# Hyperstructures in topological categories

René Bartsch

Dept. of Mathematics, TU Darmstadt

July 27, 2016

Hyperspace: given a space with underlying set X, build a space with underlying set  $\mathfrak{X} \subseteq \mathfrak{P}(X)$ .

Hyperspace: given a space with underlying set X, build a space with underlying set  $\mathfrak{X} \subseteq \mathfrak{P}(X)$ .

usually  $\mathfrak{X} = K(X)$ , the set of nonempty compact subsets or  $\mathfrak{X} = CI(X)$ , the set of nonempty closed subsets, for instance

Hyperspace: given a space with underlying set X, build a space with underlying set  $\mathfrak{X} \subseteq \mathfrak{P}(X)$ .

usually  $\mathfrak{X} = K(X)$ , the set of nonempty compact subsets or  $\mathfrak{X} = CI(X)$ , the set of nonempty closed subsets, for instance

• Hausdorff metric on K(X) for a metric space (X, d):  $d_{\mathcal{H}}(A, B) := \inf \{ \varepsilon \in \mathbb{R} \mid U_{\varepsilon}(A) \supseteq B \land U_{\varepsilon}(B) \supseteq A \}$ 

Hyperspace: given a space with underlying set X, build a space with underlying set  $\mathfrak{X} \subseteq \mathfrak{P}(X)$ .

usually  $\mathfrak{X} = K(X)$ , the set of nonempty compact subsets or  $\mathfrak{X} = CI(X)$ , the set of nonempty closed subsets, for instance

- Hausdorff metric on K(X) for a metric space (X, d):  $d_{\mathcal{H}}(A, B) := \inf \{ \varepsilon \in \mathbb{R} \mid U_{\varepsilon}(A) \supseteq B \wedge U_{\varepsilon}(B) \supseteq A \}$
- Bourbaki uniformity on  $\mathfrak{X} \subseteq \mathfrak{P}(X)$  for an uniform space  $(X, \mathcal{U})$ :  $\mathcal{U}_{\mathcal{B}} := \left\{ \mathcal{S} \subseteq \mathcal{K}(X) \times \mathcal{K}(X) \ \middle| \ \exists R \in \mathcal{U} : \widehat{R} \subseteq \mathcal{S} \right\}$ , with  $\widehat{R} := \{ (A, B) \in \mathfrak{X} \times \mathfrak{X} \ \middle| \ R(A) \supseteq B \ \land \ R(B) \supseteq A \}.$

Hyperspace: given a space with underlying set X, build a space with underlying set  $\mathfrak{X} \subseteq \mathfrak{P}(X)$ .

usually  $\mathfrak{X} = K(X)$ , the set of nonempty compact subsets or  $\mathfrak{X} = CI(X)$ , the set of nonempty closed subsets, for instance

- Hausdorff metric on K(X) for a metric space (X, d):  $d_{\mathcal{H}}(A, B) := \inf \{ \varepsilon \in \mathbb{R} \mid U_{\varepsilon}(A) \supseteq B \wedge U_{\varepsilon}(B) \supseteq A \}$
- Bourbaki uniformity on  $\mathfrak{X} \subseteq \mathfrak{P}(X)$  for an uniform space  $(X, \mathcal{U})$ :  $\mathcal{U}_{\mathcal{B}} := \left\{ \mathcal{S} \subseteq \mathcal{K}(X) \times \mathcal{K}(X) \ \middle| \ \exists R \in \mathcal{U} : \widehat{R} \subseteq \mathcal{S} \right\}$ , with  $\widehat{R} := \{ (A, B) \in \mathfrak{X} \times \mathfrak{X} \ \middle| \ R(A) \supseteq B \ \land \ R(B) \supseteq A \}$ .
- Vietoris topology on  $\mathfrak{X} \subseteq \mathfrak{P}(X)$  for a topological space  $(X, \tau)$ : generated from the base  $\{\langle V_1, ..., V_n \rangle_{\mathfrak{X}} \mid n \in \mathbb{N}, V_1, ..., V_n \in \tau\}$  with  $\langle V_1, ..., V_n \rangle_{\mathfrak{X}} := \{M \in \mathfrak{X} \mid M \subseteq \bigcup_{i=1}^n V_i \ \land \ \forall i : M \cap V_i \neq \varnothing\}$

2 / 30

$$\begin{array}{c} (X,d) \xrightarrow{\quad \text{unif.} \quad} (X,\mathcal{U}_d) \xrightarrow{\quad \text{topol.} \quad} (X,\tau_{\mathcal{U}}) \\ \downarrow \quad \text{Hausdorff} \quad \downarrow \quad \text{Bourbaki} \quad \downarrow \quad \text{Vietoris} \\ (K(X),d_{\mathcal{H}}) \xrightarrow{\quad \text{unif.} \quad} (K(X),\mathcal{U}_{d_{\mathcal{H}}}) \xrightarrow{\quad \text{topol.} \quad} (K(X),\tau_{V}) \end{array}$$

**Problem:** How to define such appropriate Hyperstructures for other kinds of spaces?

**Problem:** How to define such appropriate Hyperstructures for other kinds of spaces?

**One Idea:** look for "natural" maps between a set X and subsets  $\mathfrak{X}$  of its powerset - choice functions.

### Choice Functions

If X is a set and  $\mathfrak{P}_0(X)$  the set of all nonempty subsets of X, let

$$\mathcal{A}(X) := \{ f \in X^{\mathfrak{P}_0(X)} \mid \forall A \in \mathfrak{P}_0(X) : f(A) \in A \}$$

the family of all *choice functions* on  $\mathfrak{P}_0(X)$ .

### Choice Functions

If X is a set and  $\mathfrak{P}_0(X)$  the set of all nonempty subsets of X, let

$$\mathcal{A}(X) := \{ f \in X^{\mathfrak{P}_0(X)} \mid \forall A \in \mathfrak{P}_0(X) : f(A) \in A \}$$

the family of all *choice functions* on  $\mathfrak{P}_0(X)$ .

One can observe, for instance:

## Proposition

Let  $(X, \tau)$  be a topological space, consider the lower Vietoris topology on a subset  $\mathfrak{X} \subseteq \mathfrak{P}_0(X)$  and let  $\widehat{\varphi}$  be an ultrafilter on  $\mathfrak{X}$ . Let  $P := \{ p \in X | \exists f \in \mathcal{A}(X) : f(\widehat{\varphi}) \overset{\tau}{\to} p \}.$ 

- **1** If there is an  $A \in \mathfrak{X}$  with  $A \subseteq \overline{P}$ , then  $\widehat{\varphi}$  converges in the lower Vietoris topology to A.
- ② If  $(X, \tau)$  is locally compact and  $\widehat{\varphi}$  converges in the lower Vietoris topology to a set A, then  $A \subseteq \overline{P}$  holds.

 $\mathbb{F}(M) = \text{the set of all filters on a set } M,$  $\mathbb{U}(M) = \text{the set of all ultrafilters on a set } M,$ 

If  $\varphi$  is a filter on a set M, then  $\mathbb{F}(\varphi) =$  the set of all filters  $\psi$  on M with  $\psi \supseteq \varphi$ ,  $\mathbb{U}(\varphi) =$  the set of all ultrafilters  $\psi$  on M with  $\psi \supseteq \varphi$ .

 $\mathbb{F}(M)$  = the set of all filters on a set M,

 $\mathbb{U}(M)=$  the set of all ultrafilters on a set M,

If  $\varphi$  is a filter on a set M, then

 $\mathbb{F}(\varphi) = \text{the set of all filters } \psi \text{ on } M \text{ with } \psi \supseteq \varphi$ ,

 $\mathbb{U}(\varphi) = \text{the set of all ultrafilters } \psi \text{ on } M \text{ with } \psi \supseteq \varphi.$ 

## Proposition

Let  $(X, \tau)$  be a nested neighbourhood space, let  $\widehat{\varphi}$  be an ultrafilter on  $\mathfrak{P}_0(X)$  which converges in the lower Vietoris topology to  $A \in \mathfrak{P}(X)$  and let  $P := \{ p \in X | \exists \mathcal{F} \in \mathbb{F}(A(X)) : \mathcal{F}(\widehat{\varphi}) \xrightarrow{\tau} p \}.$ 

Then  $A \subseteq P$  holds.

 $\mathbb{F}(M)$  = the set of all filters on a set M,

 $\mathbb{U}(M) = \text{the set of all ultrafilters on a set } M$ ,

If  $\varphi$  is a filter on a set M, then

 $\mathbb{F}(\varphi)$  = the set of all filters  $\psi$  on M with  $\psi \supseteq \varphi$ ,

 $\mathbb{U}(\varphi) = \text{the set of all ultrafilters } \psi \text{ on } M \text{ with } \psi \supseteq \varphi.$ 

## Proposition

Let  $(X, \tau)$  be a nested neighbourhood space, let  $\widehat{\varphi}$  be an ultrafilter on  $\mathfrak{P}_0(X)$  which converges in the lower Vietoris topology to  $A \in \mathfrak{P}(X)$  and let  $P := \{ p \in X | \exists \mathcal{F} \in \mathbb{F} (A(X)) : \mathcal{F}(\widehat{\varphi}) \stackrel{\tau}{\to} p \}$ . Then  $A \subseteq P$  holds.

Some similar things can be done for upper Vietoris convergence and so for the Vietoris itself.

For metric spaces we get even an extra nice characterization:

#### Theorem

Let (X, d) be a metric space, K(X) the family of nonempty compact subsets of X and  $d_{\mathcal{H}}$  the corresponding Hausdorff metric on K(X). If  $\varphi \in \mathbb{F}(K(X))$ , then the following are equivalent:

- - $\forall a \in A : \exists f \in \mathcal{A}(X) : f(\underline{\varphi}) \stackrel{d}{\longrightarrow} a.$

For metric spaces we get even an extra nice characterization:

### Theorem

Let (X, d) be a metric space, K(X) the family of nonempty compact subsets of X and  $d_{\mathcal{H}}$  the corresponding Hausdorff metric on K(X). If  $\varphi \in \mathbb{F}(K(X))$ , then the following are equivalent:

- - $\forall a \in A : \exists f \in \mathcal{A}(X) : f(\underline{\varphi}) \stackrel{d}{\longrightarrow} a.$

Nevertheless definitions by choice functions need precise analyse of the concrete structure (topology, uniformity, metric ...).

For metric spaces we get even an extra nice characterization:

#### Theorem

Let (X, d) be a metric space, K(X) the family of nonempty compact subsets of X and  $d_{\mathcal{H}}$  the corresponding Hausdorff metric on K(X). If  $\underline{\varphi} \in \mathbb{F}(K(X))$ , then the following are equivalent:

- - $\forall a \in A : \exists f \in \mathcal{A}(X) : f(\underline{\varphi}) \stackrel{d}{\longrightarrow} a.$

Nevertheless definitions by choice functions need precise analyse of the concrete structure (topology, uniformity, metric ...).

Moreover, it can lead quickly to some quite hard set theoretical difficulties:

For a filter  $\varphi$  on a set X and a function  $f: X \to Y$  we mean by the *image* of  $\varphi$  under f the filter  $f(\varphi) := \{B \subseteq Y | \exists P \in \varphi : f[P] \subseteq B\}.$ 

We say, a filter  $\Phi$  has *Property (A) w.r.t.* X iff  $\Phi$  is a filter on  $\mathfrak{P}_0(X)$  and fullfills

$$\forall f \in \mathcal{A}(X) : \exists x_f \in X : f(\Phi) = x_f^{\bullet} \tag{A}$$

(Here  $x_f^{\bullet} := \{A \subseteq X \mid x_f \in A\}$  is the *singleton filter* generated by  $x_f$ .)



For a filter  $\varphi$  on a set X and a function  $f: X \to Y$  we mean by the *image* of  $\varphi$  under f the filter  $f(\varphi) := \{B \subseteq Y | \exists P \in \varphi : f[P] \subseteq B\}.$ 

We say, a filter  $\Phi$  has *Property (A) w.r.t.* X iff  $\Phi$  is a filter on  $\mathfrak{P}_0(X)$  and fullfills

$$\forall f \in \mathcal{A}(X) : \exists x_f \in X : f(\Phi) = x_f^{\bullet} \tag{A}$$

(Here  $x_f^{\bullet} := \{A \subseteq X \mid x_f \in A\}$  is the *singleton filter* generated by  $x_f$ .)

**Question:** If  $\Phi$  has property (A) w.r.t. X, must  $\Phi$  itself be a singleton filter on  $\mathfrak{P}_0(X)$ ?

## Proposition

If a filter  $\Phi$  has property (A) w.r.t. a set X, then it is an ultrafilter on  $\mathfrak{P}_0(X)$ .

## Proposition

If a filter  $\Phi$  has property (A) w.r.t. a set X, then it is an ultrafilter on  $\mathfrak{P}_0(X)$ .

### Lemma

If  $\Phi$  has property (A) w.r.t. a set X, then  $\Phi$  is **countably complete**.

### Proposition

If a filter  $\Phi$  has property (A) w.r.t. a set X, then it is an ultrafilter on  $\mathfrak{P}_0(X)$ .

#### Lemma

If  $\Phi$  has property (A) w.r.t. a set X, then  $\Phi$  is **countably complete**.

## Corollary

If  $\Phi$  has property (A) w.r.t. a **countable** set X, then  $\Phi$  is a singleton filter on  $\mathfrak{P}_0(X)$ .

- Countably complete **free** ultrafilter exist, iff  $\omega$ -measurable cardinals exist.
- $\omega$ -measurable cardinals exist, iff measurable cardinals exist.

### The problem:

In ZFC+,, there exists an inaccessible cardinal" the consistency of ZFC can be proved.

- **①** Countably complete **free** ultrafilter exist, iff  $\omega$ -measurable cardinals exist.
- $\omega$ -measurable cardinals exist, iff measurable cardinals exist.
- Every measurable cardinal is inaccessible.

### The problem:

In ZFC+,, there exists an inaccessible cardinal" the consistency of ZFC can be proved.

- **①** Countably complete **free** ultrafilter exist, iff  $\omega$ -measurable cardinals exist.
- $\omega$ -measurable cardinals exist, iff measurable cardinals exist.
- Every measurable cardinal is inaccessible.

### The problem:

- In ZFC+,, there exists an inaccessible cardinal" the consistency of ZFC can be proved.
- **1** If ZFC is consistent, then ZFC+,, there exists *no* inaccessible cardinal is consistent, too.

- **①** Countably complete **free** ultrafilter exist, iff  $\omega$ -measurable cardinals exist.
- $\omega$ -measurable cardinals exist, iff measurable cardinals exist.
- Every measurable cardinal is inaccessible.

### The problem:

- In ZFC+,, there exists an inaccessible cardinal" the consistency of ZFC can be proved.
- **1** If ZFC is consistent, then ZFC+,, there exists *no* inaccessible cardinal is consistent, too.

- **①** Countably complete **free** ultrafilter exist, iff  $\omega$ -measurable cardinals exist.
- $oldsymbol{\omega}$ -measurable cardinals exist, iff measurable cardinals exist.
- Every measurable cardinal is inaccessible.

### The problem:

- In ZFC+,, there exists an inaccessible cardinal" the consistency of ZFC can be proved.
- If ZFC is consistent, then ZFC+, there exists no inaccessible cardinal" is consistent, too.
- $\implies$  no hope to prove the existence of free ultrafilters with property (A) within ZFC.

### **Interesting Questions:**

- Can we prove in ZFC anyway, that free ultrafilters with property (A) do **not** exist?
- ② If  $\Phi$  is a filter on  $\mathfrak{P}_0(X)$  such that for every  $f \in \mathcal{A}(X)$  the image  $f(\Phi)$  is an ultrafilter on X. Must  $\Phi$  itself be an ultrafilter on  $\mathfrak{P}_0(X)$ ?

Now we take category theory into account: hoping to find a categorical description of the Vietoris topology.

# Topological Categories

A concrete category C over **Set** is called *topological*, iff

• For all  $X \in |\mathbf{Set}|$  and all families  $(f_i, (X_i, \xi_i))_{i \in I}$ , indexed by a class I, of  $\mathcal{C}$ -objects  $(X_i, \xi_i)$  and functions  $f_i : X \to X_i$  there exists a unique initial  $\mathcal{C}$ -Object  $(X, \xi)$  on the set X, i.e. an object  $(X, \xi)$  s.t. for all objects  $(Y, \eta) \in |\mathcal{C}|$  and maps  $g : Y \to X$  holds

$$g \in \mathsf{Mor}((Y,\eta),(X,\xi))_{\mathcal{C}} \quad \Leftrightarrow \quad \forall i \in I : f_i \circ g \in \mathsf{Mor}((Y,\eta),(X_i,\xi_i))_{\mathcal{C}}$$

$$(Y,\eta) \xrightarrow{g} (X,\xi) \xrightarrow{f_i} (X_i,\xi_i)$$

# Topological Categories

A concrete category C over **Set** is called *topological*, iff

• For all  $X \in |\mathbf{Set}|$  and all families  $(f_i, (X_i, \xi_i))_{i \in I}$ , indexed by a class I, of  $\mathcal{C}$ -objects  $(X_i, \xi_i)$  and functions  $f_i : X \to X_i$  there exists a unique initial  $\mathcal{C}$ -Object  $(X, \xi)$  on the set X, i.e. an object  $(X, \xi)$  s.t. for all objects  $(Y, \eta) \in |\mathcal{C}|$  and maps  $g : Y \to X$  holds

$$g \in \mathsf{Mor}((Y,\eta),(X,\xi))_{\mathcal{C}} \quad \Leftrightarrow \quad \forall i \in I : f_i \circ g \in \mathsf{Mor}((Y,\eta),(X_i,\xi_i))_{\mathcal{C}}$$

$$(Y,\eta) \xrightarrow{g} (X,\xi) \xrightarrow{f_i} (X_i,\xi_i)$$

That is: arbitrary initial structures exist. Note that this is equivalent to the existence of arbitrary *final structures*:

$$(Z,\zeta) \stackrel{g}{\longleftarrow} (X,\xi) \stackrel{f_i}{\longleftarrow} (X_i,\xi_i)$$

- **②** (Fibre-smallness) For all  $X \in |\mathbf{Set}|$ , the class of  $\mathcal{C}$ -objects on X is a set.
- $oldsymbol{\circ}$  On sets with at most one element exists exactly one  $\mathcal C$ -structure.

### Improvement: cartesian closedness

A category C is called **cartesian closed**, iff

- **①** For every pair (A, B) of C-objects exists a product  $A \times B$  in C and
  - **②** For every pair (A, B) of C-objects exists a C-object  $B^A$  and a C-morphism  $e: A \times B^A \to B$ , s.t. for every C-Object C and every C-morphism  $f: A \times C \to B$  there exists a unique C-morphism  $\overline{f}: C \to B^A$  with  $f = e \circ (\mathbb{1}_A \times \overline{f})$ .

that is: C has "natural function spaces".

A topological category  $\mathcal C$  is said to be **extensional**, iff for every  $\mathbf Y \in |\mathcal C|$  with underlying set Y, there exists a  $\mathcal C$ -object  $\mathbf Y^*$  with underlying set  $Y^* := Y \cup \{\infty_Y\}, \, \infty_Y \not\in Y$ , s.t. for every  $\mathbf X \in \mathcal C$  with underlying set X, every  $Z \subseteq X$  and every  $f: Z \to Y$ , where f is a  $\mathcal C$ -morphism w.r.t. the subobject  $\mathbf Z$  of  $\mathbf X$  on Z, the map  $f^*: X \to Y^*$ , defined by

$$f^*(x) := \begin{cases} f(x) & ; & x \in Z \\ \infty_Y & ; & x \notin Z \end{cases}$$

is a  $\mathcal{C}$ -morphism. that means:  $\mathcal{C}$  has "one-point-extensions"

A topological category  $\mathcal C$  is said to be **extensional**, iff for every  $\mathbf Y \in |\mathcal C|$  with underlying set Y, there exists a  $\mathcal C$ -object  $\mathbf Y^*$  with underlying set  $Y^* := Y \cup \{\infty_Y\}, \, \infty_Y \not\in Y$ , s.t. for every  $\mathbf X \in \mathcal C$  with underlying set X, every  $Z \subseteq X$  and every  $f: Z \to Y$ , where f is a  $\mathcal C$ -morphism w.r.t. the subobject  $\mathbf Z$  of  $\mathbf X$  on Z, the map  $f^*: X \to Y^*$ , defined by

$$f^*(x) := \begin{cases} f(x) & ; & x \in Z \\ \infty_Y & ; & x \notin Z \end{cases}$$

is a C-morphism.

that means:  $\mathcal C$  has "one-point-extensions"

A topological category  $\mathcal C$  is called a **topological universe**, iff it is cartesian closed and extensional.

A topological category  $\mathcal C$  is said to be **extensional**, iff for every  $\mathbf Y\in |\mathcal C|$  with underlying set Y, there exists a  $\mathcal C$ -object  $\mathbf Y^*$  with underlying set  $Y^*:=Y\cup\{\infty_Y\},\,\infty_Y\not\in Y,\,$  s.t. for every  $\mathbf X\in\mathcal C$  with underlying set X, every  $Z\subseteq X$  and every  $f:Z\to Y$ , where f is a  $\mathcal C$ -morphism w.r.t. the subobject  $\mathbf Z$  of  $\mathbf X$  on Z, the map  $f^*:X\to Y^*$ , defined by

$$f^*(x) := \begin{cases} f(x) & ; & x \in Z \\ \infty_Y & ; & x \notin Z \end{cases}$$

is a C-morphism.

that means:  $\mathcal C$  has "one-point-extensions"

A topological category  $\mathcal C$  is called a **topological universe**, iff it is cartesian closed and extensional.

**Top** and **Unif** are topological categories, but not cartesian closed and not extensional.

# Hyperspaces and function spaces

There are well known connections between hyperspaces and function spaces, for instance:

- graph topologies (Naimpally, Poppe, ... )
- function spaces on characteristic functions of subsets (Flachsmeyer, Poppe, ...)

There is another one, that we want to propose here for investigation.

# Hyperspaces and function spaces

There are well known connections between hyperspaces and function spaces, for instance:

- graph topologies (Naimpally, Poppe, ... )
- function spaces on characteristic functions of subsets (Flachsmeyer, Poppe, ...)

There is another one, that we want to propose here for investigation.

# Hyperspaces and function spaces

There are well known connections between hyperspaces and function spaces, for instance:

- graph topologies (Naimpally, Poppe, ... )
- function spaces on characteristic functions of subsets (Flachsmeyer, Poppe, ...)

There is another one, that we want to propose here for investigation.

We start with a function space structure:

Let X be a set and  $(Y, \sigma)$  a topological space. For  $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$  we call the topology on  $Y^X$  generated by the subbase of all sets

$$(A,O):=\{f\in Y^X\mid f(A)\subseteq O\}$$

with  $A \in \mathfrak{A}$  and  $O \in \sigma$  the  $\mathfrak{A}$ -open topology on  $Y^X$  (or on C(X, Y), if X has a topology, too, or other subsets of  $Y^X$ ).

We define a mapping  $\mu_X$  from  $Y^X$  to  $\mathfrak{P}_0(Y)^{\mathfrak{A}}$  by

$$\forall M \in \mathfrak{A}: \quad \mu_X(f)(M) := f_{\scriptscriptstyle{\mathbb{A}}}[M]_{\scriptscriptstyle{\mathbb{A}}} \longrightarrow \mathbb{A} \longrightarrow \mathbb{$$

Let  $(X, \tau), (Y, \sigma)$  be topological spaces, let  $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$  contain the singletons and  $\mathcal{H} \subseteq Y^X$ . Then the map

$$\mu_X: \mathcal{H} \to \mu_X(\mathcal{H}) := \{\mu_X(f) | f \in \mathcal{H}\} \subseteq \mathfrak{P}_0(Y)^{\mathfrak{A}}$$

is open, continuous and bijective, where  $\mathcal H$  is equipped with the  $\mathfrak A$ -open topology and  $\mathfrak P_0(Y)^{\mathfrak A}$  with the pointwise from the Vietoris topology on  $\mathfrak P_0(Y)$ .

Let  $(X, \tau), (Y, \sigma)$  be topological spaces, let  $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$  contain the singletons and  $\mathcal{H} \subseteq Y^X$ . Then the map

$$\mu_X : \mathcal{H} \to \mu_X(\mathcal{H}) := \{\mu_X(f) | f \in \mathcal{H}\} \subseteq \mathfrak{P}_0(Y)^{\mathfrak{A}}$$

is open, continuous and bijective, where  $\mathcal H$  is equipped with the  $\mathfrak A$ -open topology and  $\mathfrak P_0(Y)^{\mathfrak A}$  with the pointwise from the Vietoris topology on  $\mathfrak P_0(Y)$ .

### Note:

• For  $\mathfrak{A} = K(X)$  (the family of nonempty compact subsets of X) we get the compact-open topology on  $\mathcal{H} := C(X,Y)$ .

Let  $(X, \tau), (Y, \sigma)$  be topological spaces, let  $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$  contain the singletons and  $\mathcal{H} \subseteq Y^X$ . Then the map

$$\mu_X: \mathcal{H} \to \mu_X(\mathcal{H}) := \{\mu_X(f) | f \in \mathcal{H}\} \subseteq \mathfrak{P}_0(Y)^{\mathfrak{A}}$$

is open, continuous and bijective, where  $\mathcal H$  is equipped with the  $\mathfrak A$ -open topology and  $\mathfrak P_0(Y)^{\mathfrak A}$  with the pointwise from the Vietoris topology on  $\mathfrak P_0(Y)$ .

#### Note:

- For  $\mathfrak{A} = K(X)$  (the family of nonempty compact subsets of X) we get the compact-open topology on  $\mathcal{H} := C(X,Y)$ .
- ② For locally compact  $(X, \tau)$  the compact-open topology induces the convergence structure of continuous convergence on C(X, Y).

Let  $(X, \tau), (Y, \sigma)$  be topological spaces, let  $\mathfrak{A} \subseteq \mathfrak{P}_0(X)$  contain the singletons and  $\mathcal{H} \subseteq Y^X$ . Then the map

$$\mu_X : \mathcal{H} \to \mu_X(\mathcal{H}) := \{\mu_X(f) | f \in \mathcal{H}\} \subseteq \mathfrak{P}_0(Y)^{\mathfrak{A}}$$

is open, continuous and bijective, where  $\mathcal H$  is equipped with the  $\mathfrak A$ -open topology and  $\mathfrak P_0(Y)^{\mathfrak A}$  with the pointwise from the Vietoris topology on  $\mathfrak P_0(Y)$ .

### Note:

- For  $\mathfrak{A} = K(X)$  (the family of nonempty compact subsets of X) we get the compact-open topology on  $\mathcal{H} := C(X,Y)$ .
- **②** For locally compact  $(X, \tau)$  the compact-open topology induces the convergence structure of continuous convergence on C(X, Y).
- **1** The continuous convergence is the "natural" function space structure in the *topological universe* **PsTop**.



We have:

$$C(X,Y) \xrightarrow{\mu_X} K(Y)^{K(X)} \cong \prod_{A \in K(X)} K(Y)_A$$

$$\downarrow^{\pi_A}$$

$$K(Y)$$

where  $\pi_A$  are the canonical projections, C(X,Y) is endowed with compact-open topology (which is the natural function space structure, whenever X is locally compact) and K(Y) is endowed with Vietoris topology.

We have:

$$C(X,Y) \xrightarrow{\mu_X} K(Y)^{K(X)} \cong \prod_{A \in K(X)} K(Y)_A$$

$$\downarrow^{\pi_A}$$

$$K(Y)$$

where  $\pi_A$  are the canonical projections, C(X,Y) is endowed with compact-open topology (which is the natural function space structure, whenever X is locally compact) and K(Y) is endowed with Vietoris topology.

Then the functions  $\pi_A \circ \mu_X$ , for all domain spaces X and all compact subsets A of Y are all continuous.

We have:

$$C(X,Y) \xrightarrow{\mu_X} K(Y)^{K(X)} \cong \prod_{A \in K(X)} K(Y)_A$$

$$\downarrow^{\pi_A}$$

$$K(Y)$$

where  $\pi_A$  are the canonical projections, C(X,Y) is endowed with compact-open topology (which is the natural function space structure, whenever X is locally compact) and K(Y) is endowed with Vietoris topology.

Then the functions  $\pi_A \circ \mu_X$ , for all domain spaces X and all compact subsets A of Y are all continuous.

**Question:** Is the Vietoris topology on K(Y) the final topology w.r.t this family of functions?



Let  $(X, \tau)$ ,  $(Y, \sigma)$  be topological spaces and let  $\sigma_V$  be the Vietoris topology on K(Y). Then for every  $\mathfrak{O} \in \sigma_V$  and every  $A \in K(X)$  the set  $(\pi_A \circ \mu_X)^{-1}(\mathfrak{O}) \subseteq C(X, Y)$  is open w.r.t. the compact-open topology.

Let  $(X, \tau)$ ,  $(Y, \sigma)$  be topological spaces and let  $\sigma_V$  be the Vietoris topology on K(Y). Then for every  $\mathfrak{O} \in \sigma_V$  and every  $A \in K(X)$  the set  $(\pi_A \circ \mu_X)^{-1}(\mathfrak{O}) \subseteq C(X, Y)$  is open w.r.t. the compact-open topology.

## Corollary

Let  $(Y, \sigma)$  be a topological space. For every topological space let C(X, Y) be equipped with compact-open topology.

Then the Vietoris topology  $\sigma_V$  on K(Y) is contained in the final topology w.r.t. all  $\pi_A \circ \mu_{(X,\tau)}$ ,  $(X,\tau) \in \mathcal{B}$ ,  $A \in K(X,\tau)$ , for every class  $\mathcal{B}$  of topological spaces.

#### Theorem

Let  $(Y, \sigma)$  be a  $T_3$ -space and let  $(K(Y), \sigma_V)$  be its Vietoris Hyperspace of compact subsets. Let furthermore  $\delta$  be the discrete topology on  $Y \times Y$  and denote by  $(Z, \zeta)$  the Stone-Čech-compactification of  $(Y \times Y, \delta)$ . Then  $\sigma_V$  is the final topology on K(Y) w.r.t.  $\pi_Z \circ \mu_Z : C(Z, Y) \to K(Y)$ , where C(Z, Y) is endowed with compact-open topology  $\tau_{co}$ .

### Corollary

Let  $(Y, \sigma)$  be a  $T_3$ -space. For every topological space let C(X, Y) be equipped with compact-open topology. Let  $\mathcal B$  be a class of topological spaces, that contains the Stone-Čech-compactification of a discrete space with cardinality at least card(Y).

Then the Vietoris topology  $\sigma_V$  on K(Y) is the final topology w.r.t. all  $\pi_A \circ \mu_{(X,\tau)}$ ,  $(X,\tau) \in \mathcal{B}$ ,  $A \in K(X,\tau)$ .

We get also a description for the Vietoris hyperspace of the closed subsets.

### Lemma

Let  $(Y, \sigma)$  be a Hausdorff  $T_4$ -space. Then its Vietoris hyperspace on the nonempty closed subsets  $(Cl(Y), \sigma_V)$  is homeomorphic to a subspace of the Vietoris hyperspace  $(K(\beta Y), \sigma^{\beta})$  of compact subsets of the Stone-Čech-compactification of  $(Y, \sigma)$ .

# A topological universe containing **Unif**

For sets X we define a relation  $\leq$  between elements of  $\mathfrak{P}_0(\mathfrak{P}_0(X))$ :

$$\alpha_1 \preceq \alpha_2 : \Leftrightarrow \forall A_1 \in \alpha_1 : \exists A_2 \in \alpha_2 : A_1 \subseteq A_2$$
.

For subsets  $\Sigma_1, \Sigma_2 \subseteq \mathfrak{P}_0(\mathfrak{P}_0(X))$ :

$$\Sigma_1 \preceq \Sigma_2 : \Leftrightarrow \forall \alpha_2 \in \Sigma_2 : \exists \alpha_1 \in \Sigma_1 : \alpha_1 \preceq \alpha_2$$
.

# A topological universe containing Unif

For sets X we define a relation  $\leq$  between elements of  $\mathfrak{P}_0(\mathfrak{P}_0(X))$ :

$$\alpha_1 \preceq \alpha_2 : \Leftrightarrow \forall A_1 \in \alpha_1 : \exists A_2 \in \alpha_2 : A_1 \subseteq A_2$$
.

For subsets  $\Sigma_1, \Sigma_2 \subseteq \mathfrak{P}_0(\mathfrak{P}_0(X))$ :

$$\Sigma_1 \leq \Sigma_2 : \Leftrightarrow \forall \alpha_2 \in \Sigma_2 : \exists \alpha_1 \in \Sigma_1 : \alpha_1 \leq \alpha_2$$
.

 $\preceq$  is reflexive and transitive, but not symmetric, not antisymmetric and not asymmetric in general.

### Definition multifilter

Let X be a set. A family  $\Sigma \subseteq \mathfrak{P}_0(\mathfrak{P}_0(X))$  is called a **multifilter** on X, iff

hold. The set of all multifilters on a set X we denote by  $\widehat{\mathfrak{F}}(X)$ .

Examples: Every uniformity in the covering sense (Tukey) is a multifilter. For  $x \in X$  the family  $\widehat{x} := \{ \sigma \subseteq \mathfrak{P}_0(X) | \{\{x\}\} \leq \sigma \}$  is a multifilter.

Let  $x \in X$  and  $\alpha \subseteq \mathfrak{P}_0(X)$ . Then the *star of*  $\alpha$  *at* x is defined as

$$st(x,\alpha) := \bigcup_{A \in \alpha, x \in A} A$$
,

and the weak star set of  $\alpha$  at x is defined as

$$\Diamond(x,\alpha):=\{\bigcup_{i=1}^n A_i|\ n\in\mathbb{N}, \forall i=1,...,n:x\in A_i\in\alpha\}\ .$$

Let  $x \in X$  and  $\alpha \subseteq \mathfrak{P}_0(X)$ . Then the *star of*  $\alpha$  *at* x is defined as

$$st(x,\alpha) := \bigcup_{A \in \alpha, x \in A} A$$
,

and the weak star set of  $\alpha$  at x is defined as

$$\Diamond(x,\alpha):=\{\bigcup_{i=1}^n A_i|\ n\in\mathbb{N}, \forall i=1,...,n:x\in A_i\in\alpha\}\ .$$

For a partial cover  $\sigma$  of a set X let  $\sigma^{\Diamond} := \bigcup_{x \in X, \Diamond(x, \sigma) \neq \varnothing} \Diamond(x, \sigma), \\ \sigma^* := \{st(x, \sigma) | x \in X, st(x, \sigma) \neq \varnothing\},$ 

Let  $x \in X$  and  $\alpha \subseteq \mathfrak{P}_0(X)$ . Then the *star of*  $\alpha$  *at* x is defined as

$$st(x,\alpha) := \bigcup_{A \in \alpha, x \in A} A$$
,

and the weak star set of  $\alpha$  at x is defined as

$$\Diamond(x,\alpha):=\{\bigcup_{i=1}^n A_i|\ n\in\mathbb{N}, \forall i=1,...,n:x\in A_i\in\alpha\}\ .$$

For a partial cover  $\sigma$  of a set X let

$$\sigma^{\Diamond} := \bigcup_{x \in X, \Diamond(x,\sigma) \neq \varnothing} \Diamond(x,\sigma),$$

$$\sigma^* := \{st(x,\sigma) | x \in X, st(x,\sigma) \neq \varnothing\}, \text{ and for a multifilter } \Sigma \text{ on } X \text{ let}$$

$$\Sigma^{\Diamond} := \{\xi \in \mathfrak{P}_0(\mathfrak{P}_0(X)) | \exists \sigma \in \Sigma : \sigma^{\Diamond} \preceq \xi\},$$

$$\Sigma^* := \{\xi \in \mathfrak{P}_0(\mathfrak{P}_0(X)) | \exists \sigma \in \Sigma : \sigma^* \prec \xi\}.$$

For a set X and a set  $\mathcal{M}$  of multifilters on X we call the pair  $(X, \mathcal{M})$  a **multifilter-space**, iff

hold.  $\mathcal{M}$  is called the **multifilter-structure** of this space. If  $(X_1, \mathcal{M}_1)$ ,  $(X_2, \mathcal{M}_2)$  are multifilter-spaces and  $f: X_1 \to X_2$  is a map, then f is called **fine** (w.r.t.  $\mathcal{M}_1, \mathcal{M}_2$ ), iff

For a set X and a set  $\mathcal{M}$  of multifilters on X we call the pair  $(X, \mathcal{M})$  a **multifilter-space**, iff

hold.  $\mathcal{M}$  is called the **multifilter-structure** of this space. If  $(X_1, \mathcal{M}_1)$ ,  $(X_2, \mathcal{M}_2)$  are multifilter-spaces and  $f: X_1 \to X_2$  is a map,

then f is called **fine** (w.r.t.  $\mathcal{M}_1, \mathcal{M}_2$ ), iff

A multifilter-space  $(X, \mathcal{M})$  is called

 $\textbf{ 1} \textit{ limited iff } \forall \Sigma_1, \Sigma_2 \in \mathcal{M} : \Sigma_1 \cap \Sigma_2 \in \mathcal{M},$ 

For a set X and a set  $\mathcal{M}$  of multifilters on X we call the pair  $(X, \mathcal{M})$  a **multifilter-space**, iff

hold.  ${\mathcal M}$  is called the **multifilter-structure** of this space.

If  $(X_1, \mathcal{M}_1)$ ,  $(X_2, \mathcal{M}_2)$  are multifilter-spaces and  $f: X_1 \to X_2$  is a map, then f is called **fine** (w.r.t.  $\mathcal{M}_1, \mathcal{M}_2$ ), iff

A multifilter-space  $(X, \mathcal{M})$  is called

- **1** *limited* iff  $\forall \Sigma_1, \Sigma_2 \in \mathcal{M} : \Sigma_1 \cap \Sigma_2 \in \mathcal{M}$ ,
- $\textbf{②} \ \textit{principal} \ \textit{iff} \ \exists \Sigma_0 \in \mathcal{M} : \forall \Sigma \in \mathcal{M} : \Sigma \preceq \Sigma_0.$

For a set X and a set  $\mathcal{M}$  of multifilters on X we call the pair  $(X, \mathcal{M})$  a **multifilter-space**, iff

hold.  $\ensuremath{\mathcal{M}}$  is called the  $multifilter\mbox{-structure}$  of this space.

If  $(X_1, \mathcal{M}_1)$ ,  $(X_2, \mathcal{M}_2)$  are multifilter-spaces and  $f: X_1 \to X_2$  is a map, then f is called **fine** (w.r.t.  $\mathcal{M}_1, \mathcal{M}_2$ ), iff

A multifilter-space  $(X, \mathcal{M})$  is called

- **1** *limited* iff  $\forall \Sigma_1, \Sigma_2 \in \mathcal{M} : \Sigma_1 \cap \Sigma_2 \in \mathcal{M}$ ,
- $\textbf{ 2} \ \textit{principal} \ \textit{iff} \ \exists \Sigma_0 \in \mathcal{M} : \forall \Sigma \in \mathcal{M} : \Sigma \preceq \Sigma_0.$
- **3** weakly uniform iff  $\forall \Sigma \in \mathcal{M} : \Sigma^{\Diamond} \in \mathcal{M}$ ,

For a set X and a set  $\mathcal{M}$  of multifilters on X we call the pair  $(X, \mathcal{M})$  a **multifilter-space**, iff

hold.  $\ensuremath{\mathcal{M}}$  is called the multifilter-structure of this space.

If  $(X_1, \mathcal{M}_1)$ ,  $(X_2, \mathcal{M}_2)$  are multifilter-spaces and  $f: X_1 \to X_2$  is a map, then f is called **fine** (w.r.t.  $\mathcal{M}_1, \mathcal{M}_2$ ), iff

A multifilter-space  $(X, \mathcal{M})$  is called

- **1** *limited* iff  $\forall \Sigma_1, \Sigma_2 \in \mathcal{M} : \Sigma_1 \cap \Sigma_2 \in \mathcal{M}$ ,
- ② principal iff  $\exists \Sigma_0 \in \mathcal{M} : \forall \Sigma \in \mathcal{M} : \Sigma \leq \Sigma_0$ .
- **3** weakly uniform iff  $\forall \Sigma \in \mathcal{M} : \Sigma^{\Diamond} \in \mathcal{M}$ ,
- **4** uniform iff  $\forall \Sigma \in \mathcal{M} : \Sigma^* \in \mathcal{M}$ .

The multifilter-spaces as objects and the fine mappings between them as morphisms form a strong topological universe, denoted by **MFS**. The natural function-space between the multifilter-spaces  $\mathbf{X} := (X, \mathcal{M})$  and  $\mathbf{Y} := (Y, \mathcal{N})$  is  $(\mathbf{Y}^{\mathbf{X}}, \mathcal{M}_{\mathbf{X}, \mathbf{Y}})$  with  $\mathcal{M}_{\mathbf{X}, \mathbf{Y}} := \{ \Gamma \in \widehat{\mathfrak{F}}(\mathbf{Y}^{\mathbf{X}}) | \forall \Sigma \in \mathcal{M} : \Gamma(\Sigma) \in \mathcal{N} \}.$ 

The subcategories of limited, principal, weak uniform limited, weak uniform principal, uniform limited and uniform principal multifilter-spaces are denoted by LimMFS, PrMFS, WULimMFS, PrWULimMFS, ULimMFS and PrULimMFS, respectively.

The multifilter-spaces as objects and the fine mappings between them as morphisms form a strong topological universe, denoted by **MFS**. The natural function-space between the multifilter-spaces  $\mathbf{X} := (X, \mathcal{M})$  and  $\mathbf{Y} := (Y, \mathcal{N})$  is  $(\mathbf{Y}^{\mathbf{X}}, \mathcal{M}_{\mathbf{X}, \mathbf{Y}})$  with  $\mathcal{M}_{\mathbf{X}, \mathbf{Y}} := \{\Gamma \in \widehat{\mathfrak{F}}(\mathbf{Y}^{\mathbf{X}}) | \forall \Sigma \in \mathcal{M} : \Gamma(\Sigma) \in \mathcal{N}\}.$ 

The subcategories of limited, principal, weak uniform limited, weak uniform principal, uniform limited and uniform principal multifilter-spaces are denoted by **LimMFS**, **PrMFS**, **WULimMFS**, **PrWULimMFS**, **ULimMFS** and **PrULimMFS**, respectively.

### Lemma

- **1 LimMFS** is bireflective in **MFS**.
- PrMFS, ULimMFS, WULimMFS, PrULimMFS, PrWULimMFS are bireflective in LimMFS.

The multifilter-spaces as objects and the fine mappings between them as morphisms form a strong topological universe, denoted by **MFS**. The natural function-space between the multifilter-spaces  $\mathbf{X} := (X, \mathcal{M})$  and  $\mathbf{Y} := (Y, \mathcal{N})$  is  $(\mathbf{Y}^{\mathbf{X}}, \mathcal{M}_{\mathbf{X}, \mathbf{Y}})$  with  $\mathcal{M}_{\mathbf{X}, \mathbf{Y}} := \{\Gamma \in \widehat{\mathfrak{F}}(\mathbf{Y}^{\mathbf{X}}) | \forall \Sigma \in \mathcal{M} : \Gamma(\Sigma) \in \mathcal{N}\}.$ 

The subcategories of limited, principal, weak uniform limited, weak uniform principal, uniform limited and uniform principal multifilter-spaces are denoted by **LimMFS**, **PrMFS**, **WULimMFS**, **PrWULimMFS**, **ULimMFS** and **PrULimMFS**, respectively.

### Lemma

- **1 LimMFS** is bireflective in **MFS**.
- PrMFS, ULimMFS, WULimMFS, PrULimMFS, PrWULimMFS are bireflective in LimMFS.

The category **UMer** of uniform covering spaces (in the sense of Tukey) and uniformly continuous maps is concretely isomorphic to **PrULimMFS**.



 $A_1,...,A_n\subseteq X$ ,  $\mathfrak{A}\subseteq \mathfrak{P}_0(X)$ :

$$\langle A_1,...,A_n \rangle_{\mathfrak{A}} := \{ M \in \mathfrak{A} | M \subseteq \bigcup_{i=1}^n A_i \wedge \forall i = 1,...,n : M \cap A_i \neq \emptyset \}$$

For  $\alpha \subseteq \mathfrak{P}_0(X)$  we set  $\alpha_{V,\mathfrak{A}} := \{ \langle A_1,...,A_n \rangle \mid n \in \mathbb{N}, A_i \in \alpha \}$  and for  $\Sigma \in \widehat{\mathfrak{F}}(X)$  we define  $\Sigma_{V,\mathfrak{A}} := [\{\alpha_{V,\mathfrak{A}} \mid \alpha \in \Sigma\}]_{\widehat{\mathfrak{F}}(\mathfrak{A})}$ .

### Definition *finite hyperstructure*

Let  $(X, \mathcal{M})$  be a limited multifilter-space. Then we call

$$\mathcal{M}_{V} := \{ \underline{\Sigma} \in \widehat{\mathfrak{F}}(\mathcal{PC}(X)) | \exists \Psi \in \mathcal{M} : \underline{\Sigma} \leq \Psi_{V,\mathcal{PC}(X)} \}$$

the **finite hyperstructure** on  $\mathcal{PC}(X)$  w.r.t.  $\mathcal{M}$ .

If  $(X, \mathcal{M})$  is a limited multifilter-space, then  $(\mathcal{PC}(X), \mathcal{M}_V)$  is a limited multifilter-space, too.

This hyperstructure is build very Vietoris-like and works fine in some sense:

### Theorem

Let  $(X, \mathcal{M})$  be a limited multifilter-space. Then  $(\mathcal{PC}(X), \mathcal{M}_V)$  is precompact, if and only if  $(X, \mathcal{M})$  is precompact.

### Lemma

If  $(X, \mathcal{M})$  is a limited multifilter-space and  $\mathfrak{A} \subseteq \mathcal{PC}(X)$ , then  $\mathfrak{A}$  is precompact w.r.t.  $\mathcal{M}_V$  if and only if  $\bigcup_{A \in \mathfrak{A}} A$  is precompact w.r.t.  $\mathcal{M}$ .

This hyperstructure is build very Vietoris-like and works fine in some sense:

#### Theorem

Let  $(X, \mathcal{M})$  be a limited multifilter-space. Then  $(\mathcal{PC}(X), \mathcal{M}_V)$  is precompact, if and only if  $(X, \mathcal{M})$  is precompact.

#### Lemma

If  $(X, \mathcal{M})$  is a limited multifilter-space and  $\mathfrak{A} \subseteq \mathcal{PC}(X)$ , then  $\mathfrak{A}$  is precompact w.r.t.  $\mathcal{M}_V$  if and only if  $\bigcup_{A \in \mathfrak{A}} A$  is precompact w.r.t.  $\mathcal{M}$ .

But: it is *not* the final multifilterstructure on  $\mathcal{PC}(X)$  w.r.t. all situations

$$(\mathbf{Y}^{\mathbf{X}}, \mathcal{M}_{\mathbf{X}, \mathbf{Y}}) \xrightarrow{\mu_{X}} \mathcal{PC}(Y)^{\mathcal{PC}(X)} \xrightarrow{\pi_{A}} \mathcal{PC}(Y),$$

although the map  $\mu_X$  is always a morphism, too.

Thank you for your attention!