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The problem

Definition
A topological space X is said to be a Lindelöf space if every open covering of it
has a countable subcovering.

There are Lindelöf spaces X and Y such that X × Y is not Lindelöf.

If K is a compact space, then K × L is Lindelöf for every Lindelöf space L.

Definition
A topological space X is said to be productively Lindelöf if X × L is Lindelöf for
every Lindelöf space L.

Problem (Tamano)

Is there an internal characterization for productively Lindelöf spaces?
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If K is a compact space, then K × L is Lindelöf for every Lindelöf space L.

Definition
A topological space X is said to be productively Lindelöf if X × L is Lindelöf for
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has a countable subcovering.
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The general idea

Let X be a topological space. Let CX be the collection of all open coverings
of X - we will define a topology over CX , but which one does not matter
right now.

The characterization is of this form: X is productively Lindelöf if, and only if,
X × L is Lindelöf for every Lindelöf space L ⊂ CX .

Since we are talking about open coverings of X , this can be said in terms of
X .

Actually, we can do a little better - we do not need to say that X × L is
Lindelöf. We only have to check if a very specific (and simple) covering has a
countable subcovering - we will see that later.
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The topology

First, let us define the topology over CX .

Definition

Let C ∈ CX . A basic open neighborhood of C is of the form [A1, ...,An] for
A1, ...,An ∈ CX , where

[A1, ...,An] = {C ′ ∈ CX : A1, ...,An ∈ C ′}

Note that this topology is quite natural: two open coverings are more close to
each other as many open set they share.
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The characterization

Theorem (easier to remember version)

A topological space X is productively Lindelöf if, and only if, for every Lindelöf
space L ⊂ CX , X × L is Lindelöf.

As said before, we do not need X × L being Lindelöf - just a simple consequence
of it.
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The characterization with new clothes

Let us say that a collection L of open coverings is Lindelöf if it is Lindelöf as a
subspace of CX . Then, we can state the characterization in the following way:

Theorem (a more internal version)

A topological space X is productively Lindelöf if, and only if, for every Lindelöf
collection L of open coverings of X , there is a sequence (An)n∈ω of open sets such
that C ∩ {An : n ∈ ω} is an open covering for every C ∈ L.
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subspace of CX . Then, we can state the characterization in the following way:

Theorem (a more internal version)

A topological space X is productively Lindelöf if, and only if, for every Lindelöf
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subspace of CX . Then, we can state the characterization in the following way:

Theorem (a more internal version)

A topological space X is productively Lindelöf if, and only if, for every Lindelöf
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The very easy part

First, we suppose that X is productively Lindelöf.

Let L be a Lindelöf collection of open coverings of X .

Note that, for every A ∈
⋃

L, A× [A] is an open set of X × L.

The collection of all A× [A]’s forms an open covering of X × L: Let
(x ,C ) ∈ X × L. Since C is a covering, there is an A ∈ C such that x ∈ A.
Therefore, (x ,C ) ∈ A× [A].

Since X × L is Lindelöf, there is a sequence (An)n∈ω such that
X × L ⊂

⋃
n∈ω An × [An].

Note that, for a fixed C ∈ L, for every x ∈ X , there is an n ∈ ω such that
(x ,C ) ∈ An × [An]. Thus, this is simply saying that C ∩ {An : n ∈ ω} is a
covering.
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The very easy part

First, we suppose that X is productively Lindelöf.
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Let L be a Lindelöf collection of open coverings of X .

Note that, for every A ∈
⋃
L, A× [A] is an open set of X × L.

The collection of all A× [A]’s forms an open covering of X × L: Let
(x ,C ) ∈ X × L. Since C is a covering, there is an A ∈ C such that x ∈ A.

Therefore, (x ,C ) ∈ A× [A].
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The easy part

Now we will do the other direction.
The general procedure is the following:

We start with a Lindelöf space Y and an open covering W for X × Y .

Then we make a Lindelöf space L ⊂ CX from W.

From the hypothesis, there is a sequence (An)n∈ω of open sets such that, for
every C ∈ L, C ∩ {An : n ∈ ω} is a covering.

The sequence (An)n∈ω induces a countable subcovering of W.
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Finding L

Let W be an open covering for X × Y .
We can suppose that each element of W is of the form A× B.
Then, for every y ∈ Y , let

Cy = {A : ∃B A× B ∈ W and y ∈ B}

Let L = {Cy : y ∈ Y }.
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Finding L

Let W be an open covering for X × Y .
We can suppose that each element of W is of the form A× B.
Then, for every y ∈ Y , let

Cy = {A : ∃B A× B ∈ W and y ∈ B}

Let L = {Cy : y ∈ Y }.

Leandro F. Aurichi Joint work with Lyubomyr Zdomskyy (ICMC-USP, Brazil)An internal characterization for productively Lindelöf spaces 9 / 24
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L is Lindelöf

Now we need to prove that L is Lindelöf.
Let [Ay

1 , ...,A
y
k ]y∈Y be such that Cy ∈ [Ay

1 , ...,A
y
k ].

Note that, for every Ay
i , there is a By

i such that

Ay
i × By

i ∈ W and y ∈ By
i

Therefore, we may define By =
⋂k

i=1 B
y
i which is an open neighborhood of y .

Since Y is Lindelöf, there is a countable Y ′ ⊂ Y such that Y ⊂
⋃

y∈Y ′ By .

Now we only have to show that [Ay
1 , ...,A

y
k ]y∈Y ′ covers L: Let Cy ∈ L. Let z ∈ Y ′

be such that y ∈ Bz . Then, y ∈
⋂k

i=1 B
z
i . Therefore, Az

1, ...,A
z
k ∈ Cy as we

wanted.
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Since Y is Lindelöf, there is a countable Y ′ ⊂ Y such that Y ⊂
⋃

y∈Y ′ By .

Now we only have to show that [Ay
1 , ...,A

y
k ]y∈Y ′ covers L: Let Cy ∈ L. Let z ∈ Y ′

be such that y ∈ Bz . Then, y ∈
⋂k

i=1 B
z
i . Therefore, Az

1, ...,A
z
k ∈ Cy as we

wanted.

Leandro F. Aurichi Joint work with Lyubomyr Zdomskyy (ICMC-USP, Brazil)An internal characterization for productively Lindelöf spaces 10 / 24
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L is Lindelöf
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The we-may-have-a-problem part

Since L is Lindelöf, we can use the hypothesis. Recalling it, there is a sequence
(An)n∈ω such that, for every y ∈ Y , Cy ∩ {An : n ∈ ω} is a covering for X .
Let us pretend for a minute that life is good, and assume that, for each An, there
is only one B such that An × B ∈ W - therefore, let us call this B as Bn.
With this, it is easy to show that (An × Bn)n∈ω is a countable subcovering of W:
let (x , y) ∈ X × Y . Since Cy ∩ {An : n ∈ ω} is a covering, there is an An ∈ Cy

such that x ∈ An. Since An ∈ Cy , y ∈ Bn. Therefore, (x , y) ∈ An × Bn.
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Fixing the problem

The problem that remains to be fixed is the following: for each An fixed at the
end, there can be several B’s such that An × B ∈ W - even uncountably many.

One way to fix this is the following. Given a covering W made of basic sets of
X × Y , we say it is a good covering if, for every A, the set

{B : A× B ∈ W}

has at most one element. And we say that W is ω-good if for every A, the set

{B : A× B ∈ W}

is countable.
Thus, note that if the W we were working with is ω-good, we are done: at the
end, when we fix the sequence (An)n∈ω, the set

{An × B : An × B ∈ W}

is countable and would be a covering.
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Maybe life is ω-good

Proposition

If X is regular, and Y is a Lindelöf space, for every covering W of X × Y there is
a refinement for W that is ω-good.

Some ingredients for the proof are:

Split X in the disjoint union of a perfect and a scattered subspaces;

Note that if X is discrete, the result is true;

Proceed by induction on the scattered part;

For the perfect part, note that if a space is regular with no isolated points, it
has a base B that, for every A,B ∈ B with A 6= B, (Ar B) ∪ (B r A) has at
least 3 points;

Work by induction on the cardinality of the elements of this base;

Be patient.
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If X is regular, and Y is a Lindelöf space, for every covering W of X × Y there is
a refinement for W that is ω-good.

Some ingredients for the proof are:

Split X in the disjoint union of a perfect and a scattered subspaces;

Note that if X is discrete, the result is true;

Proceed by induction on the scattered part;

For the perfect part, note that if a space is regular with no isolated points, it
has a base B that, for every A,B ∈ B with A 6= B, (Ar B) ∪ (B r A) has at
least 3 points;

Work by induction on the cardinality of the elements of this base;

Be patient.

Leandro F. Aurichi Joint work with Lyubomyr Zdomskyy (ICMC-USP, Brazil)An internal characterization for productively Lindelöf spaces 13 / 24
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If X is regular, and Y is a Lindelöf space, for every covering W of X × Y there is
a refinement for W that is ω-good.

Some ingredients for the proof are:

Split X in the disjoint union of a perfect and a scattered subspaces;

Note that if X is discrete, the result is true;

Proceed by induction on the scattered part;

For the perfect part, note that if a space is regular with no isolated points, it
has a base B that, for every A,B ∈ B with A 6= B, (Ar B) ∪ (B r A) has at
least 3 points;

Work by induction on the cardinality of the elements of this base;

Be patient.

Leandro F. Aurichi Joint work with Lyubomyr Zdomskyy (ICMC-USP, Brazil)An internal characterization for productively Lindelöf spaces 13 / 24
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Another way (this part is a joint work with Renan M.
Mezabarba)

One way of not having this problem is to change the way that we made the L
space. Instead of making it with a collection of open coverings, we could made it
with indexed open coverings:

Let I be a collection of indexes and let (Ai )i∈I be a collection of open sets of X .
Let Y be a set such that, for each y ∈ Y, {Ai : i ∈ y} is a covering for X .
As before, define a basic open set as

[i1, ..., in] = {y ∈ Y : i1, ..., in ∈ y}

With this, we can say when Y is Lindelöf or is not and thus we can repeat the
previous process. Note that in this way, we do not have the final problem: we can
always take coverings (Aξ × Bξ)ξ<κ indexed by some κ. Working in this way,
associated with each Aξ, there is only one Bξ.
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Surprise

With indexed families (not necessarily open coverings), we can repeat this idea
and obtain internal characterizations for the productiveness of other topological
properties.

Let’s see some examples.
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Countably compact spaces

Proposition

A space X is productively countably compact if, and only if, for every space L of
indexed coverings that is countably compact, X × L is countably compact.

Froĺık already have a characterization for productively countably compact spaces -
but in the Tychonoff case.
Here the situation is more delicate: on one side, we are not assuming that X is
Tychonoff. But we are talking about spaces X such that the product of X × Y is
countably compact for every Y , not only the Y ’s that are Tychonoff.
In the Lindelöf case, this was not a problem since, by a result of Duanmu, Tall and
Zdomskyy, if X × Y is not Lindelöf for some Y Lindelöf, there is a regular
Lindelöf space Z such that X × Z is not Lindelöf.
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Menger and Rothberger spaces

Proposition

A space X is productively Rothberger (Menger) if, and only if, X ×L is Rothberger
(Menger) for every Rothberger (Menger) space L made of indexed coverings of X .
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Paracompact spaces

Proposition

A space X is productively paracompact if, and only if, X × L is paracompact for
every paracompact space L made of indexed coverings of X .

The trick here is when taking an open covering W of X × Y , we refine this
covering for a collection (Ai × Bi )i∈I in such a way that the collection {Bi : i ∈ I}
forms a base for Y (this let us pass through the “refinement problems”).
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The idea of the proof

Let Y be a paracompact space.

Let (Aξ × Bξ)ξ<κ be a covering of X × Y . We may suppose that
{Bξ : ξ < κ} is a base for Y .

For each y ∈ Y , let Cy = {Aξ : y ∈ Bξ}. Let L = {Cy : y ∈ Y }.
Now we have to prove that L is paracompact and, after this, prove that a
locally finite refinement from Aξ × [Aξ] induces a locally finite refinement for
(Aξ × Bξ)ξ<κ.
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L is paracompact

Let [Aξ1 , ...,Aξn ](ξ1,...,ξn)∈I be an open covering for L.

For each ξ ∈ I , let Vξ = Bξ1 ∩ · · · ∩ Bξn .

The collection (Vξ)ξ∈I is an open covering for Y .

Since Y is paracompact, there is (Us)s∈S a locally finite refinement of
(Vξ)ξ∈I .

For each s ∈ S , let κs = {ξ < κ : Bξ ⊂ Us}.
For each s ∈ S , let As =

⋃
ξ∈κs

[Aξ]. The collection {As : s ∈ S} is the
locally finite refinement we were looking for.
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There is a locally finite refinement

Let (Us)s∈S be a locally finite refinement for the covering (Aξ × Bξ)ξ<κ. Each
element Us =

⋃
ξ∈IS

Vξ × [A1
ξ, ...,A

n
ξ] for some IS .

For each [An
ξ, ...,A

n
ξ] as above, define Wξ =

⋂n
i=1 B

n
ξ .

Then, for each s, define Us =
⋃
ξ∈IS

Vξ ×Wξ.
(Us)s∈S is the refinement that we were looking for.
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There is no need to be a covering property

This technique also works for some non covering properties:

Proposition

A space X is productively Baire if, and only if, X × L is Baire for every Baire
space L made of indexed open collections of X .

The trick here is the translation: for a open set A, A is dense if, and only if,
{B ⊂ A : B is open} is a π-base.
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ccc spaces

Proposition

A space X is productively ccc if, and only if, X × L is ccc for every ccc space L
made of indexed open collections of X .

We can translate this into something more combinatorical:

Proposition

A space X is productively ccc if, and only if, for any family A of antichains of X
with |

⋃
A| > ℵ0, there exists an uncountable set F ⊂

⋃
A∈A[A]<ω such that

there is no F ,G ∈ F with F 6= G and F ∪ G ∈ A for some A ∈ A.
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Thank you very much
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