T)$ and $L = \dots I_n \dots I_1$. such that $\mathcal{U}(A(L)) \neq \mathcal{R}, \mathcal{C}$. For embedding making L the largest sequence, σ homeomorphism is not extendable to the plane.

Idea of the proof:

- Assume σ is extendable,
- $\mathcal{U}(A(L))$ is always fully accessible,
- ▶ if $L \neq (01)^{-\infty}$. and $\nu \neq 101...$ there exists $k \in \mathbb{N}$ such that $\mathcal{U}(\sigma^k(\mathcal{A}(L)))$ is not accessible.

 $L = (01)^{-\infty}$ and $\nu = 101\ldots$

Exactly 2 fully accessible arc-components with left infinite itinerary $(01)^{-\infty} = \sigma((10)^{-\infty})$ and $(10)^{-\infty}$ and no other point from $\lim_{t \to \infty} [T^2(c), T(c)], T$ is accessible.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- A. Anušić, H. Bruin, J. Č. Uncoutably many planar embeddings of inverse limit spaces of unimodal maps, Preprint 2016.
- R. Bennett, On Inverse Limit Sequences, Master Thesis, University of Tennessee, 1962.
- K. Brucks, B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, Continuum Theory and Dynamical Systems, Lecture Notes in Pure Appl. Math. 149 (1995), 207–226.

うして ふゆう ふほう ふほう うらつ

H. Bruin, *Planar embeddings of inverse limit spaces of unimodal maps*, Topology Appl. **96** (1999) 191–208.

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>