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Hyperspaces

Hyperspace: given a space with underlying set X , build a space with
underlying set X ⊆ P(X ).

usually X = K (X ), the set of nonempty compact subsets or X = Cl(X ),
the set of nonempty closed subsets, for instance

Hausdorff metric on K (X ) for a metric space (X , d):
dH(A,B) := inf {ε ∈ R | Uε(A) ⊇ B ∧ Uε(B) ⊇ A}
Bourbaki uniformity on X ⊆ P(X ) for an uniform space (X ,U):

UB :=
{
S ⊆ K (X )× K (X )

∣∣∣ ∃R ∈ U : R̂ ⊆ S
}

, with

R̂ := {(A,B) ∈ X× X | R(A) ⊇ B ∧ R(B) ⊇ A}.
Vietoris topology on X ⊆ P(X ) for a topological space (X , τ):
generated from the base {〈V1, ...,Vn〉X | n ∈ N,V1, ...,Vn ∈ τ} with
〈V1, ...,Vn〉X := {M ∈ X | M ⊆

⋃n
i=1 Vi ∧ ∀i : M ∩ Vi 6= ∅}
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(X , d)
unif. //

Hausdorff
��

(X ,Ud)

Bourbaki
��

topol. // (X , τU )

Vietoris
��

(K (X ), dH)
unif. // (K (X ),UdH)

topol. // (K (X ), τV )
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Problem: How to define such appropriate Hyperstructures for other kinds
of spaces?

One Idea: look for
”
natural“ maps between a set X and subsets X of its

powerset - choice functions.
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Choice Functions

If X is a set and P0(X ) the set of all nonempty subsets of X , let

A(X ) := {f ∈ XP0(X ) | ∀A ∈ P0(X ) : f (A) ∈ A}

the family of all choice functions on P0(X ).

One can observe, for instance:

Proposition

Let (X , τ) be a topological space, consider the lower Vietoris topology on
a subset X ⊆ P0(X ) and let ϕ̂ be an ultrafilter on X. Let
P := {p ∈ X | ∃f ∈ A(X ) : f (ϕ̂)

τ→ p}.
1 If there is an A ∈ X with A ⊆ P, then ϕ̂ converges in the lower

Vietoris topology to A.

2 If (X , τ) is locally compact and ϕ̂ converges in the lower Vietoris
topology to a set A, then A ⊆ P holds.
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F (M) = the set of all filters on a set M,
U (M) = the set of all ultrafilters on a set M,

If ϕ is a filter on a set M, then
F (ϕ) = the set of all filters ψ on M with ψ ⊇ ϕ,
U (ϕ) = the set of all ultrafilters ψ on M with ψ ⊇ ϕ.

Proposition

Let (X , τ) be a nested neighbourhood space, let ϕ̂ be an ultrafilter on
P0(X ) which converges in the lower Vietoris topology to A ∈ P(X ) and let
P := {p ∈ X | ∃F ∈ F (A(X )) : F(ϕ̂)

τ→ p}.
Then A ⊆ P holds.

Some similar things can be done for upper Vietoris convergence and so for
the Vietoris itself.
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For metric spaces we get even an extra nice characterization:

Theorem

Let (X , d) be a metric space, K (X ) the family of nonempty compact
subsets of X and dH the corresponding Hausdorff metric on K (X ). If
ϕ ∈ F (K (X )), then the following are equivalent:

1 ϕ
dH−→ A ∈ X,

2 1 ∀f ∈ A(X ), ψ ∈ U
(
ϕ
)

: ∃a ∈ A : f (ψ)
d−→ a and

2 ∀a ∈ A : ∃f ∈ A(X ) : f (ϕ)
d−→ a.

Nevertheless definitions by choice functions need precise analyse of the
concrete structure (topology, uniformity, metric ...).
Moreover, it can lead quickly to some quite hard set theoretical
difficulties:
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For a filter ϕ on a set X and a function f : X → Y we mean by the image
of ϕ under f the filter f (ϕ) := {B ⊆ Y | ∃P ∈ ϕ : f [P] ⊆ B}.

We say, a filter Φ has Property (A) w.r.t. X iff Φ is a filter on P0(X ) and
fullfills

∀f ∈ A(X ) : ∃xf ∈ X : f (Φ) =
•
xf (A)

(Here
•
xf := {A ⊆ X | xf ∈ A} is the singleton filter generated by xf .)

Question: If Φ has property (A) w.r.t. X , must Φ itself be a singleton
filter on P0(X )?
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Proposition

If a filter Φ has property (A) w.r.t. a set X , then it is an ultrafilter on
P0(X ).

Lemma

If Φ has property (A) w.r.t. a set X , then Φ is countably complete.

Corollary

If Φ has property (A) w.r.t. a countable set X , then Φ is a singleton filter
on P0(X ).
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Now the bad news:

1 Countably complete free ultrafilter exist, iff ω-measurable cardinals
exist.

2 ω-measurable cardinals exist, iff measurable cardinals exist.

3 Every measurable cardinal is inaccessible.

The problem:

4 In ZFC+
”
there exists an inaccessible cardinal“ the consistency of ZFC

can be proved.

5 If ZFC is consistent, then ZFC+
”
there exists no inaccessible cardinal“

is consistent, too.

=⇒ no hope to prove the existence of free ultrafilters with property (A)
within ZFC.
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Interesting Questions:

1 Can we prove in ZFC anyway, that free ultrafilters with property (A)
do not exist?

2 If Φ is a filter on P0(X ) such that for every f ∈ A(X ) the image
f (Φ) is an ultrafilter on X . Must Φ itself be an ultrafilter on P0(X )?



Now we take category theory into account: hoping to find a categorical
description of the Vietoris topology.
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Topological Categories

A concrete category C over Set is called topological, iff

1 For all X ∈ |Set | and all families (fi , (Xi , ξi ))i∈I , indexed by a class
I , of C-objects (Xi , ξi ) and functions fi : X → Xi there exists a unique
initial C-Object (X , ξ) on the set X , i.e. an object (X , ξ) s.t.
for all objects (Y , η) ∈ | C | and maps g : Y → X holds

g ∈Mor((Y , η), (X , ξ))C ⇔ ∀i ∈ I : fi◦g ∈Mor((Y , η), (Xi , ξi ))C

(Y , η)
g // (X , ξ)

fi // (Xi , ξi )

That is: arbitrary initial structures exist. Note that this is equivalent
to the existence of arbitrary final structures:

(Z , ζ) (X , ξ)
goo (Xi , ξi )

fioo

René Bartsch (12th TopoSym) Hyperstructures July 27, 2016 13 / 30



Topological Categories

A concrete category C over Set is called topological, iff

1 For all X ∈ |Set | and all families (fi , (Xi , ξi ))i∈I , indexed by a class
I , of C-objects (Xi , ξi ) and functions fi : X → Xi there exists a unique
initial C-Object (X , ξ) on the set X , i.e. an object (X , ξ) s.t.
for all objects (Y , η) ∈ | C | and maps g : Y → X holds

g ∈Mor((Y , η), (X , ξ))C ⇔ ∀i ∈ I : fi◦g ∈Mor((Y , η), (Xi , ξi ))C

(Y , η)
g // (X , ξ)

fi // (Xi , ξi )

That is: arbitrary initial structures exist. Note that this is equivalent
to the existence of arbitrary final structures:

(Z , ζ) (X , ξ)
goo (Xi , ξi )

fioo
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2 (Fibre-smallness) For all X ∈ |Set |, the class of C-objects on X is a
set.

3 On sets with at most one element exists exactly one C-structure.

Improvement: cartesian closedness
A category C is called cartesian closed, iff

4 1 For every pair (A,B) of C-objects exists a product A× B in C and
2 For every pair (A,B) of C-objects exists a C-object BA and a
C-morphism e : A× BA → B, s.t. for every C-Object C and every
C-morphism f : A× C → B there exists a unique C-morphism
f : C → BA with f = e ◦ (11A × f ).

that is: C has
”
natural function spaces“.
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A topological category C is said to be extensional, iff for every Y ∈ | C |
with underlying set Y , there exists a C-object Y∗ with underlying set
Y ∗ := Y ∪ {∞Y }, ∞Y 6∈ Y , s.t. for every X ∈ C with underlying set X ,
every Z ⊆ X and every f : Z → Y , where f is a C-morphism w.r.t. the
subobject Z of X on Z , the map f ∗ : X → Y ∗, defined by

f ∗(x) :=

{
f (x) ; x ∈ Z
∞Y ; x 6∈ Z

is a C-morphism.
that means: C has

”
one-point-extensions“

A topological category C is called a topological universe, iff it is cartesian
closed and extensional.

Top and Unif are topological categories, but not cartesian closed and not
extensional.
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Hyperspaces and function spaces

There are well known connections between hyperspaces and function
spaces, for instance:

graph topologies (Naimpally, Poppe, ... )
function spaces on characteristic functions of subsets (Flachsmeyer,
Poppe, ...)

There is another one, that we want to propose here for investigation.

We start with a function space structure:
Let X be a set and (Y , σ) a topological space. For A ⊆ P0(X ) we call the
topology on Y X generated by the subbase of all sets

(A,O) := {f ∈ Y X | f (A) ⊆ O}
with A ∈ A and O ∈ σ the A-open topology on Y X (or on C (X ,Y ), if X
has a topology, too, or other subsets of Y X ).

We define a mapping µX from Y X to P0(Y )A by

∀M ∈ A : µX (f )(M) := f [M].
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René Bartsch (12th TopoSym) Hyperstructures July 27, 2016 16 / 30



Hyperspaces and function spaces

There are well known connections between hyperspaces and function
spaces, for instance:

graph topologies (Naimpally, Poppe, ... )
function spaces on characteristic functions of subsets (Flachsmeyer,
Poppe, ...)

There is another one, that we want to propose here for investigation.

We start with a function space structure:
Let X be a set and (Y , σ) a topological space. For A ⊆ P0(X ) we call the
topology on Y X generated by the subbase of all sets

(A,O) := {f ∈ Y X | f (A) ⊆ O}
with A ∈ A and O ∈ σ the A-open topology on Y X (or on C (X ,Y ), if X
has a topology, too, or other subsets of Y X ).

We define a mapping µX from Y X to P0(Y )A by

∀M ∈ A : µX (f )(M) := f [M].
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Lemma

Let (X , τ), (Y , σ) be topological spaces, let A ⊆ P0(X ) contain the
singletons and H ⊆ Y X . Then the map

µX : H → µX (H) := {µX (f )| f ∈ H} ⊆ P0(Y )A

is open, continuous and bijective, where H is equipped with the A-open
topology and P0(Y )A with the pointwise from the Vietoris topology on
P0(Y ).

Note:

1 For A = K (X ) (the family of nonempty compact subsets of X ) we
get the compact-open topology on H := C (X ,Y ).

2 For locally compact (X , τ) the compact-open topology induces the
convergence structure of continuous convergence on C (X ,Y ).

3 The continuous convergence is the
”
natural“ function space structure

in the topological universe PsTop.
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convergence structure of continuous convergence on C (X ,Y ).

3 The continuous convergence is the
”
natural“ function space structure

in the topological universe PsTop.
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We have:

C (X ,Y )
µX // K (Y )K(X ) ∼=

∏
A∈K(X ) K (Y )A

πA

��
K (Y )

where πA are the canonical projections, C (X ,Y ) is endowed with
compact-open topology (which is the natural function space structure,
whenever X is locally compact) and K (Y ) is endowed with Vietoris
topology.

Then the functions πA ◦ µX , for all domain spaces X and all compact
subsets A of Y are all continuous.

Question: Is the Vietoris topology on K (Y ) the final topology w.r.t this
family of functions?
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Lemma

Let (X , τ), (Y , σ) be topological spaces and let σV be the Vietoris
topology on K (Y ). Then for every O ∈ σV and every A ∈ K (X ) the set
(πA ◦ µX )−1(O) ⊆ C (X ,Y ) is open w.r.t. the compact-open topology.

Corollary

Let (Y , σ) be a topological space. For every topological space let C (X ,Y )
be equipped with compact-open topology.
Then the Vietoris topology σV on K (Y ) is contained in the final topology
w.r.t. all πA ◦ µ(X ,τ)

, (X , τ) ∈ B, A ∈ K (X , τ), for every class B of
topological spaces.
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Theorem

Let (Y , σ) be a T3-space and let (K (Y ), σV ) be its Vietoris Hyperspace of
compact subsets. Let furthermore δ be the discrete topology on Y × Y
and denote by (Z , ζ) the Stone-Čech-compactification of (Y × Y , δ).
Then σV is the final topology on K (Y ) w.r.t. πZ ◦ µZ : C (Z ,Y )→ K (Y ),
where C (Z ,Y ) is endowed with compact-open topology τco .
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Corollary

Let (Y , σ) be a T3-space. For every topological space let C (X ,Y ) be
equipped with compact-open topology. Let B be a class of topological
spaces, that contains the Stone-Čech-compactification of a discrete space
with cardinality at least card(Y ).
Then the Vietoris topology σV on K (Y ) is the final topology w.r.t. all
πA ◦ µ(X ,τ)

, (X , τ) ∈ B, A ∈ K (X , τ).
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We get also a description for the Vietoris hyperspace of the closed subsets.

Lemma

Let (Y , σ) be a Hausdorff T4-space. Then its Vietoris hyperspace on the
nonempty closed subsets (Cl(Y ), σV ) is homeomorphic to a subspace of
the Vietoris hyperspace (K (βY ), σβ) of compact subsets of the
Stone-Čech-compactification of (Y , σ).
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A topological universe containing Unif

For sets X we define a relation � between elements of P0(P0(X )):

α1 � α2 :⇔ ∀A1 ∈ α1 : ∃A2 ∈ α2 : A1 ⊆ A2 .

For subsets Σ1,Σ2 ⊆ P0(P0(X )):

Σ1 � Σ2 :⇔ ∀α2 ∈ Σ2 : ∃α1 ∈ Σ1 : α1 � α2 .

� is reflexive and transitive, but not symmetric, not antisymmetric and not

asymmetric in general.
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Definition multifilter

Let X be a set. A family Σ ⊆ P0(P0(X )) is called a multifilter on X , iff

1 σ1 ∈ Σ ∧ σ1 � σ2 =⇒ σ2 ∈ Σ and

2 σ1, σ2 ∈ Σ =⇒ ∃σ3 ∈ Σ : σ3 � σ1 and σ3 � σ2

hold. The set of all multifilters on a set X we denote by F̂(X ).

Examples: Every uniformity in the covering sense (Tukey) is a multifilter.
For x ∈ X the family x̂ := {σ ⊆ P0(X )| {{x}} � σ} is a multifilter.
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Let x ∈ X and α ⊆ P0(X ). Then the star of α at x is defined as

st(x , α) :=
⋃

A∈α,x∈A
A ,

and the weak star set of α at x is defined as

♦(x , α) := {
n⋃

i=1

Ai | n ∈ N, ∀i = 1, ..., n : x ∈ Ai ∈ α} .

For a partial cover σ of a set X let
σ♦ :=

⋃
x∈X ,♦(x ,σ)6=∅ ♦(x , σ),

σ∗ := {st(x , σ)| x ∈ X , st(x , σ) 6= ∅}, and for a multifilter Σ on X let
Σ♦ := {ξ ∈ P0(P0(X ))| ∃σ ∈ Σ : σ♦ � ξ},
Σ∗ := {ξ ∈ P0(P0(X ))| ∃σ ∈ Σ : σ∗ � ξ}.
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Definition multifilter-space

For a set X and a set M of multifilters on X we call the pair (X ,M) a
multifilter-space, iff

1 ∀x ∈ X : x̂ ∈M and

2 Σ1 ∈M∧ Σ2 � Σ1 ⇒ Σ2 ∈M
hold. M is called the multifilter-structure of this space.
If (X1,M1), (X2,M2) are multifilter-spaces and f : X1 → X2 is a map,
then f is called fine (w.r.t. M1,M2), iff

3 f (M1) ⊆M2.

A multifilter-space (X ,M) is called

1 limited iff ∀Σ1,Σ2 ∈M : Σ1 ∩ Σ2 ∈M,

2 principal iff ∃Σ0 ∈M : ∀Σ ∈M : Σ � Σ0.

3 weakly uniform iff ∀Σ ∈M : Σ♦ ∈M,

4 uniform iff ∀Σ ∈M : Σ∗ ∈M.
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Lemma

The multifilter-spaces as objects and the fine mappings between them as
morphisms form a strong topological universe, denoted by MFS. The
natural function-space between the multifilter-spaces X := (X ,M) and
Y := (Y ,N ) is (YX,MX,Y) with

MX,Y := {Γ ∈ F̂(YX)| ∀Σ ∈M : Γ(Σ) ∈ N}.

The subcategories of limited, principal, weak uniform limited, weak uniform principal,

uniform limited and uniform principal multifilter-spaces are denoted by LimMFS,

PrMFS, WULimMFS, PrWULimMFS, ULimMFS and PrULimMFS, respectively.

Lemma
1 LimMFS is bireflective in MFS.

2 PrMFS, ULimMFS, WULimMFS, PrULimMFS, PrWULimMFS
are bireflective in LimMFS.

The category UMer of uniform covering spaces (in the sense of Tukey)
and uniformly continuous maps is concretely isomorphic to PrULimMFS.
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A1, ...,An ⊆ X , A ⊆ P0(X ):

< A1, ...,An >A := {M ∈ A| M ⊆
n⋃

i=1

Ai ∧ ∀i = 1, ..., n : M ∩ Ai 6= ∅}

For α ⊆ P0(X ) we set αV ,A := {< A1, ...,An > | n ∈ N,Ai ∈ α} and for

Σ ∈ F̂(X ) we define ΣV ,A := [{αV ,A| α ∈ Σ}]
F̂(A)

.

Definition finite hyperstructure

Let (X ,M) be a limited multifilter-space. Then we call

MV := {Σ ∈ F̂(PC(X ))| ∃Ψ ∈M : Σ � ΨV ,PC(X )}

the finite hyperstructure on PC(X ) w.r.t. M.

If (X ,M) is a limited multifilter-space, then (PC(X ),MV ) is a limited
multifilter-space, too.



This hyperstructure is build very Vietoris-like and works fine in some sense:

Theorem

Let (X ,M) be a limited multifilter-space. Then (PC(X ),MV ) is
precompact, if and only if (X ,M) is precompact.

Lemma

If (X ,M) is a limited multifilter-space and A ⊆ PC(X ), then A is
precompact w.r.t. MV if and only if

⋃
A∈A A is precompact w.r.t. M.

But: it is not the final multifilterstructure on PC(X ) w.r.t. all situations

(YX,MX,Y)
µX−→ PC(Y )PC(X ) πA−→ PC(Y ),

although the map µX is always a morphism, too.
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Thank you for your attention!
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