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Introduction

Let I denote a unit interval and let T : I → I be a unimodal map
such that T (0) = 0.
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Let c denote the critical point of map T . We say [T 2(c),T (c)] is
the core of T .

Note that T has two fixed points: 0 and r .



Inverse limit spaces

We define the inverse limit space lim←−(I ,T ) with a bonding map T
by

lim←−(I ,T ) := {x = (. . . , x2, x1, x0) ∈ I∞;T (x(n−1)) = xn,∀ n ∈ N},

equipped with a metric

d(x , y) =
∑
i≥0

|xi − yi |
2i

for every x , y ∈ lim←−(I ,T ) and the shift homeomorphism
σ : lim←−(I ,T )→ lim←−(I ,T ), defined by

σ((. . . , x2, x1, x0)) = (. . . , x1, x0,T (x0)).



Embeddings making an arbitrary point accessible

Thm (Anušić, Bruin, Č., 2016): For an arbitrary point x ∈ lim←−(I ,T )

there exists an embedding of lim←−(I ,T ) which makes x accessible.



Idea of the proof

I prescribe a two-sided infinite itinerary to every point
x ∈ lim←−(I ,T ) where the left infinite itinerary ←−x determines the
basic arc x ∈ A(←−x ),

I determine the rule on admissible left-infinite sequences for
which the left infinite code L := . . . ln . . . l1. ∈ {0, 1}−N of
A(←−x ) is the largest code among basic arcs,

I align A(←−x ) as horizontal arcs along the vertically embedded
Cantor set in the plane.



Coding the Cantor set
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Figure: Coding the Cantor set with respect to (a) L = . . . 111. and (b)
L = . . . 101.



Example of a constructed embedding

(101)∞101101101.

(101)∞101101111.

Figure: The planar representation of an arc A ⊂ lim←−(I ,T )

Denote all of the constructed embeddings varying L by E .



Preliminaries

Def: The arc-component U(x) of a point x ∈ K in a continuum K
is a union of all arcs in K containing a point x .

Remark: Possible arc-components of a point x of a chainable
continuum:

I the point x ,
I an arc containing x ,
I a line (continuous image of R) containing x ,
I a ray (continuous image of R+) containing x .

- (. . . 0, 0, 0) ∈ C ⊂ lim←−(T , I ),

- (. . . r , r , r) ∈ R ⊂ lim←−(T , I ).



Motivation
Note that lim←−(I ,T ) = C ∪ lim←−([T

2(c),T (c)],T ) (Bennet, 1962)
and we are interested in spaces where lim←−([T

2(c),T (c)],T ) (the
core inverse limit) is indecomposable.

Def: A point x ∈ X ⊂ R2 is accessible if there exist an arc
A = [a, b] such that a = x and A ∩ X = {x}. An arc-component is
fully accessible, if every x ∈ U(x) is accessible.

I K. Brucks, B. Diamond (1995): Embeddings of lim←−(I ,T )

making L = 0−∞1. the largest basic arc.

I H. Bruin (1999): Embedding of lim←−(I ,T ) such that every
point in R (L = 1−∞.) is fully accessible, extending σ
homeomorphism to the plane.

We call these two embeddings of lim←−(I ,T ) standard.



Extendability of standard embeddings

Figure: Smale’s horseshoe



Extendability of σ to the plane

Question (Boyland, 2015): Do there exist embeddings of lim←−(I ,T )
which are not equivalent to standard embeddings and
σ-homeomorphism is extendable to the plane?



Accessible points of embeddings E

Question: What are the accessible points of embeddings E?

Observe itineraries of points through finite cylinders [a1 . . . an] for
some ai ∈ {0, 1}!

Remark: If A(←−x ) is on the top/bottom of some finite cylinder
[a1 . . . an], then every point x ∈ A(←−x ) is accessible.

A

x

Figure: Point on the top of some cylinder is accessible.



Sets of accessible points of E
I There exist embeddings from E where an arc-component is

partially accessible.

I Even countably many arc-components are partially accessible
in some embeddings E!

A

I For some embeddings from E , endpoint e where
U(←−e ) 6= U(A(L)) is accessible but every e 6= x ∈ U(e) is not.

e



I The ray (. . . 0, 0) ∈ C is fully accessible in every embedding E
except for lim←−(I ,T ) being Knaster continuum.

I Let L = 1−∞.. Arc-component R is fully accessible and every
point x /∈ R is not.

I Kneading sequence starting with ν = 101 . . . and L = (01)−∞.
Two arc-components from lim←−([T

2(c),T (c)],T ) coded by
(01)−∞. and (10)−∞. are fully accessible!

I Arc-component U(A(L)) is fully accessible for every
embedding E .



The number of fully accessible arc-components

Question: Does there exist an embedding of an indecomposable
chainable continuum in the plane so that more than 2 different
nondegenerate arc-components are fully accessible?

Yes!



Embeddings of lim←−([T
2(c),T (c)],T ) making n ∈ N

arc-components fully accessible

Thm (Anušić, Bruin, Č., 2016): Let lim←−(I ,T ) have
ν = (10 . . . 01)∞ periodic with period κ. For the embedding of
lim←−([T

2(c),T (c)],T ) making L = 0−∞1 the largest sequence, all κ
arc-components with left-infinite itinerary (10 . . . 01)∞xn . . . x1. for
some n ∈ N are fully accessible.



Sketch of a proof

I Embedding with L = 0−∞1 is exactly Brucks & Diamond
embedding, homeomorphism σ can be extended from lim←−(I ,T )
to the plane.

I There exists H : R2 → R2 planar homeomorphism with
H|C∪lim←−([T 2(c),T (c)],T ) = σ and thus H|lim←−([T 2(c),T (c)],T ) = σ.

I σ permutes endpoints e0, . . . , eκ−1 ∈ lim←−([T
2(c),T (c)],T )

and arc-components U(e0), . . .U(eκ−1).



Sketch of a proof

I Symbolic arguments give that all basic arcs from
U(e0), . . .U(eκ−1) are tops/bottoms of cylinders and no other
basic arcs are top/bottom of some cylinder.

I for lim←−([T
2(c),T (c)],T ) map σ is extendable to the plane

and thus U(ek) accessible for every k ∈ {0, . . . κ− 1}.



Figure: ν = (1001)∞, U(e0), U(e1), U(e2), U(e3)



Corollary (Anušić, Bruin, Č., 2016): For every n ∈ N there exists an
indecomposable continuum with n different fully accessible
non-degenerate arc-components.



Question: Does there exist an embedding of an indecomposable
chainable continuum in the plane so that countably many
non-degenerate arc-components are fully accessible?



Non-extendability of σ to the plane of embeddings E

Prop: Fix lim←−([T
2(c),T (c)],T ) and L = . . . ln . . . l1. such that

U(A(L)) 6= R, C. For embedding making L the largest sequence, σ
homeomorphism is not extendable to the plane.

Idea of the proof:

I Assume σ is extendable,

I U(A(L)) is always fully accessible,

I if L 6= (01)−∞. and ν 6= 101 . . . there exists k ∈ N such that
U(σk(A(L))) is not accessible.



L = (01)−∞ and ν = 101 . . .

Exactly 2 fully accessible arc-components with left infinite itinerary
(01)−∞. = σ((10)−∞.) and (10)−∞. and no other point from
lim←−([T

2(c),T (c)],T ) is accessible.

←−y

←−x

←−z

←−x 1

←−y 1

←−z 1

σ
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Thank you!
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