- Außenhofer
- Motivation
- Quasi-convex sets
- Which groups admit quasi-convex null sequences?
- The main result
- Open questions
- Bibliography

On quasi-convex null sequences

Lydia Außenhofer

lydia.aussenhofer@uni-passau.de

TOPOSYM 2016

Außenhofer

Motivation

Quasi-conve> sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

On quasi-convex null sequences

- Außenhofer
- Motivation
- Quasi-convex sets
- Which groups admit quasi–convex null sequences?
- The main result
- Open questions
- Bibliography

Quasi–convex sets

Which groups admit quasi-convex null sequences?

4 The main result

Bibliography

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Notation

A subset *C* of a real vector space *V* is called **convex** if $\lambda x + (1 - \lambda)y \in C \quad \forall \lambda \in [0, 1], \forall x, y \in C.$

In particular, if $x, y \in C$ are two different points, then $\{\lambda x + (1 - \lambda)y : \lambda \in [0, 1]\} \subseteq C$ and hence $|C| \ge c$.

Außenhofer

Motivation

- Quasi-convex sets
- Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

In order to define "**convex**" sets in an abelian topological group, we use the description of closed, symmetric convex subsets of real locally convex vector spaces given by the Hahn Banach theorem:

Theorem

Let V be a real locally convex vector space and $0 \in C \subseteq V$. Then the following assertion are equivalent:

- *C* is closed, symmetric and convex.
- Por every x ∉ C there exists a continuous linear form f : V → ℝ such that

$$f(\mathcal{C}) \subseteq \left[-rac{1}{4},rac{1}{4}
ight]$$
 and $|f(x)| > rac{1}{4}$

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Notation

The torus $\mathbb{T} := \mathbb{R}/\mathbb{Z}$, $\mathbb{T}_+ = [-\frac{1}{4}, \frac{1}{4}] + \mathbb{Z}$

Definition

Let (G, τ) be an abelian topological group.

$$G^{\wedge} := (G, \tau)^{\wedge} := \{ \chi : G
ightarrow \mathbb{T} | \ \chi ext{ is a continuous hom.} \}$$

is under pointwise addition an abelian group. It is called **dual group** or **character group**.

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi–convex null sequences?

The main result

Open questions

Bibliography

Quasi-convex sets

Definition

For a subset *A* of a topological group (G, ρ) we define the **polar** of *A* as

$$\mathcal{A}^{\triangleright} := \{ \chi \in \mathcal{G}^{\wedge} | \; orall \; x \in \mathcal{A} \; \; \chi(x) \in \mathbb{T}_+ \}$$

and for $B \subseteq G^{\wedge}$ we define the **pre–polar** of *B* by

$$B^{\triangleleft} := \{ x \in G | \ orall \ \chi \in B \ \chi(x) \in \mathbb{T}_+ \}.$$

A subset *A* of a topological group (G, τ) is called **quasi–convex** if for every $x \in G \setminus A$ there exists a character $\chi \in A^{\triangleright}$ such that $\chi(x) \notin \mathbb{T}_+$.

Motivation

Quasi-convex sets

TOPOSYM 2016

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Locally quasi-convex groups

Definition (Vilenkin; 1951)

A topological group (G, τ) is called **locally quasi–convex** if it has a neighborhood basis at 0 consisting of quasi–convex sets.

Quasi-convex sets

Examples of quasi-convex sets

Example

- $\mathbb{T}_+ \subseteq \mathbb{T}$ is quasi–convex.
- 2 $\mathbb{T}_m := \left[-\frac{1}{4m}, \frac{1}{4m}\right] + \mathbb{Z} \subseteq \mathbb{T}$ is quasi-convex.
 - The intersection of quasi-convex sets is quasi-convex.
 - The inverse image of a quasi-convex set under a continuous homomorphism is guasi-convex.
 - For $B \subseteq G^{\wedge}$ the set

$$(B,\mathbb{T}_m):=igcap_{\chi\in B}\chi^{-1}(\mathbb{T}_m)$$

is quasi-convex.

• For every $A \subseteq G$ the set $(A^{\triangleright})^{\triangleleft} = (A^{\triangleright}, \mathbb{T}_+)$ is quasi-convex.

Motivation

Quasi-convex sets

Which groups admit quasi–convex null sequences?

The main result

Open questions

Bibliography

The quasi-convex hull

Proposition

For a subset A of an abelian topological group (G, τ) the set

(*A*⊳)⊲

is the smallest quasi–convex set containing A. It is called the quasi–convex hull of A and denoted by qc(A).

Corollary

 $A \subseteq G$ is quasi–convex iff $A = (A^{\triangleright})^{\triangleleft}$.

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Examples of locally quasi-convex groups

Example

- A Hausdorff topological vector space is locally convex iff it is locally quasi-convex.
- Every character group endowed with the compact-open topology is locally quasi-convex.
- Every locally compact abelian (LCA for short) group is locally quasi-convex.

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi–convex null sequences?

The main result

Open questions

Bibliography

Cardinality of quasi-convex sets

Proposition

Every symmetric, closed and convex subset of a locally convex vector space is locally quasi–convex. Hence there exist quasi–convex sets of cardinality $\geq c$.

Proposition (L.A. 1998)

If G is an MAP group, then

$$qc(x) = \{x, -x, 0\}$$

for every $x \in G$.

Proposition (L.A. 1998; Dikranjan, Kunen 2007)

If G is an MAP group, then the quasi–convex hull of every finite subset is finite.

Quasi-convex

TOPOSYM 2016

sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Question

Question

Are there countably infinite quasi-convex sets?

Außenhofer

Motivation

Quasi-conve> sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Quasi-convex null sequences

Definition

A sequence $(x_n)_{n \in \mathbb{N}}$ in an abelian topological group is called a **quasi–convex null sequence** if

$$x_n \rightarrow 0$$

and the set

$$\{x_n: n \in \mathbb{N}\} \cup \{-x_n: n \in \mathbb{N}\} \cup \{\mathbf{0}\}$$

is quasi-convex.

Question

Are there quasi-convex null sequences?

Which (LCA) groups have quasi-convex null sequences?

Außenhofer

Motivation

Quasi-conve> sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Quasi–convex null sequences in $\ensuremath{\mathbb{T}}$

Theorem (L. de Leo 2008)

Let $(a_n) \in \mathbb{N}^{\mathbb{N}}$ with $a_{n+1} - a_n \ge 2$ for all $n \in \mathbb{N}$. Then

$$(2^{-a_n+1}+\mathbb{Z})_{n\in\mathbb{N}}$$

is a quasi-convex null sequence in \mathbb{T} .

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Quasi–convex null sequences in $\mathbb R$ and $\mathbb J_2$

Theorem (D. Dikranjan, L. de Leo, 2010)

Let $(a_n) \in \mathbb{N}^{\mathbb{N}}$ with $a_{n+1} - a_n \ge 2$ for all $n \in \mathbb{N}$. Then

$$(2^{-a_n+1})_{n\in\mathbb{N}}$$

is a quasi-convex null sequence in \mathbb{R} .

Example

$$\operatorname{qc}(\{2^{-n}: n \in \mathbb{N}_0\}) = [-1, 1] \subseteq \mathbb{R}$$

Theorem (D. Dikranjan, L. de Leo, 2010)

Let $(a_n) \in \mathbb{N}^{\mathbb{N}}$ with $a_{n+1} - a_n \ge 2$ for all $n \in \mathbb{N}$. Then

$$(2^{a_n-1})_{n\in\mathbb{N}}$$

is a quasi-convex null sequence in \mathbb{J}_2 .

Außenhofer

Motivation

Quasi–convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Quasi-convex sets in bounded groups

Proposition (D. Dikranjan, G. Lukács; 2010)

Every abelian topological group of exponent \leq 3 has no non-trivial quasi-convex null sequence.

Proof.

Let *G* be a bounded abelian topological group of exponent ≤ 3 . Fix $x \in G$ and $\chi \in G^{\wedge}$. If $\chi(x) \neq 0 + \mathbb{Z}$, then $\chi(x) \notin \mathbb{T}_+$. This implies $\{x\}^{\triangleright} = \{x\}^{\perp}$. Hence, if (x_n) is a null sequence, then $\{x_n : n \in \mathbb{N}\}^{\triangleright}$ is a subgroup of G^{\wedge} and so is $\operatorname{qc}(\{x_n : n \in \mathbb{N}\}) = (\{x_n : n \in \mathbb{N}\}^{\perp})^{\triangleleft}$. In particular, $\operatorname{qc}(\{x_n : n \in \mathbb{N}\})$ is a subgroup of *G*, hence a homogeneous space. This yields $\{0\} \cup \{\pm x_n : n \in \mathbb{N}\} \neq \operatorname{qc}(\{x_n : n \in \mathbb{N}\})$.

2016 Außenhofe

TOPOSYM

Motivation

Quasi-conve sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

The groups \mathbb{Z}_2^{κ} and \mathbb{Z}_3^{κ}

Corollary (D. Dikranjan, G. Lukács; 2010)

The groups \mathbb{Z}_2^{κ} and \mathbb{Z}_3^{κ} do not admit a non-trivial quasi-convex null sequence.

Außenhofer

Motivation

Quasi-conve> sets

Which groups admit quasi-convex null sequences?

The main result

Open question

Bibliography

Quasi-convex null sequences in LCA groups

Theorem (D. Dikranjan, G. Lukács; 2010)

For a LCA group G the following assertions are equivalent:

- G has no non-trivial quasi-convex null sequence.
- ② Either the subgroup $G[2] = \{x \in G : 2x = 0\}$ or $G[3] = \{x \in G : 3x = 0\}$ is open in *G*.
- G contains a compact open subgroup topologically isomorphic to Z^κ₂ or Z^κ₃ (κ a cardinal).

- Außenhofer
- Motivation
- Quasi-conve> sets
- Which groups admit quasi-convex null sequences?
- The main result
- Open questions
- Bibliography

Quasi-convex null sequences in LCA groups

Question

Do similar results hold for arbitrary precompact abelian groups?

Which aroups admit quasi-convex null sequences?

Quasi-convex null sequences in precompact groups

Theorem (D. Dikranjan, G. Lukács; 2014)

If G is a **bounded** precompact group or a **minimal** group then the following assertions are equivalent:

G has no non-trivial guasi-convex null sequences.

[2] G[2] or G[3] is sequentially open.

Theorem (D. Dikranjan, G. Lukács; 2014)

If G is an abelian ω -bounded or a totally minimal group then the following assertions are equivalent:

G has no non-trivial guasi-convex null sequences.

G[2] or G[3] is open.

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

The following question is still open:

Question (D. Dikranjan, G. Lukács; 2010)

Let H be an infinite cyclic subgroup of \mathbb{T} . Does H admit a non-trivial quasi-convex null sequence?

We will give a partial answer.

Außenhofer

Motivation

Quasi–convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Notation

Let $(b_n)_{n \in \mathbb{N}_0}$ be a strictly increasing sequence of natural numbers such that $b_0 = 1$ and $b_n | b_{n+1}$ for all $n \in \mathbb{N}$; this means $q_n := \frac{b_n}{b_{n-1}} \in \mathbb{N}$ for all $n \in \mathbb{N}$. We assume further that for all $n \in \mathbb{N}$

$$16 \cdot q_2 \cdot \ldots \cdot q_n | q_{n+1} \iff 16 \frac{b_n}{b_1} | \frac{b_{n+1}}{b_n}.$$

Define

$$\alpha := \sum_{k=1}^{\infty} \frac{1}{b_k} + \mathbb{Z}$$

Außenhofer

Motivation

Quasi–conve sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Theorem (L.A. 2016)

The group $\langle \alpha \rangle$ contains a quasi–convex null sequence; more precisely,

 $(b_n \alpha)_{n \in \mathbb{N}}$

is a quasi–convex null sequence in $\langle \alpha \rangle.$ The set

$$\mathcal{S}:=\{\mathbf{0}+\mathbb{Z}\}\cup\{\pm b_nlpha:\ n\in\mathbb{N}\}$$

is even quasi–convex in \mathbb{T} .

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Proof.

$$b_n \alpha = b_n \sum_{k=1}^{\infty} \frac{1}{b_k} + \mathbb{Z} = \underbrace{\sum_{k=n+1}^{\infty} \frac{b_n}{b_k}}_{=:x_n} + \mathbb{Z}$$

$$\operatorname{qc}(\mathcal{S}) \subseteq \{\pm \sum_{k=2}^{\infty} \sum_{j=1}^{k-1} \varepsilon_{j,k} \frac{b_j}{b_k}: \ \varepsilon_{j,k} \in \{0,1\}\}$$

$$\mathrm{qc}(\mathcal{S}) \subseteq \{\pm \sum_{k=2}^{\infty} \sum_{j=1}^{k-1} arepsilon_j rac{b_j}{b_k}: \ arepsilon_j \in \{0,1\}\} =$$

$$=\{\sum_{j=1}^{\infty}\varepsilon_{j}\sum_{k=j+1}^{\infty}\frac{b_{j}}{b_{k}}: \varepsilon_{j}\in\{0,1\}\}=$$

$$=\{\pm\sum_{j=1}^{\infty}arepsilon_{j}x_{j}: \ arepsilon_{j}\in\{0,1\}\}$$

S is quasi–convex (in \mathbb{T}).

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Theorem

There are c many non-torsion elements α in \mathbb{T} such that $\langle \alpha \rangle$ contains a non-trivial null sequence.

Open Questions

admit quasi–conve> null sequences?

TOPOSYM 2016

The main result

Open questions

Bibliography

- (de Leo) Does every null sequence in T (ℝ, in a LCA group G) contain a quasi–convex null sequence?
- ② (de Leo; Dikranjan) For which sequences $(c_n) \in \mathbb{N}^{\mathbb{N}}$ is $\left(\frac{c_n}{2^{a_n}} + \mathbb{Z}\right)_{n \in \mathbb{N}}$ quasi–convex in \mathbb{T} ?

Quasi-convex

Which groups admit quasi–convex null sequences?

The main result

Open questions

Bibliography

Open Questions

For which non-torsion element $\beta \in \mathbb{T}$ does $\langle \beta \rangle$ contain a quasi-convex null sequence? Let $S = \{b_n \alpha : n \in \mathbb{N}\} \subseteq \mathbb{T}$. Denote by τ_S the topology on \mathbb{Z} of uniform convergence on the set *S*. Is it correct that

$$(\mathbb{Z}, \tau_S)^{\wedge} = \langle \alpha \rangle$$
 ?

Außenhofer

Motivation

Quasi-convex sets

Which groups admit quasi–convex null sequences?

The main result

Open questions

Bibliography

Bibliography

- L. Außenhofer, On quasi-convex null sequences in infinite cyclic groups, preprint.
- L. de Leo, Weak and strong topologies in topological abelian groups, doctoral dissertation, Madrid, 2008.
- L. de Leo and D. Dikranjan, Countably infinite quasi-convex sets in some locally compact abelian groups, Topology Appl. 157 (2010), no. 8, 1347 - 1356.
- D. Dikranjan and G. Lukács, Quasi-convex sequences in the circle and the 3-adic integers, Topology Appl. 157 (2010), no. 8, 1357 - 1369.
- D. Dikranjan and G. Lukács, Locally compact abelian groups admitting non-trivial quasi-convex null sequences, J. Pure Appl. Algebra 214 (2010), no. 6, 885 - 897.
- D. Dikranjan and G. Lukács, *Compact-like abelian* groups without non-trivial quasi-convex null sequences, J. Pure Appl. Algebra 218 (2014), no. 1, 135 - 147.

Außenhofer

Motivation

Quasi-conve> sets

Which groups admit quasi-convex null sequences?

The main result

Open questions

Bibliography

Thank you for your attention.