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Abstract

In the paper the Čech border homology and cohomology groups of
closed pairs of normal spaces are constructed and investigated. These
groups give an intrinsic characterizations of Čech homology and co-
homology groups based on finite open coverings, homological and co-
homological coefficients of cyclicity and cohomological dimensions of
remainders of Stone-Čech compactifications of metrizable spaces.
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Introduction

The motivation of the paper is the following problem:
Find necessary and sufficient conditions under which a space of given class

has a compactification whose remainder has the given topological property
(cf. [Sm2], Problem I, p.332 and Problem II, p.334).

Many mathematicians investigated this problem:

∗The authors supported in part by grant FR/233/5-103/14 from Shota Rustaveli Na-
tional Science Foundation (SRNSF)
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• J.M.Aarts [A], J.M.Aarts and T.Nishiura [A-N], Y. Akaike, N. Chi-
nen and K. Tomoyasu [Ak-Chin-T], V.Baladze [B1], M.G. Charalam-
bous [Ch], A.Chigogidze ([Chi1], [Chi2]), H. Freudenthal ([F1],[F2]),
K.Morita [Mo], E.G. Skljarenko [Sk], Ju.M.Smirnov ([Sm1]-[Sm5]) and
H.De Vries [V] found conditions under which the spaces have exten-
sions whose remainders have given covering and inductive dimensions
and combinatorial properties.

• The remainders of finite order extensions is defined and investigated by
H.Inasaridze ([I1], [I2]). Using in these papers obtained results author
[I3], L.Zambakhidze ([Z1],[Z2]) and I.Tsereteli [Ts] solved interesting
problems of homological algebra, general topology and dimension the-
ory.

• n-dimensional (co)homology groups and cohomotopy groups of remain-
ders are studied by V.Baladze [B3], V.Baladze and L.Turmanidze [B-
Tu] and A.Calder [C].

• The characterizations of shapes of remainders of spaces established in
papers of V.Baladze ([B2],[B3]), B.J.Ball [Ba], J.Keesling ([K1], [K2]),
J.Keesling and R.B. Sher [K-Sh].

The paper is devoted to study this problem for the properties: Čech
(co)homology groups based on finite open coverings, coefficient of cyclicities
and cohomological dimensions of remainders of Stone-Čech compactifications
of metrizable spaces are given groups and given numbers, respectively.

In this paper are defined the Čech type covariant and contravariant func-
tors which coefficients in an abelian group G

Ȟ∞n (−,−;G) : N 2 → A b

and
Ĥn
∞(−,−;G) : N 2 → A b

from the category N 2 of closed pairs of normal spaces and proper maps to
the category A b of abelian groups and homomorphisms. The construction of
these functors are based on all border open coverings of pair (X,A) ∈ ob(N 2)
(see Definition 1.1).

One of main results of paper is following (see Theorem 2.1). Let M 2

be the category of closed pairs of metrizable spaces. For each closed pair
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(X,A) ∈ ob(M 2)

Ȟf
n(βX \X, βA \ A;G) = Ĥ∞n (X,A;G)

and
Ĥn
f (βX \X, βA \ A;G) = Ȟn

∞(X,A;G),

where Ȟf
n(βX \X, βA\A;G) and Ĥn

f (βX \X, βA\A;G) are Čech homology
and cohomology groups based on all finite open coverings of (βX\X, βA\A),
respectively (see [E-St], Ch. IX, p.237).

In the paper also are defined the border cohomological and homological
coefficients of cyclicity η∞G and ηG∞, border cohomological dimension d∞f (X;G)
and proved the following relations (see Theorem 2.3 and Theorem 2.5):

η∞G (X,A) = ηG(βX \X, βA \ A),

ηG∞(X,A) = ηG(βX \X, βA \ A),

d∞f (X;G) ≤ df (βX \X;G),

where ηG(βX \ X, βA \ A), ηG(βX \ X, βA \ A) and df (βX \ X;G) are
cohomological coefficient of cyclicity [No], homological coefficient of cyclicity
(see Definition 2.2) and small cohomological dimension [N] of remainders
(βX \X, βA \ A) and βX \X, respectively.

Without any specification we will use definitions, notions and results from
books General Topology [En] and Algebraic Topology [E-St].

1 On Čech border homology and cohomology

groups

In this section we give an outline of a generalization of Čech homology theory
by replacing the set of all finite open coverings in the definition of Čech
(co)homology group (Ĥn

f (X,A;G)) Ȟf
n(X,A;G) (see [E-St],Ch.IX, p.237)

by a set of all finite open families with compact enclosures. For this aim here
we give the following definition.

Definition 1.1. (Yu.M.Smirnov, [Sm4]). A family α = {U1, U2, · · · , Un} of
open sets of normal space X is called a border covering of X if its enclosure

Kα = X \
n⋃
i=1

Ui is a compact subset of X.
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An indexed family of sets in X is a function α from a indexed set Vα to
the set 2X of subsets of X. The image α(v) of index v ∈ Vα denote by αv.
Thus the indexed family α is the family α = {αv}v∈Vα . If |Vα| < ℵ0, then we
say that α family is a finite family.

Let A be a subset of X and V A
α subset of Vα. A family {αv}v∈V Aα is called

the subfamily of family {αv}v∈Vα .
The family α = {αv}v∈(Vα,V Aα ) is called family of pair (X,A).

Definition 1.2. (cf.[Sm4]). A finite open family α = {αv}v∈(Vα,V Aα ) of pair
(X,A) from the category N 2 is called a border covering of (X,A) if there
exists a compact subset Kα of X such that X \Kα =

⋃
v∈Vα

αv and A \Kα ⊆⋃
v∈V Aα

αv.

The set of all border covers of (X,A) is denoted by cov∞(X,A). Let
KA
α = Kα ∩ A. Then the family {αv ∩ A}v∈V Aα is a border cover of subspace

A.

Definition 1.3. Let α, β ∈ cov∞(X,A) be two border coverings of (X,A)
with indexing pairs (Vα, V

A
α ) and (Vβ, V

A
β ), respectively. We say that the

border covering β is a refinement of border covering α if there exists a refine-
ment projection function p : (Vβ, V

A
β ) → (Vα, V

A
α ) such that for each index

v ∈ Vβ (v ∈ V A
β ) βv ⊂ αp(v).

It is clear that cov∞(X,A) becomes a directed set with the relation α ≤ β
whenever β is a refinement of α.

Note that for each α ∈ cov∞(X,A) α ≤ α and if for each α, β, γ ∈
cov∞(X,A), α ≤ β and β ≤ γ, then α ≤ γ.

Let α, β ∈ cov∞(X,A) be two border coverings with indexing pairs
(Vα, V

A
α ) and (Vβ, V

A
β ), respectively. Consider a family γ = {γv}v∈(Vγ ,V Aγ ),

where Vγ = Vα × Vβ and V A
γ = V A

α × V A
β . Let v = (v1, v2), where v1 ∈ Vα,

v2 ∈ Vβ. Assume that γv = αv1 ∩ βv2 . The family γ = {γv}v∈(Vγ ,V Aγ ) is a
border covering of (X,A) and γ ≥ α, β.

For each border covering α ∈ cov∞(X,A) with indexing pair (Vα, V
A
α )

by (Xα, Aα) denote the nerve α, where Aα is the subcomplex of simplexes
s of complex Xα with vertices of V A

α such that Carα(s) ∩ A 6= ∅. The pair
(Xα, Aα) forms a simplicial pair. Besides, any two refinement projection
functions p, p

′
: β → α induces contiguous simplicial maps of simplicial pairs

pβα, q
β
α : (Xβ, Aβ)→ (Xα, Aα) (see [E-St], pp.234-235).
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Using the construction of formal homology theory of simplicial complexes
([E-St], Ch.VI) we can define the unique homomorphisms

pβα∗ : Hn(Xβ, Aβ : G)→ Hn(Xα, Aα;G)

and
(pβ∗α : Hn(Xα, Aα : G)→ Hn(Xβ, Aβ;G)),

where G is any abelian coefficient group.
Note that pαα∗ = 1Hn(Xα,Aα:G) and pα∗α = 1Hn(Xα,Aα:G). If γ ≥ β ≥ α than

pγα∗ = pβα∗ · p
γ
β∗

and
pγ∗α = pγ∗β · p

β∗
α .

Thus, the families

{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}

and
{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}

form the inverse and direct systems of groups.
The inverse and direct limit groups of above defined inverse and direct

systems denote by symbols

Ȟ∞n (X,A;G) = lim
−→
{Hn(Xα, Aα;G), pβα∗, cov∞(X,A)}

and
Ĥn
∞(X,A;G) = lim

←−
{Hn(Xα, Aα;G), pβ∗α , cov∞(X,A)}

and call n-dimensional Čech border homology group and n-dimensional Čech
border cohomology group of pair (X,A) with coefficients in abelian group G,
respectively.

According to [E-St] a border covering α ∈ cov∞(X,A) indexed by (Vα, V
A
α )

is called proper if V A
α is the set of all v ∈ Vα with αv ∩ A 6= ∅. The set of

proper border covering denote by Pcov∞(X,A). Now define a function

ρ : cov∞(X)→ cov∞(X,A)
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By definition, for each border covering of X α = {αv}v∈Vα

ρ(α) = {αv}v∈(Vα,V ′ ),

where V
′

is the set of v ∈ Vα for which αv ∩A 6= ∅. It is clear that the family
ρ(α) is a proper border cover and the function ρ : cov∞(X)→ Pcov∞(X,A)
induced by ρ is one to one. Besides, if α

′ ≤ α, then ρ(α
′
) ≤ ρ(α).

Proposition 1.4. For each pair (X,A) ∈ ob(N 2) the set Pcov∞(X,A) of
proper border coverings of (X,A) is a cofinal subset of cov∞(X,A).

Proof. Let α = {av}v∈(Vα,V Aα ) be a border covering of (X,A). Assume that

V
′
= {αv|αv ∩ A 6= ∅, v ∈ V A

α )}.

Consider a family β = {βv}v∈(Vα,V ′ ) consisting of subsets

βv = αv \ A, v ∈ Vα \ V
′

and
βv = αv, v ∈ V ′ .

Note that β is a border covering of (X,A) and β ≥ α.

Consequently, in definitions of Čech border homology and cohomology
groups of pairs (X,A) ∈ ob(N 2) we may replace the set cov∞(X,A) by the
subset Pcov∞(X,A).

Now we define for a given proper map f : (X,A) → (Y,B) of pairs the
induced homomorphisms

f∗ : Ȟ∞n (X,A;G)→ Ȟ∞n (Y,B;G)

and
f ∗ : Ĥn

∞(X,A;G)→ Ĥn
∞(Y,B;G).

Let α ∈ cov∞(Y,B) be a border covering with index set Vα and Kα =
Y \

⋃
v∈Vα

αv. Consider a family α
′
= {f−1(αv)}v∈Vα . Note that

X \
⋃
v∈Vα

f−1(αv) = X \ f−1(
⋃
v∈Vα

αv) = X \ f−1(Y \Kα) = f−1(Kα).
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Let α
′
v = f−1(αv) and Vα′ = Vα. By condition f−1(Kα) is a compact

subset of X.
Since B \ Kα ⊆

⋃
v∈V Bα

αv, the subfamily {f−1(αv)|v ∈ V B
α } is such that

A \ f−1(Kα) ⊆
⋃

v∈V Bα
f−1(αv). Let V A

α′
= V B

α and Kα′ = f−1(Kα). Note that

A \Kα′ ⊂
⋃

v∈V A
α
′

f−1(αv). Hence, α
′
= {f−1(αv)}v∈(V

α
′ ,V A

α
′ )

is a border cover of

pair (X,A).
It is clear that Xα′ is a subcomplex of Yα and Aα′ is a subcomplex of Bα.

By a symbol fα : (Xα′ , Aα′ ) → (Yα, Bα) denote the simplicial inclusion of
(Xα′ , Aα′ ) into (Yα, Bα).

If α, β ∈ cov∞(Y,B) and β ≥ α, then there exist the commutative dia-
grams

Hn(Xβ′ , Aβ′ ;G) Hn(Xβ, Aβ;G)

Hn(Xα′ , Aα′ ;G) Hn(Xα, Aα;G)

fβ∗

pβ
′

α′∗

fα∗

pβα∗

and

Hn(Xα, Aα;G) Hn(Xα′ , Aα′ ;G)

Hn(Xβ, Aβ;G) Hn(Xβ′ , Aβ′ ;G).

f ∗α

pβ∗α

f ∗β

pβ
′∗
α′

Thus, for each α ∈ cov∞(Y,B) the induced homomorphisms fα∗ and f ∗α
together with function ϕ : cov∞(Y,B)→ cov∞(X,A) given by formula

ϕ(α) = f−1(α), α ∈ cov∞(Y,B)

form maps

(fα∗, ϕ) : {Hn(Xα′ , Aα′ ), p
β
′

α′∗, cov∞(X,A)} → {Hn(Yα, Aα), pβα∗, cov∞(Y,B)}
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and

(f ∗α, ϕ) : {Hn(Yα, Aα), pβ∗α , cov∞(Y,B)} → {Hn(Xα′ , Aα′ ), p
β
′
∗
α′
, cov∞(X,A)}.

The limits of maps (fα∗, ϕ) and (f ∗α, ϕ) denote by

f∗ : Ȟ∞n (X,A;G)→ Ȟ∞n (Y,B;G)

and
f ∗ : Ĥn

∞(Y,B;G)→ Ĥn
∞(X,A;G)

and call homomorphisms induced by proper map f : (X,A)→ (Y,B).
Note that if f : (X,A) → (Y,B) is the identity map, then the induced

homomorphisms f∗ : Ȟ∞n (X,A;G)→ Ȟ∞n (Y,B;G) and f ∗ : Ĥn
∞(Y,B;G)→

Ĥn
∞(X,A;G) are the identity homomorphism. Besides, for each proper maps

f : (X,A)→ (Y,B) and g : (Y,B)→ (Z,C)

(g · f)∗ = g∗ · f∗

and
(g · f)∗ = f ∗ · g∗.

We have the following theorem.

Theorem 1.5. There exist the covariant and contravariant functors

Ȟ∞∗ (−,−;G) : N 2 → A b

and
Ĥ∗∞(−,−;G) : N 2 → A b

given by formulas

Ȟ∞∗ (−,−;G)(X,A) = Ȟ∞∗ (X,A;G), (X,A) ∈ ob(N 2)

Ȟ∞∗ (−,−;G)(f) = f∗, f ∈ MorN 2((X,A), (Y,B))

and
Ĥ∗∞(−,−;G)(X,A) = Ĥ∗∞(X,A;G), (X,A) ∈ ob(N 2)

Ĥ∗∞(−,−;G)(f) = f ∗, f ∈ MorN 2((X,A), (Y,B)).

Proof. The proof follows from above given discussion.
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The functors Ȟ∞∗ (−,−;G) and Ĥ∗∞(−,−;G) we will call Čech border
homology and cohomology functors, respectively.

Now we define boundary and coboundary homomorphisms

∂n : Ȟ∞n (X,A;G)→ Ȟ∞n−1(A;G)

and
δn : Ĥn−1

∞ (A;G)→ Ĥn
∞(X,A;G).

Let (X,A) ∈ ob(N ), β, α ∈ cov∞(X,A) and β ≥ α. The refinement
projection functions induce the unique homomorphisms pβα∗ : Hn(X,A;G)→
Hn(A;G) and pβ∗α : Hn(Aα;G) → Hn(Aβ;G), which form the direct and
inverse systems

{Hn(Aα;G), pβα∗, cov∞(X,A)}

and
{Hn(Aα;G), pβ∗α , cov∞(X,A)}.

Let
Ȟ∞n (A;G)(X,A) = lim

←−
{Hn(Aα;G), pβα∗, cov∞(X,A)}

and
Ĥn
∞(A;G)(X,A) = lim

−→
{Hn(Aα;G), pβ∗α , cov∞(X,A)}.

Our main aim is to show that the groups Ȟ∞n (A;G) and Ĥ∞n (A;G)(X,A),

Ĥn
∞(A;G) and Ĥn

∞(A;G)(X,A) are isomorphical groups.
Now define a function ϕ : cov∞(X,A)→ cov∞(A, ∅). Let α = {αv}v∈(Vα,V Aα ) ∈

cov∞(X,A). Assume that (ϕ(α))v = αv ∩A for v ∈ V A
α . We have define the

border covering ϕ(α) ∈ cov∞(A, ∅) indexed by pair (Vα, ∅).
Let Kα = X \

⋃
v∈Vα

αv. Note that

A \ (Kα ∩ A) =
⋃
v∈V Aα

(αv ∩ A) =
⋃
v∈V Aα

(ϕ(α))v.

It is clear that Kα ∩A is a compact subset of subspace A. Thus, ϕ(α) ∈
cov∞(A, ∅). The defined function is the order preserving function.

It is easy to show that the image of function ϕ is a cofinal subset of
set cov∞(A, ∅). Note that Aα = Aϕ(α). By ϕα : Aϕ(α) → Aα denote this
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simplicial isomorphism. Hence, the family of pairs (ϕα, ϕ) induces a map of
inverse systems and direct systems

(ϕα∗, ϕ) : {Hn(Aα;G), pβα∗, cov∞(A, ∅)→ {Hn(Aα;G), pβα∗, cov∞(X,A)}

and

(ϕ∗α, ϕ) : {Hn(Aα;G), pβ∗α , cov∞(X,A)→ {Hn(Aα;G), pβ∗α , cov∞(A, ∅)}.

Let Φ∞n = lim
←−

(ϕα∗, ϕ) and Φn
∞ = lim

−→
(ϕ∗α, ϕ). Since all homomorphisms

ϕα∗ and ϕ∗α are isomorphisms the defined limit homomorphisms

Φ∞n : Ȟ∞n (A;G)→ Ȟ∞n (A;G)(X,A)

and
Φn
∞ : Ĥn

∞(A;G)(X,A) → Hn
∞(A;G)

are isomorphisms.
Now define a function ψ : cov∞(X,A) → cov∞(X, ∅). For each α =

{αv}v∈(Vα,V Aα ) ∈ cov∞(X,A) assume that (ψ(α))v = αv, v ∈ Vα. The family
ψ(α) is indexed by (Vα, ∅) and ψ(α) ∈ cov∞(X, ∅).

Note that Xα = Xψ(α). Let ψα : Xψ(α) → Xα be a simplicial isomorphism.
The family of pairs (ψα, ψ) induce the maps of inverse and direct systems

(ψα∗, ψ) : {Hn(Xα;G), pβα∗, cov∞(X, ∅)} → {Hn(Xα;G), pβα∗, cov∞(X,A)}

and

(ψ∗α, ψ) : {Hn(Xα;G), pβ∗α , cov∞(X,A)} → {Hn(Xα;G), pβ∗α , cov∞(X, ∅)}.

Let Ψ∞n = lim
←−

(ψα∗, ψ) and Ψn
∞ = lim

−→
(ψ∗α, ψ). Since each ψα∗ and ψ∗α are

isomorphisms the induced limit homomorphisms

Ψ∞n : Ȟ∞n (X;G)→ Ȟ∞n (X;G)(X,A)

and
Ψn
∞ : Ĥn

∞(X;G)(X,A) → Ĥn
∞(X;G)

are isomorphisms.
Now consider the diagrams

10



Ȟ∞n (X,A;G) Ȟ∞n−1(A;G)(X,A) Ȟ∞n−1(A;G)
∂
′
n Φ∞n−1

and

Ĥn
∞(A;G) Ĥn

∞(A;G)(X,A) Ĥn+1
∞ (X,A;G)

Φn
∞ δ

′n

and define the boundary homomorphism of Čech border homology groups
and cobaundary homomorphism of Čech border cohomology groups as com-
positions

∂∞n = (Φ∞n−1)
−1 · ∂′n

and
δn∞ = δ

′n · (Ψn
∞)−1.

Thus, we have obtained the following theorems.

Theorem 1.6. Let f : (X,A) → (Y,B) be a proper map. Then hold the
following equalities

(f|A)∗ · ∂∞n = ∂∞n · f∗
and

δn−1∞ (f|A)∗ = f ∗ · δn−1∞ .

Proof. The proof follows from the following commutative diagrams

Ȟ∞n (X,A;G) Ȟ∞n−1(A;G)(X,A) Ȟ∞n−1(A;G)

Ȟ∞n (Y,B;G) Ȟ∞n−1(B;G)(Y,B) Ȟ∞n−1(B;G)

∂
′
n Φ∞n−1

∂
′
n

Φ∞n−1

f∗ (f|A)
′
∗ (f|A)∗

and

Ĥn−1
∞ (B;G) Ĥn−1

∞ (B;G)(Y,B) Ĥn
∞(Y,B;G)

Ĥn−1
∞ (A;G) Ĥn−1

∞ (A;G)(X,A) Ĥn
∞(X,A;G),

Φn−1
∞ δ

′n

Φn−1
∞ δ

′n

(f|A)∗ (f|A)
′∗ f ∗
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where (f|A)
′
∗ and (f|A)∗

′
are defined as the appropriate limit homomorphisms.

Let i : A→ X and j : X → (X,A) be the inclusion maps.

Theorem 1.7. Let (X,A) ∈ ob(N 2). Then the Čech border cohomology
sequence

· · · Hn−1
∞ (A;G) Hn

∞(X,A;G) Hn
∞(X;G) Hn

∞(A;G) · · ·
δn−1∞ j∗ i∗

is exact while the Čech border homology sequence

· · · H∞n−1(A;G) H∞n (X,A;G) H∞n (X;G) H∞n (A;G) · · ·
∂∞n−1 j∗ i∗

is a partially exact.

Proof. This theorem we can prove analogously to the corresponding theorem
of the classical Čech theory [E-St].

Theorem 1.8. Let (X,A) ∈ ob(M 2) and G be an abelian group. If U is
open in X and Ū ⊂ intA, then the inclusion map i : (X \U,A \U)→ (X,A)
induces isomorphisms

i∗ : Ȟ∞n (X \ U,A \ U)→ Ȟ∞n (X,A;G)

and
j∗ : Ĥn

∞(X,A;G)→ Ĥn
∞(X \ U,A \ U)

Proof. Let cov
′
∞(X,A) be the subset of cov(X,A) consisting of all coverings

α = {αv}v∈Vα,V Aα with property:
if αv ∩ U 6= ∅, then v ∈ V A

α and αv ⊂ A.
First prove that cov

′
∞(X,A) is cofinal in cov∞(X,A). Let α = {αv}v∈(Vα,V Aα )

be a border covering of (X,A) with enclosure Kα. Let V
′

be a set such that
V
′ ∩ Vα = ∅ and there exists a bijective function between V A

α and V
′
. Let

v ∈ V A
α . The correspondence element of v in V

′
denote by v

′
. Now define

the border covering γ = {γv}v∈(Vα∪V ′ ,V Aα ∪V ′ ) ∈ cov∞(X,A). Let

γv = αv \ Ū , v ∈ Vα
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and
γv′ = αv ∩ intA, v

′ ∈ V ′ .

It is clear that γ is a border covering of (X,A) with enclosure Kα and
γ ≥ α.

Now prove that i−1(cov
′
∞(X,A)) is cofinal in cov∞(X \ U,A \ U). Let

β = {βv}v∈(Vβ ,V A\Uβ )
be a border covering of (X \U,A\U) with enclosure Kβ.

Define a border covering α = {αv}v∈(Vβ ,V A\Uβ )
∈ cov∞(X,A).

Let
αv = βv ∪ U.

The family α = {αv}v∈(Vβ ,V A\Uβ )
is a border covering of (X,A) with enclo-

sure Kβ.
Let γ ∈ cov

′
∞(X,A) be a border covering such that γ ≥ α. It is clear

that i−1(γ) ≥ β = i−1(α).
As in [E-St] we can prove that there exist isomorphisms

iα∗ : Hn((X \ U)β, (A \ U)β;G)→ Hn(Xα, Aα;G)

and
i∗α : Hn(Xα, Aα;G)→ Hn((X \ U)β, (A \ U)β;G).

The conclusion of the theorem is a consequence of these isomorphisms.

Theorem 1.9. If X is a compact space, then for each n 6= 0

Ȟ∞n (X;G) = 0 = Ĥn
∞(X;G)

and
Ȟ∞0 (X;G) = G = Ĥ0

∞(X;G).

Proof. Let α ∈ cov∞(X) be the border covering of X consisting of empty set.
It is clear that α is a refinement of any border covering of X. The set {α} is a
cofinal subset of cov∞(X). Consider the inverse system {Hn(Xα;G), pαα∗, {α}}
and direct system {Hn(Xα;G), pα∗α , {α}}. Note that

lim
←−
{Hn(Xα;G), pαα∗, {α}} = Ȟ∞n (X;G) = Hn(Xα;G)

and
lim
−→
{Hn(Xα;G), pα∗α , {α}} = Ȟn

∞(X;G) = Hn(Xα;G).

13



The nerve Xα consists of one vertex. Using the methods of proofs of results
VI.3.8 and VI.4.3 of [E-St] we can conclude that

Ȟ∞n (X;G) = 0 = Ĥn
∞(X;G)

and
Ĥ∞0 (X;G) = G = Ĥ0

∞(X;G).

Thus, (Ĥn
∞(−,−;G)) (Ȟ∞n (−,−;G)) : N 2 → A b Čech border (co)homology

functors satisfy the Steenrod-Eilenberd type axioms (cf.[E-St]): Axiom of
natural transformation, (axiom of exactness) axiom of partially exactness,
axiom of excision and axiom of dimension, but they don’t satisfy the proper
homotopy axiom.

2 On some applications of Čech border ho-

mology and cohomology groups

In the section all spaces under discussion are metrizable. We are mainly
interested in the following problem: how can be characterized the Čech ho-
mology and cohomology groups, coefficient of cylicities and cohomological
dimensions of remainders of Stone-Čech compactifications.

The main result about the connection between Čech (co)homology groups
of remainders and Čech border (co)homology groups of spaces is incorporated
in the following theorem.

Theorem 2.1. Let (X,A) ∈ ob(M 2) and (βX, βA) its Stone-Čech compaci-
fication. Then

Ȟf
n(βX \X, βA \ A;G) = Ȟ∞n (X,A;G)

and
Ĥn
f (βX \X, βA \ A;G) = Ĥn

∞(X,A;G).

Proof. Let α = {αv}v∈(Vα,V βA\Aα )
and α

′
= {α′w}w∈(W

α
′ ,W

βA\A
α
′ )

be the closed

covers of pairs (βX \ X, βA \ A) and α ≥ α
′
. By Lemma 4 of [Sm4] there

14



exist open in βX swelling β1 = {β1
v}v∈(Vα,V βA\Aα )

and β
′

= {β ′w}w∈(W
α
′ ,W

βA\A
α
′ )

of α and α
′
, respectively. Assume that αv ⊆ α

′
wk

, k = 1, 2, · · · ,mv. Let

βv = β1
v ∩ (

mv⋂
k=1

β
′

wk
), v ∈ Vα.

Note that αv ⊂ βv ⊂ β1
v for each v ∈ Vα. It is clear that β = {βv}v∈(Vα,V Aα )

is a swelling of α = {αv}v∈(Vα,V βA\Aα )
and β ≥ β

′
.

The swelling in βX of closed cover α of (βX \X, βA \A) denote by s(α).
Let S be the set of all such type swellings.

Now define an order ≥′ in S. By definition,

s(α
′
) ≥′ s(α)⇔ s(α

′
) ≥ s(α) ∧ α

′ ≥ α.

It is clear that S is directed by ≥′ . Let ((βX \ X)s(α), (βA \ A)s(α)) be
the nerve of s(α) ∈ S and ps(α)s(α′ ) be the projection simplicial map induced

by the refinement α
′ ≥ α. Consider an inverse system

{Hn((βX \X)s(α), (βA \ A)s(α);G), p
s(α
′
)

s(α)∗, S}

and a direct system

{Hn((βX \X)s(α), (βA \ A)s(α);G), p
s(α
′
)∗

s(α) , S}.

Let ϕ : S → covcl
f (βX \X, βA \A) be a function in the set of closed finite

covers of pair (βX \X, βA \ A) given by formula

ϕ(s(α)) = α, s(α) ∈ S.

Note that ϕ is an increasing function and

ϕ(S) = covcl
f (βX \ X, βA \ A).

For each index s(α) ∈ S we have

Hn((βX \X)s(α), (βA \ A)s(α);G) = Hn((βX \X)α, (βA \ A)α;G)

and

Hn((βX \X)s(α), (βA \ A)s(α);G) = Hn((βX \X)α, (βA \ A)α;G).
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It is known that for normal spaces the Čech (co)homology groups based
on finite open covers and finite closed covers are isomorphical. By Theorems
3.14 and 4.13 of ([E-St],Ch.VIII) we have

Hf
n(βX\X, βA\A;G) ≈ lim

←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (1)

and

Hn
f (βX \X, βA \ A;G) ≈ lim

−→
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}
(2)

For each swelling s(α) = {s(α)v}v∈(Vα,V βA\Aα )
∈ S the family

s(α) ∧X = {s(α)v ∩X}v∈(Vα,V βA\Aα )

is a border cover of (X,A).
Let ψ : S → cov∞(X,A) be the function defined by formula

ψ(s(α)) = s(α) ∧X, s(α) ∈ S.

The function ψ is increases and ψ(S) is a cofinal subset of cov∞(X,A).
Note that the correspondence

((βX\X)s(α), (βA\A)s(α))→ (Xs(α)∧X , As(α)∧X) : s(α)v → s(α)v∩X, v ∈ Vα

induces an isomorphism of pairs of simplicial complexes. Thus, for each
s(α) ∈ S we have the isomorphisms

Hn((βX \X)s(α), (βA \ A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G)

and

Hn((βX \X)s(α), (βA \ A)s(α);G) = Hn(Xs(α)∧X , As(α)∧X ;G).

By Theorems 3.15 and 4.13 of ([E-St],ch.VIII)

Ȟ∞n (X,A;G) = lim
←−
{Hn((βX\X)s(α), (βA\A)s(α);G), p

s(α
′
)

s(α)∗, S} (3)

and

Ĥn
∞(X,A;G) = lim

−→
{Hn((βX\X, βA\A)s(α);G), p

s(α
′
)∗

s(α) , S}. (4)
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From (1), (2), (3) and (4) it follows that

Ȟ∞n (X,A;G) = Ȟf
n(βX \X, βA \ A;G)

and
Ĥn
∞(X,A;G) = Ĥn

f (βX \X, βA \ A;G).

Now give the following definitions and results.

Definition 2.2. Let G be an abelian group and n nonnegative integer. A
border (co)homological coefficient of cyclisity of pair (X,A) ∈ ob(M 2) with
respect to G denoted by (η∞G (X,A)) ηG∞(X,A) is n, if (Ĥm

∞(X,A;G) = 0)
Ȟ∞m (X,A;G) = 0 for all m > n and (Ĥn

∞(X,A;G) 6= 0) Ȟ∞n (X,A;G) 6= 0.
(η∞G (X,A) = +∞) ηG∞(X,A) = +∞ if for every m there is n ≥ m with

(Ĥn
∞(X,A;G) 6= 0) Ȟ∞n (X,A;G) 6= 0.

Analogously are defined the (co)homological coefficient of cyclicity (ηG(X,A))
ηG(X,A) of pair (X,A) (cf. [Bo], [No]).

Theorem 2.3. For each pair (X,A) ∈ ob(M 2)

η∞G (X,A) = ηG(βX \X, βA \ A)

and
ηG∞(X,A) = ηG(βX \X, βA \ A).

Proof. This is an immediate consequence of theorem 2.1. Indeed, Let ηG(βX\
X, βA \ A) = n. Then for each m > n, Ĥm

f (βX \ X, βA \ A;G) = 0 and

Ĥn
f (βX \X, βA \ A;G) 6= 0. From the isomorphism

Ĥk
f (βX \X, βA \ A;G) = Ĥk

f (X,A;G)

it follows that Ĥm
∞(X,A;G) = 0 for each m > n and Ĥn

∞(X,A;G) 6= 0. Thus,
η∞G (X,A) = n = ηG(βX \X, βA \ A).

Analogously we can prove equality ηG∞(X,A) = ηG(βX \X, βA \A).

Definition 2.4. A border small cohomological dimension df∞(X;G) with
respect G is defined to be the smallest integer n such that, whenever m ≥ n
andA is closed inX, the homomorphism i∗ : Ĥm

∞(X;G)→ Ĥm
∞(A;G) induced

by the inclusion i : A→ X is an epimorphism.

17



Theorem 2.5. Let X ∈ ob(M ). Then the following relation

df∞(X;G) ≤ df (βX \X;G)

hold, where df (βX \ X;G) is a small cohomological dimension of βX \ X
(see [N], p.199).

Proof. Let A be a closed subset of X. Assume that df (βX \X;G) = n. Then
for each m ≥ n the homomorphism i∗βX\X : Ĥm

f (βX\X;G)→ Ĥm
f (βA\A;G)

is an epimorphim. Consider the following commutative diagram

Ĥm
∞(X;G) Ĥm

f (βX \X;G)

Ĥm
∞(A;G) Ĥm

f (βA \ A;G).

i∗A i∗βA\A

≈

≈

It is clear that the homomorphim

i∗A : Ĥm
f (X;G)→ Ĥm

f (A;G)

also is an epimorphim for each m ≥ n. Thus, df∞(X;G) ≤ n = df (βX \
X;G).

Proposition 2.6. Let (X,A) ∈ ob(M 2). Then

d∞f (A;G) ≤ d∞f (X;G).

Proof. Let B be an arbitrary closed subset of A and j : B → A, i : A → X
and k : B → X be the inclusion maps. Note that k = i·j. The induced homo-
morphism maps k∗ : Ĥn

∞(X;G) → Ĥn
∞(B;G), i∗ : Ĥn

∞(X;G) → Ĥn
∞(A;G)

and j∗ : Ĥn
∞(A;G)→ Ĥn

∞(B;G) satisfy the relation k∗ = j∗ · i∗.
Let n = d∞f (X;G). For eachm ≥ n the homomorphisms k∗ : Ĥm

∞(X;G)→
Ĥm
∞(B;G) and i∗ : Ĥm

∞(X;G) → Ĥm
∞(A;G) are epimorphisms. Hence,

j∗ : Ĥm
∞(A;G) → Ĥm

∞(B;G) homomorphism also is an ephimorphism for
each m ≥ n. Thus, d∞f (A;G) ≤ n = d∞f (X;G).

Corollary 2.7. For each closed subspace Y of metrizable space X

d∞f (Y ;G) ≤ df (βX \X;G).
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Remark 2.8. The results of this paper also hold for spaces satisfying the
compact axiom of countability. A space X satisfies the compact axiom of
countability if for each compact subset B ⊂ X there exist a compact subset
B
′ ⊂ X such that B ⊂ B

′
and B

′
has a countable of finite fundamental

system of neighbourhood (see Definition 4 of [Sm4], p.143). A space X is
complete in the sense of Čech if and only if it is Gδ type set in some compact
extension. Each locally metrizable spaces, complete in the seance Čech spaces
[Č] and locally compact spaces satisfy the compact axiom of countability.
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